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SUBORDINATION RESULTS FOR FRACTIONAL INTEGRAL
ASSOCIATED WITH DZIOK-SRIVASTAVA OPERATOR

ABBAS KAREEM WANAS

ABSTRACT. In this paper, we have discussed differential subordination proper-
ties associated with the fractional integral by using Dziok Srivastava operator.

1. INTRODUCTION
Let H(U) denote the space of analytic functions in the open unit disk
U={zeC:|z| <1}.

Let A, = {f€ HU), f(z) =z+ans12" ™ +--- ,z € U} with 4; = A.

If f and g are analytic functions in U, then we say that f is subordinate to g,
written f < g or f(z) < g(z), if there exists a Schwarz function w analytic in U,
with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(2)),(z € U). In particular,
if the function ¢ is univalent in U, then f < g if and only if f(0) = ¢(0) and
1) < g(0).

Let ¢(2) : C® x U — C and let h be univalent function in U.

If p is analytic in U and satisfies the (second-order) differential subordination:

D(p(2), 29/ (2), 2°p" (2):2) < h(2), (1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, or more
simply dominant if p < ¢ for all p satistying (1).

Definition 1 (see [6]) For f € A. The Dziok-Srivastava operator is defined by

)n—l(a2)n—1 e (al)n—l an 2"
(ﬂ2)n71 "'(ﬁm)nfl(n_ 1)' " ’
(2)

1 : = 3 —
Hy (oq, a2, a5 81, 82,00+ B ) (2) ZJF,,X::Q (B1)n-1

Q; S C,l = 1727"' ;lvﬁj S C\{Oa_l,_27}vj = 1727"' , M,
where (), is the Pochhammer symbol defined, in terms of the Gamma function,
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by
_ I'(x+n) 1lifn = Oandz € C\{0},
(@) = I'(x) B z(x+1)---(x+n—-1)ifn € Nandx € C.
For simplicity, we write
H»,ln [Oél}f(Z) = H}qq,(alaOQv"' 705[;617627"' aﬁm)f(z) (3)

Definition 2 (see [1]) The fractional integral of order A(A > 0) is defined for a

function f by
- I S A ()
Dz )\f(Z) - 1—\()\) /0 (Z _ t)l_k dta (4)

where f is an analytic function in a simply-connected region of the z-plane contain-
ing the origin, and the multiplicity of (z —¢)*~! is removed by requiring log(z — t)
to be real, when (z —t) > 0.

From Definition (1) and Definition 2, we get

DAHY, o] £(2) = (2+ T Z Pn+1)  (a)n1(02)n-1(@)ns

Ln+1+A) (B1)n-1(82)n-1(Bm)n-1(n —1)!

X ap 2" (5)

We note from (5) that, we have

2D MHy, [a] f(2)) = an D7 Hy, [an 41 f(2) = [an — (L+ M) D Hy, [aa] f(2).

(6)
Lemma 1 (see [5]) Let g be a convex function in U and let h(z) = g(z) + nag’(2),
for z € U, where « > 0 and n is a positive integer. If p(z) = ¢(0) + p,z" +
P12+ .-, for z € U, is analytic in U and

p(2) + azp'(2) < h(2),

for z € U, then p(z) < g(z) and this result is sharp.
Such type of study was carried out by various authors for another classes (see [2],

3], [4)-

2. MAIN RESULTS

Theorem 1 Let g be a convex function such that g(0) = 1 and let h be the
function h(z) = g(z) + z¢'(2), for z € U. If f € A satisfies the differential subordi-
nation:

LN D fo +1) ) - POV = I D g o) )
A (DR HY (1] £(2)” < h(2), (7)
then -
(D7 o] f(2))
MDA, )1

Proof. Suppose that




86 ABBAS KAREEM WANAS JFCA-2014/5(2)

Then p(0) = 1.
Differentiating both sides of (8) with respect to z and using (7), we have

Oél].*)\A' _ )\)\70&1 Oélf].)\! _
AN bl fo 1] () - PAZ LT IN ot 1oy
b A DI H (] £ = p(2) + 29/(2) < B, )

By using Lemma 1, we obtain p(z) < g(z). By (8), we get

A7l o1 z !
(D HmA[ 1/(2)) < g(2).

z

Theorem 2 Let g be a convex function such that g(0) = 1 and let h be the function
h(z) = g(z) + z¢'(2), for z € U. If f € A satisfies the differential subordination:

al — (11 NP (o 12),\(1 ! (D7 H!, [ea] f(2)) — WDZ’\HL [ag + 1] f(2)
< h(2), (10)
then -
(D7 a1l f(z
(1 +A).(Dz21£m[ 1) _ a(2).

Proof. Suppose that
(1 + N(DH,, 4] £(2))

p(z) = S . (11)
Then p(0) = 1.
Differentiating both sides of (11) with respect to z and using (10), we have
1 o — 1)1+ N A1+ M)
ar— (14N =D D ] 1)) - S DA ] o+ 1172
= p(2) + 2p'(2) < h(2). (12)

By using Lemma 1, we obtain p(z) < g(z). By (11), we get

“MH! Taq] f(z
(AP el ) )

Theorem 3 Let g be a convex function such that g(0) = 1 and let h be the function
h(z) =g(2) + z¢'(z), for z € U. If f € A satisfies the differential subordination:

2D7MHL [ay + 1] f(2)]
Dz H], 1] f(2)

h(2), (13)

then
D7 H] [on +1] f(2)

Dz H}, [od] £(2)

< 9(2).
Proof. Suppose that
DA, [on +1] f(2)

z) = 14
o) = 2o fmln Ll (14
Note
1 1+ 00 T'(n+1) (a14+1)p—1(a2)n—1-(a1)n—1 n+
p(z) = TCEN” + s TOITN) Bi)e 2 (B)e 1 Bodn 1 (D1 40
o 1 A oo _D(ntl) (1) n-1(a2)n—1-()n— ntA
TN ? Tt Lnse TEATEN) B (Badn 1 o (oD dn 2"
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1 Sy F(n+1) (a14+1)n—1(az)n—1--(1)n— n—1
TN T 2n=2 TOITEN B 1Ba)e 1 Bl 11140

1 oo I'(n+1) (a1)n—1(@2)n—1-(@)n-1 n—1
T(2+)\) + Zn:Q T'(n+1+X) (51)n—1(52)n—21"'(1ﬁm)nl—1(n*1)!anz
Then p(0) = 1.

Differentiating both sides of (14) with respect to z and using (13), we have
2DIHY [on +11£(2)]" _ DFMHb [ + 1] f(2)
DAHL, [eu] f(2) Dz HY, [en] £(2)
DY (o] §(2) (D2 HY loa + 11 £())' = DIHY [ +1] £(2) (DB [on] £(2))'
(DY, [en] £(2))°
= p(2) + 2p'(2) < h(2). (15)
By using Lemma 1, we obtain p(z) < g(z). By (14), we get
D Hy, [oq +1] f(2)
D H ()
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