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EXACT SOLUTIONS OF SOME COMPLEX PARTIAL
DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

ARZU OGUN UNAL

Abstract. In this paper some exact solutions of fractional Schrödinger and
Eckhaus equations and numerical solutions of massive Thirring equations are
obtained. These equations can be reduced to fractional ordinary di¤erential
equations by using a suitable transformation. The fractional derivatives are
described in the Caputo sense.

1. Introduction

In recent years fractional partial di¤erential equations have been recieved con-
siderable interest by many researchers in mathematics and some of the others �elds
in science. Fractional partial di¤erential equations (FPDE) arise from widely ex-
panded areas such as �uid mechanics, viscoelasticity, biology and engineering [13].
Several methods have been introduced to obtain exact and numerical solutions of
these type of equations such as the Adomian decomposition method, variational
iteration method, di¤erential transform method and so on ([4], [8],[9],[11],[16] and
[18]). In literature generally numerical techniques have been proposed for FPDE, so
we are motivated to investigate exact solutions of some important complex FPDE�s.
In this paper we consider the fractional Schrödinger equation
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and Eckhaus equation
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of order 0 < � � 1; with the initial condition

u(x; 0) = eixu0:

By using the variable transformation

u(x; t) = eixU(t); (3)
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these equations are reduced to ordinary fractional di¤erential equations which pro-
vide us to �nd some exact solutions of these equations by using the Demirci and
Ozalp�s aproach ([2], [3]). Demirci and Ozalp introduce a new technique to �nd the
exact solutions of fractional di¤erential equations by using the solutions of integer
order di¤erential equations.Transformation (3) is a special form of transformation
u(x; t) = ei�U(�) where � = �x + �t and � = x � ct. This transformation is a
well known transformation and is especially used to reduce the complex nonlinear
partial di¤erential equations to ordinary di¤erential equations. For example, non-
linear Schrödinger equation (NLS) and Eckhaus equations are admits a traveling
wave solution of the form u(x; t) = ei�U(�) ([14], [15]).
Also we consider the fractional massive Thirring equations
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with the following conditions

u(x; 0) = eixu0
v(x; 0) = eixv0

(5)

By using the same method, we obtain numerical solutions of this equation. Finally
graphics of some solutions are presented.
Now we give some de�nitions of the fractional calculus theory which will be

needed in this paper ([5], [7] and [10]).

De�nition 1. The Riemann-Liouville fractional integration of order �; of a func-
tion f is de�ned as

J�a f(x) =
1

�(�)

Z x

a

(x� t)��1f(t)dt; � > 0; x > 0: (6)

De�nition 2. The fractional derivative of f(x) in the Caputo sense is de�ned as

CD�
a f(x) = J
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where m� 1 < � � m; m 2 N; x > 0:

We note that, for the fractional order di¤erentiation, we will use the Caputo�s
de�nition due to its convenience for initial conditions of the di¤erential equations.

De�nition 3. For m to be the smallest integer that exceeds �; the Caputo time-
fractional derivative operator of order � > 0 is de�ned as
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Here and elsewhere � denotes the Gamma function.
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2. Exact Solutions

In this section �rst we give some results obtained from Demirci and Ozalp�s
work [2]. Then we introduced some exact solutions of Schrödinger and Eckhaus
equations of fractional order and numerical solutions of massive-Thirring equation
of fractional order:
Consider the initial value problem (IVP) with Caputo type FDE given by

D�x(t) = f(t; x(t))
x(0) = x0

(7)

where f 2 C([0; T ]xR;R); 0 < � < 1:

Theorem 1. Assume that f 2 C[R0; R] where R0 = [(t; x) : 0 � t � � and
jx� x0j � b] and let jf(t; x)j �M on R0: Then there exist at least one solution for
the IVP (7) on 0 � t � 
 where 
 = min(a; [ bM �(�+ 1)

1=�]):

Theorem 2. Consider the IVP given by (7). Let

g(v; x�(v)) = f(t� (t� � v�(�+ 1))1=�; x(t� (t� � v�(�+ 1))1=�)
and assume that the conditions of Therorem 1 hold. Then a solution of (7), x(t),
is given by

x(t) = x�(t
�=�(�+ 1))

where x�(v) is a solution of the integer order di¤erential equation

d(x�(v))

dv
= g(v; x�(v))

with the initial condition x�(0) = x0:

2.1 Exact solutions of fractional Schrödinger equation

First we consider the
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fractional Schrödinger equation with the initial condition

u(x; 0) = eixu0: (9)

([6], [12] and [17]). Where p, q and u0 are non-zero real constants and u = u(x; t)
is a complex-valued function of two real variables x, t: The physical model (8) have
been introduced in various area of physics such as nonlinear optics, plasma physics,
superconductivity and quantum mechanics for � = 1. Substituting (3) into (8)
yields,

D�U(t) = i(qU3(t)� pU(t)) (10)

with
U(0) = u0: (11)

