Journal of Fractional Calculus and Applications

Vol. 14(1) Jan. 2023, pp. 36-44.

ISSN: 2090-5858.

 $\rm http://math-frac.org/Journals/JFCA/$

SOME BASIC PROPERTIES OF EULER TYPE INTEGRAL OPERATORS INVOLVING WITH GENERALIZED k-WRIGHT FUNCTION

ASHOK KUMAR MEENA, KRISHNA GOPAL BHADANA, LAXMI RATHOUR, LAKSHMI NARAYAN MISHRA

ABSTRACT. This paper deals with the k-extension of the Wright's generalized hyper-geometric function. In this paper, authors study fractional order Euler type integral operators involving the generalized k-Wright function defined by Gehlot and Prajapati [5]. Some special cases of the main results are also investigated.

1. Introduction

For $z \in \mathbb{C}$ and $k \in \mathbb{R}^+$, the k-extension of the Wright generalized hypergeometric function ${}_p\Psi_q(z)$ was introduced by Gehlot and Prajapati [5] in 2013 and which known as generalized k-Wright function and defined as $\alpha_i, \beta_j \in \mathbb{C}$, $A_i, B_j \in \mathbb{R}$ $(A_i, B_j \neq 0; i = 1, ..., p; j = 1, ..., q)$ and $(\alpha_i + A_i n), (\beta_j + B_j n) \in \mathbb{C} \setminus k\mathbb{Z}^-$.

$${}_{p}\Psi_{q}^{k}(z) = {}_{p}\Psi_{q}^{k} \begin{bmatrix} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{bmatrix}; z \end{bmatrix} = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!}$$
(1)

(i). If $\Delta > -1$, then series (1) is absolutely convergent for all $z \in \mathbb{C}$ and generalized k-Wright function ${}_p\Psi_q^k(z)$ is an entire function of z.

(ii). If $\Delta = -1$, then series (1) is absolutely convergent for all $z < \Omega$ and if $z = \Omega$ then $Re(\Theta) > -\frac{1}{2}$, where Δ, Ω and Θ are given by

$$\Delta = \sum_{j=1}^{q} \left(\frac{B_j}{k} \right) - \sum_{i=1}^{p} \left(\frac{A_i}{k} \right),$$

$$\label{eq:omega_energy} \varOmega = \prod_{i=1}^p \left| \frac{A_i}{k} \right|^{-\frac{A_i}{k}} \prod_{j=1}^q \left| \frac{B_j}{k} \right|^{\frac{B_j}{k}},$$

²⁰¹⁰ Mathematics Subject Classification. 26A33, 33B15, 33C60.

 $Key\ words\ and\ phrases.$ generalized k-Wright function, Euler type integral operator, k-Gamma function, k-Beta function.

Submitted May 26, 2022. Revised June 8, 2022.

$$\Theta = \sum_{j=1}^{q} \left(\frac{\beta_j}{k} \right) - \sum_{i=1}^{p} \left(\frac{\alpha_i}{k} \right) + \frac{p-q}{2},$$

particular k=1, the generalized k-Wright function reduced to Wright generalized hypergeometric function ${}_{p}\Psi_{q}(z)$ which was introduced by Wright [17]

In recent years, k-extensions of well-known special functions of mathematical physics have been explored by several authors. (see [6],[2],[5],[15]). Diaz and Pariguan [3] have introduced k-extensions of the gamma and beta functions where k > 0. Mubeen at el.[13] introduced the extended k-gamma and extended k-beta functions with their primary properties. We will now use the following definitions to derive the main results in our work.

2. Definitions

Definition 2.1 The integral representation of gamma function and beta function defined [3] as

$$\Gamma(x) = \int_0^\infty \xi^{x-1} e^{-\xi} d\xi; \quad Re(x) > 0$$
 (2)

$$B(x,y) = \int_0^1 \xi^{x-1} (1-\xi)^{y-1} d\xi; \quad Re(x) > 0, \ Re(y) > 0$$
 (3)

Definition 2.2 For Re(x) > 0 and Re(y) > 0, the following integral formula introduced by MacRobert [10] and defined as

$$B(x,y) = A^x B^y \int_0^1 \frac{\xi^{x-1} (1-\xi)^{y-1}}{\{A\xi + B(1-\xi)\}^{x+y}} d\xi; \quad A \neq 0, B \neq 0$$
 (4)

