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EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-POSITONE

FRACTIONAL BOUNDARY VALUE PROBLEMS

DJAMAL FOUKRACH, TOUFIK MOUSSAOUI1 AND SOTIRIS K. NTOUYAS2

Abstract. In this paper we present some results about the existence of pos-
itive solutions for nonlinear semipositone fractional boundary value problems
by using Krasnoselskii’s fixed point theorem.

1. Introduction

In the last few years, fractional differential equations have been studied exten-
sively because modeling capabilities in engineering, science, economy, and other
fields; see [3, 6, 7] for a good overview.

Many researchers are interested by the subject of the existence, uniqueness and
non existence of solutions for fractional boundary value problems, see [1, 2, 5, 10, 12]
and references therein.

In 2007, M. El-Shahed considered the fractional boundary value problem (see
[1]) {

Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. Existence and

non existence of positive solutions are obtained by means of Krasnoselskii’s fixed
point theorem.

Zhou et al. [12] studied the following fractional boundary value problem{
Dα

0+u(t) = p(t)f(t, u(t))− q(t), 0 < t < 1, 2 < α < 3,

u(0) = u(1) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. By using the

Krasnoselskii’s fixed point theorem, results on multiplicity of positive solutions
are presented. Also we note that there is a current interest in questions of positive
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properties of Green’s function and the existence of positive solutions of semipositone
boundary value problems, one may see [8]-[12] and references therein.

Motivated by the works above, in this paper we study the following boundary
value problem {

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,
(1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative, and the nonlin-

ear continuous function f : [0, 1] × R+ −→ R is semipositone; i.e., the nonlinerity
f(t, u) may change sign. We prove some new existence results by using Krasnosel-
skii’s fixed-point theorem.

The paper is organized as follows: In Section 2, we present the necessary defi-
nitions and we give some preliminary results that will be used in the proof of the
main result. In Section 3, we establish the existence of the positive solutions for
the boundary value problem (1) via Krasnoselskii’s fixed point theorem, while some
extensions of these results are given in Section 4. At the end, in Section 5, we give
an example to illustrate our main result.

2. Preliminaries

For the reader’s convenience, we present some necessary definitions from frac-
tional calculus theory and lemmas. They can be found in [3, 6, 7].

Definition 2.1. The Riemann-Liouville fractional integral of order q of a function
g ∈ L1((0, 1),R) is defined as

Iq0+g(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

where Γ is the Gamma function.

Definition 2.2. For a continuous function g : (0,+∞) → R, the Riemann-Liouville
derivative of fractional order q is defined as

Dq
0+g(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

0

(t− s)n−q−1g(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q, provided the right-hand side
is point-wise defined on (0,+∞).

Lemma 2.3. (see [3]) Let q > 0, if we assume x ∈ C(0, 1) ∩ L1(0, 1), then the
fractional differential equation Dq

0+x(t) = 0 has

x(t) = c1t
q−1 + c2t

q−2 + . . .+ cN t
q−N , ci ∈ R, i = 1, 2, . . . , N,

as unique solutions, where N is the smallest integer greater than or equal to q.

In view of Lemma 2.3, it follows that

Lemma 2.4. (see [3]) Assume that x ∈ C(0, 1)∩L1(0, 1) with a fractional derivative
of order q > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iq0+ Dq
0+x(t) = x(t) + c1t

q−1 + c2t
q−2 + . . .+ cN t

q−N (2)

for some ci ∈ R, i = 0, 1, 2, . . . , N , where N is the smallest integer greater than or
equal to q.
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The following two lemmas was proved in [1].

