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MOUNTAIN PASS SOLUTION FOR A FRACTIONAL

BOUNDARY VALUE PROBLEM

C. TORRES

Abstract. In this work we prove the existence of mountain pass solution for

a fractional boundary value problem given by

tDα
T (0Dα

t u(t)) = f(t, u(t)), t ∈ [0, T ]

u(0) = u(T ) = 0.

1. Introduction

Fractional order models can be found to be more adequate than integer order
models in some real world problems as fractional derivatives provide an excellent
tool for the description of memory and hereditary properties of various materials
and processes. The mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electro dynamics of complex medium, polymer
rheology, etc. involves derivatives of fractional order. As a consequence, the subject
of fractional differential equations is gaining more importance and attention. There
has been significant development in ordinary and partial differential equations in-
volving both Riemann-Liouville and Caputo fractional derivatives. For details and
examples, one can see the monographs [15], [24], [26] and the papers [2], [3], [5], [7],
[11], [17], [21], [23], [29], [31]. Moreover the existence of almost periodic, asymp-
totically almost periodic, almost automorphic, asymptotically almost automorphic,
and pseudo-almost periodic solutions have been great attention in the qualitative
theory of fractional differential equations, due to its mathematical interest and ap-
plications. Some recent contributions on the existence of such solutions for abstract
differential equations and fractional differential equations have been made, see [1],
[3], [4], [7], [12], [13], [20], [25] for details.

Recently, also equations including both left and right fractional derivatives are
discussed. Apart from their possible applications, equations with left and right
derivatives is an interesting and new field in fractional differential equations theory.
In this topic, many results are obtained dealing with the existence and multiplicity
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of solutions of nonlinear fractional differential equations by using techniques of non-
linear analysis, such as fixed point theory [9] (including Leray-Schauder nonlinear
alternative), topological degree theory [18] (including co-incidence degree theory)
and comparison method [32] (including upper and lower solutions and monotone
iterative method) and so on.

It should be noted that critical point theory and variational methods have also
turned out to be very effective tools in determining the existence of solutions for
integer order differential equations. The idea behind them is trying to find solutions
of a given boundary value problem by looking for critical points of a suitable energy
functional defined on an appropriate function space. In the last 30 years, the critical
point theory has become to a wonderful tool in studying the existence of solutions
to differential equations with variational structures, we refer the reader to the books
due to Mawhin and Willem [22], Rabinowitz [28] and the references listed therein.

Motivated by the above classical works, in recent paper [19], for the first time,
the authors showed that the critical point theory is an effective approach to tackle
the existence of solutions for the following fractional boundary value problem

tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ], (1)

u(0) = u(T ) = 0.

and obtained the existence of at least one nontrivial solution. We note that it is
not easy to use the critical point theory to study (1), since it is often very difficult
to establish a suitable space and variational functional for the fractional boundary
value problem.

In this paper we want to contribute with the development of this new area
on fractional differential equations theory. More precisely we study the fractional
nonlinear Dirichlet problem given by

tD
α
T (0D

α
t u(t)) = f(t, u(t)), t ∈ [0, T ], (2)

u(0) = u(T ) = 0.

where α ∈ (1/2, 1) and f : [0, T ]× R → R satisfies the following condition

(f1) f ∈ C([0, T ]× R).
(f2) There is a constant µ > 2 such that

0 < µF (t, u) ≤ uf(t, u) for every t ∈ [0, T ] and u ∈ R \ {0}.
Before stating our results, let us introduce the main ingredients involved in our

approach. We define

∥u∥2α =

∫ T

0

|u(t)|2dt+
∫ T

0

|0Dα
t u(t)|2dt,

and the space Eα = C∞
0 [a, b]