Definition 2.3 For Re(x) > 0 and Re(y) > 0, the following integral formula introduced by Lavoie-Trottier [9] and defined as

$$B(x,y) = \left(\frac{3}{2}\right)^{2x} \int_0^1 \xi^{x-1} \left(1-\xi\right)^{2y-1} \left(1-\frac{\xi}{3}\right)^{2x-1} \left(1-\frac{\xi}{4}\right)^{y-1} d\xi; \qquad (5)$$

Definition 2.4 For k > 0 and $x \in \mathbb{C}$, the k-gamma function is defined [3] as

$$\Gamma_k(x) = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n,k}};$$
(6)

where $(x)_{n,k}$ is Pochhammer k-symbol and given by $(x)_{n,k} = \frac{\Gamma_k(x+nk)}{\Gamma_k(x)}$.

Definition 2.5 The integral representation of k-gamma function and k-beta function defined [13] as for k > 0

$$\Gamma_k(x) = \int_0^\infty \xi^{x-1} e^{\frac{\xi^k}{k}} d\xi; \quad Re(x) > 0$$
 (7)

$$B_k(x,y) = \frac{1}{k} \int_0^1 \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} d\xi; \quad Re(x) > 0, \ Re(y) > 0$$
 (8)

Definition 2.6 The k-analogue of the extended Eulers beta function [13] is defined as for k > 0 and Re(A) > 0

$$B_k(x,y;A) = \frac{1}{k} \int_0^1 \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} e^{-\frac{A^k}{k\xi(1-\xi)}} d\xi; \quad Re(x) > 0, Re(y) > 0$$
 (9)

and if A = 0 then $B_k(x, y; 0)$ tends to $B_k(x, y)$ and the relation between k-gamma, k-beta and Eulers beta function is given by the following formula

$$B_k(x,y) = \frac{1}{k} B\left(\frac{x}{k}, \frac{y}{k}\right) = \frac{\Gamma_k(x) \Gamma_k(y)}{\Gamma_k(x+y)}; \tag{10}$$

3. Main Results

Theorem 3.1 If the condition (1) is satisfied and $B_k(x + \alpha n, y; A)$ is the k-analogue of the extended Euler beta function then the following integral hold true.

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} exp\left(\frac{-A^{k}}{k\xi(1-\xi)}\right) {}_{p}\Psi_{q}^{k} \begin{bmatrix} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{bmatrix}; z\xi^{\frac{\alpha}{k}} d\xi$$

$$= k \times \left\{ {}_{p}\Psi_{q}^{k} \begin{bmatrix} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{bmatrix}; z \right\} \otimes B_{k} (x + \alpha n, y; A) \right\} \tag{11}$$

where \otimes stands for convolution product over summation n=0 to ∞ .

Proof. In order to derive (11), we denote L.H.S. of (11) by symbol I_1 and then expanding ${}_{p}\Psi_{q}^{k}(z\xi^{\frac{\alpha}{k}})$ by using equation (1),

$$I_{1} \equiv \int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} exp\left(\frac{-A^{k}}{k\xi(1-\xi)}\right) \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i}+A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j}+B_{j}n)} \frac{z^{n} \xi^{\frac{\alpha_{n}}{k}}}{n!} d\xi;$$
 (12)

by changing the order of summation and integration, we have

$$I_{1} \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{i=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} \int_{0}^{1} \xi^{\frac{x+\alpha_{n}}{k}-1} (1-\xi)^{\frac{y}{k}-1} exp\left(\frac{-A^{k}}{k\xi(1-\xi)}\right) d\xi;$$
 (13)

now using the following k-analogue of the extended Eulers beta function, given by Mubeen et al. [13], we arrive

$$B_k(\lambda, \delta; A) = \frac{1}{k} \int_0^1 \theta^{\frac{\lambda}{k} - 1} (1 - \theta)^{\frac{\delta}{k} - 1} e^{-\frac{A^k}{k\theta(1 - \theta)}} d\theta \tag{14}$$

$$I_1 \equiv k \times \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_k(\alpha_i + A_i n)}{\prod_{j=1}^{q} \Gamma_k(\beta_j + B_j n)} \frac{z^n}{n!} B_k(x + \alpha n, y; A);$$

$$(15)$$

$$I_{1} \equiv k \times \left\{ p \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} \left(x + \alpha n, y; A \right) \right\}.$$
 (16)

Theorem 3.2 If the condition (1) is satisfied and $B_k(x + kn, y + kn)$ is the k-analogue of Euler beta function then the following integral hold true.

