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A NOTE ON MATICHEV-SAIGO-MAEDA FRACTIONAL
INTEGRAL OPERATOR

AMIT CHOUHAN, ARIF M. KHAN, AND SATISH SARASWAT

ABSTRACT. In the present investigation, the generalized operators of fractional
integration involving Appell’s function F3(.) due to Marichev-Saigo-Maeda are
applied to the M-series and the Fox’s H-function. M-series is a further exten-
sion of both Mittag-Leffler function and generalized hypergeometric function
pFy. Both H-function and M-series have recently found essential applications
in solving problems in physics, biology, engineering and applied sciences. The
results are expressed in terms of generalized Wright function and H-function.

1. INTRODUCTION AND PRELIMINARIES

In view of the usefulness and importance of the fractional calculus, the properties,
applications and different extensions of various fractional integrations operators are
studied by Kalla and Saxena [14], McBride [24], Kumbhat and Khan [20], Kilbas
[15], Kilbas and Sebastian [I7], Kiryakova [I9], Baleanu and Mustafa [4], Baleanu
et al. [5], Baleanu et al. [3], Agarwal [ 2], Chouhan and Saraswat [9, [10] etc.

Marichev [22] introduced a generalization of the hypergeometric fractional inte-
grals for a, o', 8,5, v € C and Re (v) > 0, as follows:

(5555 ) @)

= lf(i:) /0 (x — t)”fltfalF?, <OZ7OZI,5,5’§’Y§ 1- é’ 1- ;) f(t)dt (1)
and
(1@3”75"’7) ()
- %/ (t—x) "y (a,o/,ﬁ,ﬁ’;v; 1- % 1- i) feydae (2)

In and (2)), F5(.) denotes the 3rd Appell function (also known as Horn
function) (Srivastava and Karlson [32]):
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These operators were discovered and studied by Saigo [27] as generalization of
Saigo fractional integral operators [I8]. Further their properties were studied by
Saigo and Maeda [28], following which the left-hand sided and right-hand sided
generalized integration of the type (1) and (2) for a power function are given by:

(I&f 8,8 ,vxpl) (x)

F(p)F(erv—a—a'—B)F(Hﬁl—a/)
TT+A)T(p+r—a-a)T(p+y—ao —B)
where Re () > 0, Re(p) > max {O,Re (a+o/ +B—7) , Re (o/ —B,>} and

(I&:a 8.8 ”Yxp—l) (.’E)

r(1—p—7+a+a/)r(1—p+a+ﬁ’—y)r(l—p—ﬁ) ,
Fl-pll-p+tata +B =) (1-p+a-p)
where Re (y) > 0, Re(p) < 1+min {Re(—B),Re (a—i—o/ —fy) , Re (a-{-ﬂ/ _7)}.

Wright [33] defined generalized hypergeometric function by means of the series
representation in the form

pPty—a—a -1 (4)

o (al,A1)7...,(a 7A )7 . > f= I‘(az+nA1) 2"
e =t [ ) o ] R oE AT

where z,a;,b; € C,A;,B; e R1,A; #0,B; #0;i=1,...,p;5=1,...,q,
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Sharma and Jain [31] introduced the generalized M-series as the function defined
by means of the power series:

[O;Mf (a17a27 v 3ap;b17b27 . bLI’ Z) = quﬂ(Z): ng; ((a])zl)a (b])({vz)

_y )y (e, 2 z,a,f € C,R(a) >0 (7)
= (b1),,---(bg),, T (an+ )" 7 ’

where, (a;),,, (b;),, are the known Pochammer symbols. The series @ is defined
when none of the parameters bfjs,j =1,2,...,q, is a negative integer or zero; if any
numerator parameter a; is a negative integer or zero, then the series terminates to
a polynomial in z. The series in is convergent for all z if p < ¢, it is convergent
for |z] <§ = a® if p = ¢+ 1 and divergent, if p > ¢+ 1. When p = ¢+ 1 and |z| =4,
the series can converge on conditions depending on the parameters. Properties of

M-series are further studied by Saxena [29], Chouhan and Sarswat [§] etc.
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The generalized Mittag-Leffler function [25], is obtained from forp=¢q=1;
a=v€C;b=1,as