∥.∥α
. For u ∈ Eα we may define the functional

I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt−

∫ T

0

F (t, u(t))dt, (3)

which is of class C1. We say that u ∈ Eα is a weak solution of (2) if u is a critical
point of I. Now we are in a position to state our main existence theorem.
Theorem 1 Suppose that f satisfies (f1)-(f2), then (2) has at least one nonzero
weak solution on Eα.
The main ingredient in the proof of Theorem 1, is the mountain pass theorem due
to Ambrosetti-Rabinowitz [6]. We recall this result.
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Theorem 2 (Mountain pass theorem) Let X be a real Banach space and ϕ ∈
C1(X,R) satisfying PS condition. Suppose that

(i) ϕ(0) = 0,
(ii) there is ρ > 0 and σ > 0 such that ϕ(z) ≥ σ for all z ∈ X with ∥z∥ = ρ,
(iii) there exists z1 in X with ∥z1∥ ≥ ρ such that ϕ(z1) < σ.

Then ϕ possesses a critical value c ≥ σ. Moreover, c can be characterized as

c = inf
γ∈Γ

max
z∈[0,1]

ϕ(γ(z)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = z1}
This article is organized as follows. In Section 2 we present preliminaries on

fractional calculus. In Section 3 we introduce the functional setting of the problem.
In Section 3 we prove the Theorem 1.

2. Fractional Calculus

In this section we introduce some basic definitions of fractional calculus which
are used further in this paper. For the proof see [15], [26] and [30].
Definition 1 (Left and Right Riemann-Liouville fractional integral) Let u be a
function defined on [a, b]. The left (right ) Riemann-Liouville fractional integral of
order α > 0 for function u is defined by

aI
α
t u(t) =

1
Γ(α)

∫ t

a
(t− s)α−1u(s)ds, t ∈ [a, b],

tI
α
b u(t) =

1
Γ(α)

∫ b

t
(s− t)α−1u(s)ds, t ∈ [a, b],

provided in both cases that the right-hand side is pointwise defined on [a, b].
Definition 2 (Left and Right Riemman-Liouville fractional derivative) Let u be a
function defined on [a, b]. The left and right Riemann - Liouville fractional deriva-
tives of order α > 0 for function u denoted by aD

α
t u(t) and tD

α
b u(t), respectively,

are defined by

aD
α
t u(t) =

dn

dtn aI
n−α
t u(t),

tD
α
b u(t) = (−1)n dn

dtn tI
n−α
b u(t),

where t ∈ [a, b], n− 1 ≤ α < n and n ∈ N.
Remark 1 According to definition ?? and definition ??, if α becomes an integer
n ∈ N we recover the usual definitions, namely

aI
n
t u(t) =

1
Γ(n)

∫ t

a
(t− s)n−1u(s)ds, t ∈ [a, b], n ∈ N,

tI
n
b u(t) =

1
Γ(n)

∫ b

t
(s− t)n−1u(s)ds, t ∈ [a, b], n ∈ N,

and

aD
n
t u(t) = u(n)(t), t ∈ [a, b],

tD
α
b u(t) = (−1)nu(n)(t), t ∈ [a, b].

Remark 2 If u ∈ C[a, b], it is obvious that the Riemann-Liouville fractional integral
of order α > 0 is bounded in [a, b]. On the other hand, following [15], it is knows
that the Riemann-Liouville fractional derivative of order α ∈ [n − 1, n) exists a.e.
on [a.b] if u ∈ ACn[a, b], where ACn[a, b] is the space of functions u such that
u ∈ Cn−1([a, b]) and u(n−1) is absolutely continuous on [a, b].
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Now we announce some properties of the Riemann-Liouville fractional integral
and derivative operators.
Theorem 1

aI
α
t (aI

β
t u(t)) = aI

α+β
t u(t) and

tI
α
b (tI

β
b u(t)) = tI

α+β
b u(t) ∀α, β > 0,

in any point t ∈ [a, b] for continuous function u and for almost every point in [a, b]
if the function u ∈ L1[a, b].
Theorem 2 (Left inverse) Let u ∈ L1[a, b] and α > 0,

aD
α
t (aI

α
t u(t)) = u(t), a.e. t ∈ [a, b] and

tD
α
b (tI

α
b u(t)) = u(t), a.e. t ∈ [a, b].