Now we apply the method which is introduced by Demirci and Ozalp [2]. Ac-
cording to this method

g(�; U�(�)) = i(qU
3 � pU)
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and the solution of the corresponding integer order IVP given in Theorem 2 is

U�(�) = �
s

p

q + ( p
u20
� q)e2pi� :

So the solution of the (10)-(11) is

U(t) = U�(
t�

�(�+ 1)
) = �

s
p

q + ( p
u20
� q)e2pit�=�(�+1) :

Finally, from (3), the exact solution of (8)-(9) is obtained as follows

u(x; t) = �eix
s

p

q + ( p
u20
� q)e2pit�=�(�+1) : (12)

For a special choice of p; q; u0 and � the graphics are presented (Fig. 1-3):

Fig. 1 Imaginary component of u(x; t) (12) for values p = q = 1; u0 = 1=
p
2 and

� = 0:5

Fig. 2 Imaginary component of u(x; t) (12) for values p = q = 1; u0 = 1=
p
2 and

� = 0:9



JFCA-2014/5(1) EXACT SOLUTIONS OF SOME COMPLEX FPDE 213

Fig. 3 Imaginary component of u(x; t) (12) for values p = q = 1; u0 = 1=
p
2 and � = 1

2.2 Exact solutions of fractional Eckhaus equation

In this part we consider the
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u+ juj4 u = 0 (13)

fractional Eckhaus equation with the initial condition (9). In [1], many of the
properties of the Eckhaus equation were investigated. By applying the transforma-
tion u(x; t) = eixU(t) to the fractional Eckhaus equation, we obtain an ordinary
di¤erential equation of fractional order as follows

D�U(t) = i(U5(t)� U(t)) (14)

with (11). Then from Theorem 2, an exact solution of (14)-(11) is obtained as

U(t) = � 1

(1� (1� 1
u40
)e4it�=�(�+1))1=4

: (15)

Thus it follows from (3) that the exact solution of fractional Eckhaus equation is

u(x; t) = �eix 1

(1 + ( 1
u40
� 1)e4it�=�(�+1))1=4

: (16)

See Fig. 4-6.

Fig. 4 Real component of u(x; t) (16) for u0 = (1=2)1=4 and � = 0:5
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Fig. 5 Real component of u(x; t) (16) for u0 = (1=2)1=4 and � = 0:7

Fig. 6 Real component of u(x; t) (16) for u0 = (1=2)1=4 and � = 1:

2.3 Numerical solutions of massive Thirring equation of fractional
order

Finally we consider the massive Thirring equation of fractional order
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with the initial conditions
u(x; 0) = eixu0
v(x; 0) = eixv0:

(18)

(17) was considered in [19] for � = 1: If we use the following transformation

u(x; t) = eixU(t) (19)

v(x; t) = eixV (t)

then (17)-(18) can be reduced to a system of fractional ordinary di¤erential equa-
tion,

i
d�U

dt�
= U � V � UV 2

i
d�V

dt�
= �U � V � V U2

(20)
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with the initial conditions

u(0) = u0
v(0) = v0:

(21)

The corresponding integer order system of (20)-(21) that was given in Theorem 2
is

i
dU�

dt
= U� � V � � U�V �2

i
dV �

dt
= �U� � V � � V �U�2

(22)

If the solution of this integer order system is (U�(t); V �(t)), the solution of
the IVP (20)-(21) is (U�(t�=�(� + 1)); V �(t�=�(� + 1))): In the Fig. 7-10, real
components of numerical solution of IVP (17)-(18) are presented for the parameter
values u0 = v0 = 1: Also in Fig. 11 a-d, numerical solutions of system (20) are
illustrated for di¤erent values of �; � = 1 (black line); � = 0:9 (green line); � = 0:7
(blue line) and � = 0:5 (orange line).

Fig. 7 Numerical solution u(x; t) of
(17)-(18) for � = 0:8

Fig. 8 Numerical solution v(x; t) of
(17)-(18) for � = 0:8

Fig. 9 Numerical solution u(x; t) of
(17)-(18) for � = 1

Fig. 10 Numerical solution v(x; t) of
(17)-(18) for � = 1
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Fig. 11 a. Numerical solutions of system
(20) for u0 = v0 = 1

Fig. 11 b. Numerical solutions of system
(20) for u0 = v0 = 1:

Fig. 11 c. Numerical solutions of system
(20) for u0 = v0 = 1:

Fig. 11 d. Numerical solutions of system
(20) for u0 = v0 = 1

Conclusion

In this paper we consider the Schrödinger, Eckhaus and massive Thirring equa-
tions of fractional order. These equations can be reduced to fractional ordinary
di¤erential equations by transformation u(x; t) = eixU(t): We know that, espe-
cially numerical mehods have been introduced in literature to �nd the solution of
this type fractional partial di¤erential equations. However in 2011, Demirci and
Ozalp proposed an e¢ cient method to �nd the exact solutions of fractional di¤er-
ential eqautions [2], [3]. With the help of this method, we give some exact solutions
of Schrödinger and Eckhaus equations of fractional order. Also we give a numerical
solution for fractional massive Thirring equation.
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