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} \left\{ A\xi + B(1-\xi) \right\}^{-\frac{x+y}{k}} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z \, \xi(1-\xi)}{\left\{ A\xi + B(1-\xi) \right\}^{2}} \right] d\xi$$

$$= k \times \frac{1}{A^{\frac{x}{k}}B^{\frac{y}{k}}} \left\{ {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z}{AB} \right] \otimes B_{k} \left(x + kn, y + kn \right) \right\}$$
(17)

where \otimes stands for convolution product over summation n=0 to ∞ .

Proof. In order to derive (17), we denote L.H.S. of (17) by symbol I_2 and then expanding ${}_{p}\Psi_{q}^{k}\left(\frac{z\,\xi(1-\xi)}{\{A\xi+B(1-\xi)\}^{2}}\right)$ by using equation (1),

$$I_{2} \equiv \int_{0}^{1} \frac{\xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1}}{\left\{A\xi + B(1-\xi)\right\}^{\frac{x+y}{k}}} \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n} \xi^{n} (1-\xi)^{n}}{\left\{A\xi + B(1-\xi)\right\}^{2n} n!} d\xi;$$

$$(18)$$

by interchanging the order of summation and integration, we have

$$I_2 \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_k(\alpha_i + A_i n)}{\prod_{j=1}^{q} \Gamma_k(\beta_j + B_j n)} \frac{z^n}{n!} \int_0^1 \frac{\xi^{\frac{x}{k} + n - 1} (1 - \xi)^{\frac{y}{k} + n - 1}}{\left\{ A\xi + B(1 - \xi) \right\}^{\frac{x + y}{k} + 2n}} d\xi; \tag{19}$$

now using the following result given by MacRobert [10] and after some simplification,

$$\int_0^1 \frac{\xi^{\lambda-1} (1-\xi)^{\delta-1}}{\left\{A\xi + B(1-\xi)\right\}^{\lambda+\delta}} d\xi = \frac{B(\lambda,\delta)}{A^{\lambda} B^{\delta}}$$
 (20)

$$I_{2} \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} \frac{B\left(\frac{x}{k} + n, \frac{y}{k} + n\right)}{A^{\frac{x}{k} + n} B^{\frac{y}{k} + n}};$$
(21)

$$I_{2} \equiv k \times \frac{1}{A^{\frac{x}{k}} B^{\frac{y}{k}}} \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{\left(\frac{z}{AB}\right)^{n}}{n!} B_{k} (x + kn, y + kn); \qquad (22)$$

$$I_{2} \equiv k \times \frac{1}{A^{\frac{x}{k}}B^{\frac{y}{k}}} \left\{ {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; \frac{z}{AB} \right] \otimes B_{k} \left(x + kn, \ y + kn \right) \right\}. \tag{23}$$

Theorem 3.3 If the condition (1) is satisfied and $B_k(x, y+n)$ is the k-analogue of Euler beta function then the following integral hold true.

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} \left(1-\xi\right)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; z \left(1-\xi\right)^{2} \left(1-\frac{\xi}{4}\right) \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \left\{ {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; z \right] \otimes B_{k} \left(x, y+kn\right) \right\} \tag{24}$$

where \otimes stands for convolution product over summation n=0 to ∞ . **Proof.** In order to derive (24), we denote L.H.S. of (24) by symbol I_3 and then expanding ${}_{p}\Psi_{q}^{k}\left[z(1-\xi)^{\frac{2}{k}}\left(1-\frac{\xi}{4}\right)^{\frac{1}{k}}\right]$ by using equation (1),

$$I_{3} \equiv \int_{0}^{1} \xi^{\frac{x}{k}-1} \left(1-\xi\right)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1} \times \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i}+A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j}+B_{j}n)} \frac{z^{n}}{n!} \left(1-\xi\right)^{2n} \left(1-\frac{\xi}{4}\right)^{n} d\xi;$$
(25)

by interchanging the order of summation and integration, we

$$I_{3} \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} \int_{0}^{1} \xi^{\frac{x}{k}-1} \left(1 - \xi\right)^{\frac{2y}{k} + 2n - 1} \left(1 - \frac{\xi}{3}\right)^{\frac{2x}{k} - 1} \left(1 - \frac{\xi}{4}\right)^{\frac{y}{k} + n - 1} d\xi;$$

$$(26)$$

now using the following result given by Lavoie-Trottier [9] and after some simplification.