Theorem 3 For n − 1 ≤ α < n, if the left and right Riemann-Liouville fractional
derivatives aD

α
t u(t) and tD

α
b u(t), of the function u are integral on [a, b], then

aI
α
t (aD

α
t u(t)) = u(t)−

n∑
k=

[aI
k−α
t u(t)]t=a

(t− a)α−k

Γ(α− k + 1)
,

tI
α
b (tD

α
b u(t)) = u(t)−

n∑
k=1

[tI
k−α
n u(t)]t=b

(−1)n−k(b− t)α−k

Γ(α− k + 1)
,

for t ∈ [a, b].
Theorem 4 (Integration by parts)∫ b

a

[aI
α
t u(t)]v(t)dt =

∫ b

a

u(t)tI
α
b v(t)dt, α > 0, (4)

provided that u ∈ Lp[a, b], v ∈ Lq[a, b] and

p ≥ 1, q ≥ 1 and
1

p
+

1

q
< 1 + α or p ̸= 1, q ̸= 1 and

1

p
+

1

q
= 1 + α.

∫ b

a

[aD
α
t u(t)]v(t)dt =

∫ b

a

u(t)tD
α
b v(t)dt, 0 < α ≤ 1, (5)

provided the boundary conditions

u(a) = u(b) = 0, u′ ∈ L∞[a, b], v ∈ L1[a, b] or

v(a) = v(b) = 0, v′ ∈ L∞[a, b], u ∈ L1[a, b],

are fulfilled.

3. Fractional Derivative Space

In order to establish a variational structure which enables us to reduce the exis-
tence of solutions of BVP (1) to the one of finding critical points of corresponding
functional, it is necessary to construct appropriate function spaces. For this setting
we take some results from [19].
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Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ p < ∞,

∥u∥Lp[0,t] =

(∫ t

0

|u(s)|pds
)1/p

,

∥u∥Lp =

(∫ T

0

|u(s)|pds

)1/p

and

∥u∥∞ = max
t∈[0,T ]

|u(t)|.

Definition 1 Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative spaces Eα,p
0

is defined by

Eα,p
0 = {u ∈ Lp[0, T ]/ 0D

α
t u ∈ Lp[0, T ] and u(0) = u(T ) = 0} = C∞

0 [0, T ]
∥.∥α,p

.

where ∥.∥α,p is defined by

∥u∥pα,p =

∫ T

0

|u(t)|pdt+
∫ T

0

|0Dα
t u(t)|pdt. (6)

Proposition 1 [19] Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space
Eα,p

0 is a reflexive and separable Banach space.
Lemma 1 [30] Let 0 < α ≤ 1 and 1 ≤ p < ∞. For any u ∈ Lp[0, T ] we have

∥0Iαξ u∥Lp[0,t] ≤
tα

Γ(α+ 1)
∥u∥Lp[0,t], for ξ ∈ [0, t], t ∈ [0, T ]. (7)

Proposition 2 [19] Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we

have

0I
α
t (0D

α
t u(t)) = u(t).

Moreover, Eα,p
0 ∈ C[0, T ].

Proposition 3 [19] Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we

have

∥u∥Lp ≤ Tα

Γ(α+ 1)
∥0Dα

t u∥Lp . (8)

If α > 1/p and 1
p + 1

q = 1, then

∥u∥∞ ≤ Tα−1/p

Γ(α)((α− 1)q + 1)1/q
∥0Dα

t u∥Lp . (9)

According to (8), we can consider in Eα,p
0 the following norm

∥u∥α,p = ∥0Dα
t u∥Lp , (10)

and (10) is equivalent to (6).
Proposition 4 [19] Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1

p and

{uk} ⇀ u in Eα,p
0 . Then uk → u in C[0, T ], i.e.