PR S o) PG « N ) SR I
EO"B(Z)_mz::OI‘(am+B)m!_mz::()(l)mf(am—kﬂ)_lMl(%l’z) ®)

The generalized M-series can be represented as a special case of the Wright
generalized hypergeometric function @, as

(a1,1),...,(ap,1),(1,1);

(b, 1), (b, 1), (Bra); )

oM (a0 (6)%52) = k g1ty [

[T, T(;)
H§:1 F(aj) '

Fox [I1] introduced and defined the H-function, via a Mellin-Barnes type integral
for integers m,n,p,q such that 0 < m < ¢, 0 < n < p, for a;,b; € C and for
@i, B; € Ry= (0,00) (1=1,2,...,p;5 =1,2...,q), as

where, k =

(@i, 06)1,p 1 / _
H™" — gmn ) - = m,n 5d 1
pa () = M P (b By)rg ) 2mi J o (8) &7*ds U0
with
H (s) = M |:(aiaai)1,p s} _ H;n:1 F(bj + IBJS) H?:l INQIES a; — @;s)
P P (bs, Bi)1,q f:n-s-l I'(a; + a;s) H?‘:m-H N bj — Bjs)

(1)

with all convergence conditions as given by Braaksma [6], Mathai [23], Kilbas
and Saigo [16]. On putting o; = f; = 1 in H-function, we obtain the Meijer’s
G-functions G}, (z) [11].

The importance of the H-Function and M-Series realized by scientists, engineers
and statisticians (Caputo [7], Glockle and Nonnenmacher [12], Mainardi et al. [21],
Hilfer [I3] etc.) due to its vast potential of their applications in diversified fields
of science and engineering such as fluid flow, rheology, diffusion in porous media,
propagation of seismic waves, anomalous diffusion and turbulence etc.

In this paper, we apply the integral operators and to the M-series and
H-function to express the images in terms of generalized Wright and H-functions
again.

2. MAIN RESULTS

In this section, the image formulas for the M-series and Fox’s H-function involv-
ing Saigo-Maeda fractional integral operators and are obtained. Results
are established in term of the generalized Wright function and H-function. These
results are given by mean of the following theorems:

Theorem 2.1 Let a,a/,ﬁ,ﬁ/,'y,v,é € C and x > 0 be such that Re(y) >
0, Re (v) > 0,Re () > max {O, Re (a +ao +8— 7) , Re (o/ - ﬁ/)} then there
holds the formula

>/77/,6— ) Sdv—a—a — P i
(2 ) o < - L



JFCA-2014/5(2) A NOTE ON MATICHEV-SAIGO-MAEDA 91

(a1,1) s (ap, 1), (1L 1), (47 —a—a' = Bv), (648 = w);
ax
(blﬂl)7"'ﬂ(bq71)ﬂ(6+ﬂl>v)7(6+ﬁy_a_alvv)7(5+7_a, - B,v);
(12)
Proof. Using and @, and then changing the order of integration and sum-
mation, we get

Xp+3¥q+3

o BB 610 16
(Igif SO (atv)) (z)

> (al)n"'<a;ﬂ)n a” oc,a/7 s /,’y on+d6—1
=2 (b1),, -~ (by), T (un+9) (I‘H g )(m)

n=0
applying , under the conditions stated with theorem 2.1, we obtained
<I(X7a/7575,77t6—1vM5 (atv>> () = x6+'y—a—a/—1 i M
0.+ Py 2 (by),, - (by),,

F(vn—f—é—&—'y—a—o/ —B)F(vn—i—é—&—ﬁl —0/)
X ’ ’ ’
Puon+d+ )T (vn+d+y—a—-a )T (on+d+v—a —p)
Interpreting the right-hand side of the above equation, in view of the definition

@, we arrive at the result .