Lemma 2.5. Let g : [0, 1] → R be a given continuous function. Then a unique
solution of the boundary value problem{

Dα
0+x(t) + g(t) = 0, 0 < t < 1, 2 < α < 3,

x(0) = x′(0) = x′(1) = 0,
(3)

is given by

x(t) =

∫ 1

0

G(t, s)g(s)ds,

where

G(t, s) =
1

Γ(α)

{
(1− s)α−2tα−1, if 0 ≤ t ≤ s ≤ 1,

(1− s)α−2tα−1 − (t− s)α−1, if 0 ≤ s ≤ t ≤ 1.
(4)

Lemma 2.6. G(t, s) ≥ q(t)G(1, s), where q(t) = tα−1 for 0 ≤ t, s ≤ 1.

It is obvious that

G(t, s) ≥ 0, G(1, s) ≥ G(t, s), 0 ≤ t, s ≤ 1.

To prove the main result, we need the following well-known fixed point theorem
of cone expansion and compression of norm type due to Krasnoselskii. Before state
it, we give the following definition.

Definition 2.7. Let E be a real Banach space. A nonempty closed set K ⊂ E is
said to be a cone provided that
au+ bv ∈ K for all u, v ∈ K and all a ≥ 0, b ≥ 0, and
u, −u ∈ K implies u = 0.

Theorem 2.8. [4]. Let E be a Banach space and let K ⊂ E be a cone in E.
Assume that Ω1,Ω2 are open bounded subsets of E, with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let

F : K ∩ (Ω2\Ω1) → K

be completely continuous operator. In addition suppose that either

(I): ∥Fu∥ ≤ ∥u∥, ∀u ∈ K ∩ ∂Ω1 and ∥Fu∥ ≥ ∥u∥, ∀u ∈ K ∩ ∂Ω2, or
(II): ∥Fu∥ ≤ ∥u∥, ∀u ∈ K ∩ ∂Ω2 and ∥Fu∥ ≥ ∥u∥, ∀u ∈ K ∩ ∂Ω1

holds. Then F has a fixed point in K ∩ (Ω2\Ω1).

3. Main Result

Consider the Banach space E = C([0, 1],R) endowed with the norm

∥u∥ = max
t∈[0,1]

|u(t)|.

We define the cone K in the Banach space E by

K = {u ∈ E, u(t) ≥ q(t)∥u∥, t ∈ [0, 1]}, where q(t) = tα−1.

We need in the sequel the following lemma.
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Lemma 3.1. Let x1(t) be the unique solution of the following boundary value prob-
lem boundary value problem{

Dα
0+x(t) + 1 = 0, 0 < t < 1, 2 < α < 3,

x(0) = x′(0) = x′(1) = 0.
(5)

Then

x1(t) ≤ L · q(t), t ∈ [0, 1],

where q(t) = tα−1 and L =
1

(α− 1)Γ(α)
.

Proof. Using the Green function (4) by Lemma 2.5 we have

x1(t) =

∫ 1

0

G(t, s)ds

=

∫ 1

0

tα−1(1− s)α−2

Γ(α)
ds−

∫ t

0

(t− s)α−1

Γ(α)
ds

≤ tα−1

Γ(α)

∫ 1

0

(1− s)α−2ds

=
1

(α− 1)Γ(α)
tα−1.

The proof is complete. �

Our main result in this section is

Theorem 3.2. Let f : [0, 1]× R+ −→ R be a continuous function. Assume that:

(C1) lim
x→∞

f(t, x)

x
= ∞ uniformly on t ∈ [σ, 1− σ] for σ ∈

(
0, 12

)
;

(C2) there exists M > 0 such that f(t, x) ≥ −M, for all t ∈ [0, 1], and all x ≥
0.

If there exist λ > 0, r > 0 such that

0 < λ ≤ min

{
r

f̂r∥x1∥
,
r

LM

}
, f̂r = sup

t∈[0,1],0≤x≤r

[f(t, x) +M ], (6)

where x1 is the unique solution of the boundary value problem (5), then the boundary
value problem (1) has a positive solution.