∥uk − u∥∞ → 0, k → ∞.

We denote by Eα = Eα,2
0 , this is a Hilbert space with respect to the norm

∥u∥α = ∥u∥α,2 given by (10).
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4. Mountain pass solution

In this section we deal with the fractional boundary problem

tD
α
T (0D

α
t u(t)) = f(t, u(t)), t ∈ [0, T ], (11)

u(0) = u(T ) = 0.

where α ∈ (1/2, 1) and f : [0, T ]× R → R satisfies the following condition

(f1) f ∈ C([0, T ]× R).
(f2) There is a constant µ > 2 such that

0 < µF (t, u) ≤ uf(t, u) for every t ∈ [0, T ] and u ∈ R \ {0}.

We recall the notion of solution for (11).
Definition 1 u ∈ Eα be a weak solution of (11) if∫ T

0
0D

α
t u(t)0D

α
t v(t)dt =

∫ T

0

f(t, u(t))v(t)dt, for any v ∈ Eα. (12)

Associated to the boundary problem (11) we have the functional I : Eα → R
defined by

I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt−

∫ T

0

F (t, u(t))dt, (13)

where F (t, s) =
∫ s

0
f(t, ξ)dξ. Following [28], we can show I ∈ C1(Eα,R) and we

have

I ′(u)v =

∫ T

0
0D

α
t u(t)0D

α
t v(t)dt−

∫ T

0

f(t, u(t))v(t)dt, ∀v ∈ Eα.

Therefore critical points of I are weak solutions of (11).
We are going to check that I satisfies the conditions of mountain pass theorem.

First we consider two technically lemmas
Lemma 1 If f satisfies (f2), then for every t ∈ [0, T ] the following inequalities hold

F (t, u) ≤ F (t,
u

|u|
)|u|µ, if 0 < |u| ≤ 1; (14)

and

F (t, u) ≥ F (t,
u

|u|
)|u|µ, if |u| ≥ 1. (15)

We note, according to Lemma 1, f is superquadratic at infinity and subquadratic
at the origin.
Proof. By (f2) we note that

µF (t, σu) ≤ σuf(t, σu).

Let h(σ) = F (t, σu), then
d

dσ

(
f(σ)σ−µ

)
≥ 0. (16)

We conclude integrating (16) from 1 until 1
|u| and from 1

|u| until 1 .

Lemma 2 Let m = inf{F (t, u)/ t ∈ [0, T ], |u| = 1}. Then for any ξ ∈ R \ {0} and
u ∈ Eα \ {0}, we have∫ T

0

F (t, ξu(t))dt ≥ m|ξ|µ
∫ T

0

|u(t)|µ − Tm. (17)
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Proof. Fix ξ ∈ R \ {0} and u ∈ Eα \ {0}, Let

A = {t ∈ [0, T ]/ |ξu(t)| ≤ 1}, and
B = {t ∈ [0, T ]/ |ξu(t)| ≥ 1}.

Now by (15), we obtain∫ T

0

F (t, ξu(t))dt ≥
∫
B

F (t, ξu(t))dt ≥
∫
B

F (t,
ξu(t)

|ξu(t)|
)|ξu(t)|µdt

≥ m

∫
B

|ξu(t)|µdt = m

∫ T

0

|ξu(t)|µdt−m

∫
A

|ξu(t)|µdt

≥ m|ξ|µ
∫ T

0

|u(t)|µdt−mT.

Lemma 3 Under the condition (f1), the functional defined by (13) is well defined,
I ∈ C1(Eα,R) and

I ′(u)v =

∫ T

0
0D

α
t u(t)0D

α
t v(t)dt−

∫ T

0

f(t, u(t))v(t)dt, ∀v ∈ Eα. (18)

Moreover, it satisfies the Palais -Smale condition.
Proof. Using the continuity of f , we obtain the continuity and differentiability of
I and we get (18).