$$\int_{0}^{1} \xi^{\lambda - 1} \left(1 - \xi \right)^{2\delta - 1} \left(1 - \frac{\xi}{3} \right)^{2\lambda - 1} \left(1 - \frac{\xi}{4} \right)^{\delta - 1} d\xi = \left(\frac{4}{9} \right)^{\lambda} B(\lambda, \delta) \tag{27}$$

$$I_3 \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_k(\alpha_i + A_i n)}{\prod_{j=1}^{q} \Gamma_k(\beta_j + B_j n)} \frac{z^n}{n!} \left(\frac{4}{9}\right)^{\frac{x}{k}} B\left(\frac{x}{k}, \frac{y + kn}{k}\right); \tag{28}$$

$$I_{3} \equiv k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} B_{k}(x, y + kn);$$
 (29)

$$I_{3} \equiv k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \left\{ {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} \left(x, \ y + kn \right) \right\}. \tag{30}$$

Theorem 3.4 If the condition (1) is satisfied and $B_k(x+n, y)$ is the k-analogue of Euler beta function then the following integral hold true.

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} \left(1-\xi\right)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1} {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; z \, \xi \left(1-\frac{\xi}{3}\right)^{2} \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \left\{ {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; \frac{4z}{9} \right] \otimes B_{k} \left(x + kn, y \right) \right\}$$
(31)

where \otimes stands for convolution product over summation n=0 to ∞ . **Proof.** In order to derive (31), we denote L.H.S. of (31) by symbol I_4 and then expanding ${}_{p}\Psi_{q}^{k}\left[z\,\xi^{\frac{1}{k}}\left(1-\frac{\xi}{3}\right)^{\frac{2}{k}}\right]$ by using equation (1),

$$I_{4} \equiv \int_{0}^{1} \xi^{\frac{x}{k}-1} \left(1-\xi\right)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1}$$

$$\times \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i}+A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j}+B_{j}n)} \frac{z^{n} \xi^{n}}{n!} \left(1-\frac{\xi}{3}\right)^{2n} d\xi;$$
(32)

by interchanging the order of summation and integration, we have

$$I_{4} \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} \int_{0}^{1} \xi^{\frac{x}{k} + n - 1} \left(1 - \xi\right)^{\frac{2y}{k} - 1} \left(1 - \frac{\xi}{3}\right)^{\frac{2x}{k} + 2n - 1} \left(1 - \frac{\xi}{4}\right)^{\frac{y}{k} - 1} d\xi;$$
(33)

now using the following result given by Lavoie-Trottier [9] and further simplification,

$$\int_{0}^{1} \xi^{\lambda - 1} \left(1 - \xi \right)^{2\delta - 1} \left(1 - \frac{\xi}{3} \right)^{2\lambda - 1} \left(1 - \frac{\xi}{4} \right)^{\delta - 1} d\xi = \left(\frac{4}{9} \right)^{\lambda} B(\lambda, \delta) \tag{34}$$

$$I_{4} \equiv \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(\alpha_{i} + A_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(\beta_{j} + B_{j}n)} \frac{z^{n}}{n!} \left(\frac{4}{9}\right)^{\frac{x}{k}+n} B\left(\frac{x+kn}{k}, \frac{y}{k}\right);$$
(35)

$$I_4 \equiv k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_k(\alpha_i + A_i n)}{\prod_{j=1}^{q} \Gamma_k(\beta_j + B_j n)} \frac{\left(\frac{4z}{9}\right)^n}{n!} B_k(x + kn, y);$$
(36)

$$I_4 \equiv k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} \left\{ {}_p \Psi_q^k \left[\begin{array}{c} (\alpha_i, A_i)_{1,p} \\ (\beta_j, B_j)_{1,q} \end{array}; \frac{4z}{9} \right] \otimes B_k \left(x + kn, \ y \right) \right\}. \tag{37}$$

4. Special Cases

In this section, we establish the following useful integral operators of fractional calculus involving the generalized k-Wright function as special cases of our main results.