Proof. Let

x(t) = λMx1(t),

where x1 is the unique solution of the boundary value problem (5). We shall show
that the following approximately boundary value problem Dα

0+u(t) + λf̃(t, u(t)− x(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,
(7)

where

f̃(t, z) =

{
f(t, z) +M, z ≥ 0,

f(t, 0) +M, z ≤ 0,
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has a positive solution u∗.

In view of Lemma 2.5 we define the operator F̃ : E → E by

F̃ u(t) =

∫ 1

0

λG(t, s)f̃(s, u(s)− x(s))ds. (8)

We shall prove that F̃ has a fixed point in our cone K. Firstly we prove that

F̃ : K −→ K. For any u ∈ K, we note that F̃ u(t) is continuous on [0, 1], and since
G(t, s) ≥ 0 we have G(1, s) ≥ 0. Then, by Lemma 2.5 we obtain

F̃ u(t) =

∫ 1

0

λG(t, s)f̃(s, u(s)− x(s))ds

≥ tα−1

∫ 1

0

λG(1, s)f̃(s, u(s)− x(s))ds

≥ tα−1 max
t∈[0,1]

∫ 1

0

λG(t, s)f̃(s, u(s)− x(s))ds

= q(t)∥F̃ u∥, ∀t, s ∈ [0, 1].

Thus F̃ (K) ⊂ K. Then from the definition of F̃ , it is easy to prove that F̃ is a

completely continuous operator. The continuity of F̃ is obvious by the continuity
of the nonlinear function f . By using the Arzelà-Ascoli theorem, we can prove that

the operator F̃ is compact. Then, F̃ : K → K is a completely continuous, and

each fixed point of F̃ in K is a solution of boundary value problem (7).
We define the ball Ω1 in the Banach space E by

Ω1 = {u ∈ E, ∥u∥ < r}.

For u ∈ K ∩ ∂Ω1, we have 0 ≤ u(t) ≤ ∥u∥ = r for t ∈ [0, 1] and by (6) we have

F̃ u(t) =

∫ 1

0

λG(t, s)f̃(s, u(s)− x(s))ds

≤ λf̂r

∫ 1

0

G(t, s)ds

= λf̂rx1(t)

≤ λf̂r∥x1∥
≤ r.

Therefore, we get ∥F̃ u∥ ≤ r = ∥u∥ for u ∈ K ∩ ∂Ω1.
For σ ∈

(
0, 12

)
fixed. Let k be a positive real number such that

1

2
λkB

(
inf

t∈[σ,1−σ]
q(t)

)
> 1, (9)

where

B =
1

(α− 1)Γ(α+ 1)
. (10)

In view of (C1), there exists A > 0 such that for all z ≥ A and t ∈ [σ, 1− σ]

f̃(t, z) = f(t, z) +M ≥ kz. (11)
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Now, set

R = r +max

{
2λML, 2A

(
inf

t∈[σ,1−σ]
q(t)

)−1
}
. (12)

Let us define the ball Ω2 in the Banach space E by

Ω2 = {u ∈ E, ∥u∥ < R}.

We shall prove that ∥F̃ u∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2. Let u ∈ K ∩ ∂Ω2. Then,
∥u∥ = R. Using Lemma 3.1 and the fact that u ∈ K we get for t ∈ [0, 1]

x(t) = λMx1(t) ≤ λMLq(t) ≤ λML
u(t)

R
.

Thus, for t ∈ [0, 1]

u(t)− x(t) ≥
(
1− λML

1

R

)
u(t) ≥

(
1− λML

1

R

)
Rq(t),

and, by (12), it follows that for t ∈ [σ, 1− σ]

u(t)− x(t) ≥
(
1− λML

1

R

)
R

(
inf

t∈[σ,1−σ]
q(t)

)
≥ 1

2
R

(
inf

t∈[σ,1−σ]
q(t)

)
≥ A.

Hence, by (11), we see that for t ∈ [σ, 1− σ]

f̃(t, u(t)− x(t)) ≥ k(u(t)− x(t)) ≥ 1

2
kR

(
inf

t∈[σ,1−σ]
q(t)

)
.