To show that I satisfies the Palais - Smale condition, let {uk} ∈ Eα such that

|I(uk)| ≤ M, lim
k→∞

I ′(uk) = 0. (19)

First we prove that {uk} is bounded. We have

I(uk) =
1

2
∥uk∥2α −

∫ T

0

F (t, uk(t))dt.

I ′(uk)uk = ∥uk∥2α −
∫ T

0

f(t, uk(t))uk(t)dt.

Then by (19)(
1

2
− 1

µ

)
∥uk∥2α ≤ I(uk)−

1

µ
I ′(uk)uk ≤ M +M∥uk∥α.

Since µ > 2 it follows that {uk} is bounded in Eα. Since Eα is reflexive space,
going to a subsequence if necessary, we may assume that uk ⇀ u in Eα, thus we
have

⟨I ′(uk)− I ′(u), uk − u⟩ = ⟨I ′(uk), uk − u⟩ − ⟨I ′(u), uk − u⟩
≤ ∥I ′(uk)∥∥uk − u∥α − ⟨I ′(u), uk − u⟩ → 0. (20)

as k → ∞. Moreover according (9) and Proposition 4, section 3, we get that uk is
bounded in C[0, T ] and

lim
k→∞

∥uk − u∥∞ = 0.

Hence we have∫ T

0

[f(t, uk(t))− f(t, u(t))](uk(t)− u(t))dt → 0, k → ∞.
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Moreover, an easy computation show that

⟨I ′(uk)− I ′(u), uk − u⟩ = ∥uk − u∥2α −
∫ T

0

(f(t, uk(t))− f(t, u(t)))(uk(t)− u(t))dt.

So ∥uk − u∥α → 0 as k → ∞. That is {uk} converges strongly to u in Eα.
Now we can prove our main theorem.

Theorem 1 Let α ∈ (1/2, 1] and suppose that f satisfies (f1) and (f2). The
equation (11) possesses a nontrivial weak solution u ∈ Eα.
Proof. In our case is clear that I(0) = 0. Now we show that I satisfies the geometry
conditions of mountain pass theorem. By (9) we have

max
t∈[0,T ]

|u(t)| ≤ C∥u∥α, ∀u ∈ Eα,

where C = Tα−1/2

Γ(α)(α+1
2 )1/2

. Now let C1 = 1
C , it follow by the inequality from above

and (14), if ∥u∥α ≤ C1∫ T

0

F (t, u(t))dt ≤
∫ T

0

F (t,
u(t)

|u(t)|
)|u(t)|µdt

≤ M∥u∥µLµ ≤ MTCµ∥u∥µα.
Then

I(u) =
1

2
∥u∥2α −

∫ T

0

F (t, u(t))dt

≥ 1

2
∥u∥2α −MTCµ∥u∥µα, if ∥u∥α ≤ C1,

and consequently

I(u) ≥ 1

2
C2

1 −MTCµCµ
1 , if ∥u∥α = C1.

Now let ρ < min{C1,
(

1
2MTCµ

) 1
µ−2 } and β = ρ2

2 −MTCµρµ,

I(u) ≥ β if ∥u∥α = ρ.

Hence I satisfies the first geometry condition of mountain pass theorem.
Now by Lemma 1, we have that for every ξ ∈ R \ {0} and u ∈ Eα \ {0}

I(ξu) =
ξ2

2
∥u∥2α −

∫ T

0

F (t, ξu(t))dt

≤ ξ2

2
∥u∥2α −m|ξ|µ

∫ T

0

|u(t)|µdt+ Tm.

Taking ξ large enough and let e = ξu then I(e) ≤ 0. Therefore I satisfies the
mountain pass condition, so by mountain pass theorem we get a nontrivial weak
solution of (11).
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