1. Setting A = 0 in Theorem 3.1, we attain:

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \xi^{\frac{\alpha}{k}} \right] d\xi
= k \times {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} (x + \alpha n, y).$$
(38)

2. Setting A = B = 1 in Theorem 3.2, we obtain:

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi)^{\frac{y}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \xi (1-\xi) \right] d\xi$$

$$= k \times {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} (x + kn, y + kn) .$$
(39)

3. Setting x = k in Theorem 3.2, we get:

$$\int_{0}^{1} (1-\xi)^{\frac{y}{k}-1} \left\{ A\xi + B(1-\xi) \right\}^{-\frac{y}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z\xi(1-\xi)}{\left\{ A\xi + B(1-\xi) \right\}^{2}} \right] d\xi \\
= k \times \frac{1}{AB^{\frac{y}{k}}} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z}{AB} \right] \otimes B_{k} \left(k + kn, \ y + kn \right). \tag{40}$$

4. Setting y = k in Theorem 3.2, we find:

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} \left\{ A\xi + B(1-\xi) \right\}^{-\frac{x}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z \xi(1-\xi)}{\{A\xi + B(1-\xi)\}^{2}} \right] d\xi$$

$$= k \times \frac{1}{A^{\frac{x}{k}}B} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{z}{AB} \right] \otimes B_{k} \left(x + kn, \ k + kn \right). \tag{41}$$

5. Setting x = k in Theorem 3.3, we get:

$$\int_{0}^{1} (1-\xi)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right) \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \left(1-\xi\right)^{2} \left(1-\frac{\xi}{4}\right) \right] d\xi \\
= k \times \left(\frac{4}{9}\right) {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} \left(k, \ y+kn\right). \tag{42}$$

6. Setting y = k in Theorem 3.3, we find:

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi) \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z (1-\xi)^{2} \left(1-\frac{\xi}{4}\right) \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} (x, k+kn). \tag{43}$$

7. Setting x = y = k in Theorem 3.3, we achieve:

$$\int_{0}^{1} (1 - \xi) \left(1 - \frac{\xi}{3} \right) {}_{p} \varPsi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \left(1 - \xi \right)^{2} \left(1 - \frac{\xi}{4} \right) \right] d\xi
= k \times \left(\frac{4}{9} \right) {}_{p} \varPsi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \right] \otimes B_{k} \left(k, \ k + kn \right).$$
(44)

8. Setting x = k in Theorem 3.4, we get:

$$\int_{0}^{1} (1-\xi)^{\frac{2y}{k}-1} \left(1-\frac{\xi}{3}\right) \left(1-\frac{\xi}{4}\right)^{\frac{y}{k}-1} {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; z \xi \left(1-\frac{\xi}{3}\right)^{2} \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right) {}_{p}\Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{4z}{9} \right] \otimes B_{k} (k+kn, y). \tag{45}$$

9. Setting y = k in Theorem 3.4, we find:

$$\int_{0}^{1} \xi^{\frac{x}{k}-1} (1-\xi) \left(1-\frac{\xi}{3}\right)^{\frac{2x}{k}-1} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; z \xi \left(1-\frac{\xi}{3}\right)^{2} \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right)^{\frac{x}{k}} {}_{p} \Psi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array}; \frac{4z}{9} \right] \otimes B_{k} (x + kn, k). \tag{46}$$

10. Setting x = y = k in Theorem 3.4, we achieve:

$$\int_{0}^{1} (1-\xi) \left(1-\frac{\xi}{3}\right) {}_{p} \varPsi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; z \xi \left(1-\frac{\xi}{3}\right)^{2} \right] d\xi$$

$$= k \times \left(\frac{4}{9}\right) {}_{p} \varPsi_{q}^{k} \left[\begin{array}{c} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{array} ; \frac{4z}{9} \right] \otimes B_{k} \left(k + kn, k\right). \tag{47}$$

Conclusion

In this article we have established some Euler type integral formulas involving the generalized k-Wright function and the result obtained is the product of the k-Wright function and the extended k-beta function. We believe that the results of this paper will be significant in the theory of fractional k-calculus and especially taking k=1 it becomes the results of the ordinary calculus.