Then, by Lemma 2.6 and (9), we find

∥F̃ u∥ = max
t∈[0,1]

∫ 1

0

λG(t, s)f̃(s, u(s)− x(s))ds

≥ 1

2
kR

(
inf

t∈[σ,1−σ]
q(t)

)
λ max

t∈[0,1]

∫ 1

0

q(t)G(1, s)ds

≥
[
1

2
λkB

(
inf

t∈[σ,1−σ]
q(t)

)]
R

≥ R.

Then, we get ∥F̃ u∥ ≥ R = ∥u∥ for u ∈ K∩∂Ω2. Therefore assertion (I) of Theorem

2.8 is satisfied. Then F̃ has a fixed point u∗ ∈ K which satisfies r ≤ ∥u∗∥ ≤ R.
Furthermore, using (6) and Lemma 3.1, we get for t ∈ [0, 1],

u∗(t) ≥ q(t)∥u∗∥ ≥ rq(t) ≥ λMLq(t) ≥ λMx1(t) = x(t).

Therefore, for t ∈ [0, 1] we have

v∗(t) := u∗(t)− x(t) ≥ 0.

Now we shall prove that v∗ is in fact a positive solution of our problem (1). To

see this we have for t ∈ [0, 1], u∗ is a fixed point of the operator F̃ . Then

u∗(t) = F̃ u∗(t)

=

∫ 1

0

λG(t, s)f̃(s, u∗(s)− x(s))ds

=

∫ 1

0

λG(t, s)[f(s, u∗(s)− x(s)) +M ]ds
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=

∫ 1

0

λG(t, s)f(s, u∗(s)− x(s))ds+ λM

∫ 1

0

G(t, s)ds

=

∫ 1

0

λG(t, s)f(s, u∗(s)− x(s))ds+ λMx1(t)

=

∫ 1

0

λG(t, s)f(s, u∗(s)− x(s))ds+ x(t).

This implies that

v∗(t) = u∗(t)− x(t)

=

∫ 1

0

λG(t, s)f(s, u∗(s)− x(s))ds

=

∫ 1

0

λG(t, s)f(s, v∗(s))ds.

Consequently, by Lemma 2.5, it is easy to see that v∗ is a positive solution of our
boundary value problem (1). This completes the proof. �

4. Some Extensions

In this section we give some extensions of the result proved in the previous
section. We need the following lemma:

Lemma 4.1. Let x2(t) be the unique solution of the following boundary value prob-
lem {

Dα
0+x(t) + λM(t) = 0, 0 < t < 1, 2 < α < 3,

x(0) = x′(0) = x′(1) = 0.
(13)

Then

x2(t) ≤ λθ · q(t), t ∈ [0, 1],

where q(t) = tα−1 and

θ =
1

Γ(α)

∫ 1

0

(1− s)α−2M(s)ds. (14)

Proof. Using the Green function (4) by Lemma 2.5 we have

x2(t) =

∫ 1

0

λG(t, s)M(s)ds

=

∫ 1

0

λ
tα−1(1− s)α−2

Γ(α)
M(s)ds−

∫ t

0

λ
(t− s)α−1

Γ(α)
M(s)ds

≤ λtα−1

∫ 1

0

(1− s)α−2

Γ(α)
M(s)ds

= λθ · q(t).

The proof is complete. �

Theorem 4.2. Let f : [0, 1]×R+ −→ R be a continuous function satisfying (C1).
Moreover we assume that:
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(A1) For any (t, x) ∈ [0, 1]× R∗
+, f(t, x) satisfies

−M(t) ≤ f(t, x) ≤ p(t)ψ(x),

with M,p ∈ C([0, 1],R∗
+) and ψ ∈ C(R+,R∗

+).

If there exists λ > 0 such that

0 < λ ≤ min

{
1,

θ

ψ̂θ

∫ 1

0
G(1, s)[p(s) +M(s)]ds

}
, ψ̂θ = max

0≤τ≤θ
{1, ψ(τ)}, (15)

where θ is represented in (14), then the boundary value problem (1) has a positive
solution.

Proof. To prove this result, we consider the following approximately nonlinear
boundary value problem{

Dα
0+u(t) + λ[f(t, u∗(t)) +M(t)] = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,
(16)

where

u∗(t) = max{u(t)− x2(t), 0},
and x2(t) is the unique solution of the boundary value problem (13). We shall show
that the approximately boundary value problem (16) has a positive solution v.

In view of Lemma 2.5 we define the operator S : E → E by

Su(t) =

∫ 1

0

λG(t, s)f∗(s, u(s))ds, (17)

where

f∗(t, u(t)) = f(t, u∗(t)) +M(t).

We shall prove that S has a fixed point in our cone K. Firstly we prove that
S : K −→ K. For any u ∈ K, we note that Su(t) is continuous on [0, 1], and since
G(t, s) ≥ 0 we have G(1, s) ≥ 0, then by Lemma 2.5 we obtain

Su(t) =

∫ 1

0

λG(t, s)f∗(s, u(s))ds

≥ tα−1

∫ 1

0

λG(1, s)f∗(s, u(s))ds

≥ tα−1 max
t∈[0,1]

∫ 1

0

λG(t, s)f∗(s, u(s))ds

= q(t)∥Su∥, ∀t, s ∈ [0, 1].

Thus S(K) ⊂ K. Then from the definition of S, it is easy to prove that S is a
completely continuous operator. The continuity of S is obvious by the continuity
of the nonlinear function f . By using the Arzelà-Ascoli theorem, we can prove that
the operator S is compact. Then, S : K → K is a completely continuous, and
each fixed point of S in K is a solution of boundary value problem (16).
We define the ball P1 in the Banach space E by

P1 = {u ∈ E, ∥u∥ < θ}.
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For u ∈ K ∩ ∂P1, we have 0 ≤ u∗(t) ≤ u(t) ≤ ∥u∥ = θ for t ∈ [0, 1] and by (A1)
and (15) we have

Su(t) =

∫ 1

0

λG(t, s)f∗(s, u(s))ds

= λ

∫ 1

0

G(t, s)[f(s, u∗(s)) +M(s)]ds

≤ λ

∫ 1

0

G(1, s)[p(s)ψ(u∗(s)) +M(s)]ds

≤ λ

(
max
0≤τ≤θ

ψ(τ)

)∫ 1

0

G(1, s)[p(s) +M(s)]ds

≤ θ.

Therefore, we get ∥Su∥ ≤ θ = ∥u∥ for u ∈ K ∩ ∂P1.
For σ ∈

(
0, 12

)
fixed. Let k be a positive real number such that

1

2
λkB

(
inf

t∈[σ,1−σ]
q(t)

)
> 1, (18)

where

B =
1

(α− 1)Γ(α+ 1)
.

In view of (C1), there exists A > 0 such that for all z ≥ A and all t ∈ [σ, 1− σ]

f(t, z) ≥ kz. (19)

Now, set

R = θ +max

{
2λθ, 2A

(
inf

t∈[σ,1−σ]
q(t)

)−1
}
. (20)

Let us define the ball P2 in the Banach space E by

P2 = {u ∈ E, ∥u∥ < R}.

We shall prove that ∥F̃ u∥ ≥ ∥u∥ for u ∈ K∩∂P2. Let u ∈ K∩∂P2. Then, ∥u∥ = R.
Using Lemma 4.1 and the fact that u ∈ K we get for t ∈ [0, 1]

x2(t) ≤ λθq(t) ≤ λθ
u(t)

R
.