ACKNOWLEDGMENT

One of the author Mr. Ashok Kumar Meena is grateful to Council of Scientific and Industrial Research, Government of India, for providing Senior Research Fellowship (File No: 08/668(0004)/2018-EMR-I) to enable him to carry out the present investigations. The authors are also thankful to the Editor and referee for their valuable suggestion.

References

- M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Eulers bata function, J. Comput. Appl. Math., Vol. 78, 19-32, 1997.
- [2] G. A. Dorrego and R. A. Cerutti, The k-Mittag-Leffler function, Int. J. Contemp. Math. Sci., Vol. 7(15), 705–716, 2012.
- [3] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Matemticas, Vol. 15, 179-192, 2007.
- [4] K. S. Gehlot, Recurrence relation and integral representation of generalized k-Mittag-Leffler function, Palestine Journal of Mathematics, Vol. 4(1), 177-188, 2015.
- [5] K. S. Gehlot and J. C. Prajapati, Fractional Calculus of generalized k-Wright function, Journal of Fractional Calculus and Applications, Vol. 4(2), 283-289, 2013.
- [6] A. Gupta and C. L. Parihar, k-new generalized Mittag-Leffler function, Journal of Fractional Calculus and Applications, Vol. 5(1), 165-176, 2014.
- [7] W. A. Khan, K. S. Nisar and M. Ahmad, Euler type integral operator involving k-Mittag-Leffler function, Bol. Soc. Paran. Mat., Vol.38(5), 165-174, 2020.
- [8] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright function, Frac. Calc. Appl. Anal., Vol. 5(4), 437-460, 2002.
- [9] J. L. Lavoie and G. Trottier, On the sum of certain Appell's series, Ganita, Vol. 20(1), 43-46, 1969.
- [10] T. M. MacRobert, Beta functions formulae and integrals involving E-function, Mathematische Annalen, Vol. 142, 450-452, 1961.
- [11] A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Heidelberg and New York, Springer-Verlag, 1973.
- [12] A. M. Mathai, A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford, Oxford University Press, 1993.
- [13] S. Mubeen, S. D. Purohit, M. Arshad and G. Rahman, Extension of k-Gamma, k-Beta functions and k-Beta distribution, Journal of Mathematical Analysis, Vol. 7(5), 118-131, 2016.
- [14] K. S. Nisar, A. F. Eata, M. Al-Dhaifallah and J. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution, Advances in Difference Equations, doi: 10.1186/s13662-016-6, 2016:304, 2016.
- [15] K. S. Nisar, W. A. Khan and A. H. Abusufian, Certain integral transforms of k-Bessel function, Palestine Journal of Mathematics, Vol. 7(1), 161-166, 2018.
- [16] T. O. Salim and W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, Journal of Fractional Calculus and Applications, Vol. 3(5), 1-13, 2012.
- [17] E. M. Wright, The asymptotic exppansion of the generalized hypergeometric function, J. London Math. Soc., Vol. 10, 287-293, 1935.
- [18] E. M. Wright, The asymptotic exppansion of the generalized hypergeometric function, Proc. London Math. Soc., Vol. 46, 389-408, 1940.

ASHOK KUMAR MEENA, KRISHNA GOPAL BHADANA S.P.C. GOVERNMENT COLLEGE AJMER, RAJASTHAN-305001, INDIA. MAHARSHI DAYANAND SARASWATI UNIVERSITY, RAJASTHAN-305009, INDIA. *E-mail address*: ashokmeena428@gmail.com, drbhadanakg@gmail.com

LAXMI RATHOUR

Ward number 16, Bhagatbandh, Anuppur-484224, Madhya Pradesh, India E-mail address: laxmirathour817@gmail.com, rathourlaxmi562@gmail.com

Lakshmi Narayan Mishra

DEPARTMENT OF MATHEMATICS, SCHOOL OF ADVANCED SCIENCES, VELLORE INSTITUTE OF TECHNOLOGY, VELLORE 632 014, TAMIL NADU, INDIA

 $\it E-mail\ address: \ lakshminarayan.mishra@vit.ac.in, \ lakshminarayanmishra04@gmail.com$