Thus implies for t ∈ [0, 1]

u(t)− x2(t) ≥
(
1− λθ

1

R

)
u(t) ≥

(
1− λθ

1

R

)
Rq(t),

and, noting (20), it follow for t ∈ [σ, 1− σ]

u(t)− x2(t) ≥
(
1− λθ

1

R

)
R

(
inf

t∈[σ,1−σ]
q(t)

)
≥ 1

2
R

(
inf

t∈[σ,1−σ]
q(t)

)
≥ A.

Hence, by (19), we see that for t ∈ [σ, 1− σ]

f(t, u∗(t)) ≥ ku∗(t) ≥ 1

2
kR

(
inf

t∈[σ,1−σ]
q(t)

)
.
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Then, by Lemma 2.6 and (18), we find

∥Su∥ = max
t∈[0,1]

∫ 1

0

λG(t, s)f∗(s, u(s))ds

= max
t∈[0,1]

∫ 1

0

λG(t, s)[f(s, u∗(s)) +M(s)]ds

≥ 1

2
kR

(
inf

t∈[σ,1−σ]
q(t)

)
λ max

t∈[0,1]

∫ 1

0

q(t)G(1, s)ds+ λ max
t∈[0,1]

∫ 1

0

q(t)G(1, s)M(s)ds

≥
[
1

2
λkB

(
inf

t∈[σ,1−σ]
q(t)

)]
R

≥ R.

Then, we get ∥Su∥ ≥ R = ∥u∥ for u ∈ K∩∂P2. Therefore assertion (I) of Theorem
2.8 is satisfied. Then S has a fixed point v ∈ K which satisfies θ ≤ ∥v∥ ≤ R.

Furthermore, using (15) and Lemma 4.1, we get for t ∈ [0, 1],

v(t) ≥ q(t)∥v∥ ≥ θq(t) ≥ λθq(t) ≥ x2(t).

Therefore, for t ∈ [0, 1] we have

v∗(t) := v(t)− x2(t) ≥ 0.

Now we shall prove that v∗ is in fact a positive solution of our problem (1). To
see this we have for t ∈ [0, 1], v is a fixed point of operator S. Then

v(t) = Sv(t)

=

∫ 1

0

λG(t, s)f∗(s, v(s))ds

=

∫ 1

0

λG(t, s)[f(s, v∗(s)) +M(s)]ds

=

∫ 1

0

λG(t, s)f(s, v(s)− x2(s))ds+

∫ 1

0

λG(t, s)M(s)ds

=

∫ 1

0

λG(t, s)f(s, v(s)− x2(s))ds+ x2(t).

Thus

v∗(t) = v(t)− x2(t)

=

∫ 1

0

λG(t, s)f(s, v(s)− x2(s))ds

=

∫ 1

0

λG(t, s)f(s, v∗(s))ds.

Consequently, by Lemma 2.5, it is easy to see that v∗ is a positive solution of our
boundary value problem (1). The proof is completed. �

Theorem 4.3. Let f : [0, 1]×R+ −→ R be a continuous function satisfying (C1).
Moreover we assume that:

(H1) For any (t, x) ∈ [0, 1] × R∗
+, f(t, x) satisfies f(t, x) ≥ −M(t), with M ∈

C([0, 1],R∗
+).
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If there exists λ > 0 such that

0 < λ ≤ min

{
1,

θ

Bf̂θ
,

}
, f̂θ = sup

t∈[0,1],0≤τ≤θ

[f(t, τ) +M(t)], (21)

where θ is represented in (14), then the boundary value problem (1) has a positive
solution.

Proof. The proof is similar to that of Theorem 4.2. We omit the details. �

5. An Example

Example 5.1. We consider the following boundary value problem for fractional
order  D

5/2
0+ u(t) + λ

sin t

1 + t2
u2(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0.

(22)

Here α =
5

2
, f(t, u) =

sin t

1 + t2
u2. Let M = 1 and r > 0. Then by Theorem 3.2,

if

0 < λ ≤ min

{
8r

15
√
π(r2 + 1)

,
15
√
π

8
r

}
,

the boundary value problem (22) has a positive solution.
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