On setting p = ¢ = l;a =n € C;b =1 1in , we obtained the following
particular case of theorem 2.1:

Corollary 2.1 Let a,a/,ﬁ,ﬂ/,'y,vﬁ € C and = > 0 be such that Re(y) >

0, Re(v) > 0, Re(d) > max {O,Re (a +a +8— '7) ,Re <a/ - B/)} then there
holds the formula

(az")"

’ ’ 6+'y—a—o¢/—1
_ v T
(Igjf PR (at )) @) =

(n71)7(5+7—a—a/—5,U>>(5+5,—0/av)? az? (13)

K 4 B0 (4 —a— o s0) s (B4 — o — B0);

Theorem 2.2 Let a,a’, 5,8 ,7,v,6 € C and 2 > 0 be such that Re(v) >
0, Re(y) > 0,Re(1 - —46) < 1+min {Re(—ﬁ),Re (a—i—a, —7) , Re (a—i—,@’, —7)}
then there holds the formula
ro N T, T(b,)
a,a 6,8 vy —B—d8v ) —v _ *<5+5+O¢+(1 ) H]:l 7
(Io,— t p M, (at )) (x)==2 72;1 a,)

—v

(al,l),...7(ap,1)7(171),(5+6+a+a/—’y,z}),<6+6+a+ﬁ/—V,U);(m

(blal)7~--a(an1)a(6+5aU)7(ﬂ+§+a+a, +ﬂ/ 7771))5(54»0‘7”);
(14)
Proof. Using and @, and then changing the order of integration and sum-
mation, we get

Xp+3¥Pq+3
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8.8 B—6 v sd
a, @ 0,0 Y 4g—p—0 v —v
(IO’_ t qu (at )) (x)

3 (al) (%) a” O‘av VY p—on—
_nz;)(bl) -(by),, T (vn +d) (I Py Bé)()

applying (|5 , under the conditions stated with theorem 2.2, we obtained

’ !’ oo
(I&ﬂ BBy t*ﬂ*& ;MZ (atu)> (ZL') _ B+5+a+a Z 7)

= (bg).,

F(vn+6+5—v+a+a')r(vn+5+5+a+5’—7)

XF(Un—i—B—&—(S)F(Un—l—B—&—(S—i—a—i—a/ + 5 —'y)l"(vn—l—é—&—a)(aa7 )

In view of the definition of the generalized Wright function given by @, the
above equation leads to the result .

On setting p = ¢q = l;a =7 € C;b=11in , we obtained the following
particular case of theorem 2.2:

Corollary 2.2 Let a7a/,6,6/7770,5 € C and = > 0 be such that Re(v) > 0,
Re(v)>0,Re(1—-p5—-90) < 1+min{Re(76),Re (a+a/ 77> , Re (a+ﬁl ffy>}
then there holds the formula

o~ (B+otata’)

) [

s (n,l),(ﬁ+5+a+alf’y,v),(ﬂ+(5+a+5lf’y,v);

ax”" (15)
(B+d,v),(B+d+a+a +5 —v,v),0+a,v);

Theorem 2.3 Let a,a',ﬂ,ﬂl,y,a,w,ai,bj €eCo B eRy, 1=1,2,...,p;5 =
1,2,...,9),m,n,p,q € I where 0 < m < ¢,0 < n < p, and z > 0 such that

Re(o) > 0, Re(y) > 0,Re(w+ 1) > max {0, Re (a +a +p— 'y) ,Re(a/ — 5')}
then there holds the formula

(Igif BB ,’thHg?q.,n (ta )> ($) — guty—a—a

(aj,05)1,p, (—w,0), (—w - v+a+ o —i—ﬁ,o) ,(—w — B +a"0)
(bj76j)17q’ (*w,fﬂl ,)(7wf’y+a+a”0—)7(7w77+a’ +B70)

(16)
Proof. Using and , and then changing the order of integrations, we get

I%alﬁﬁ,ﬁthm,n o (aj’ O‘j)lﬁv
<°v+ i 8010 ) )

1 (aj,0)1 ' 5348
- e |: J>®5)L,p :| (]057& 8,8 ,’th—os> (LE) ds
2mi Jpo P L (b, B5)1,q ot

by using equation , under the conditions stated with theorem 2.3, we obtained

m,n+3 o
XH;H-S a+3 | T |
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]
XF(w—as+1)F(w—as—|—1+'y—a—o/—B)F(w—as—&—l—i—ﬁ/—a/)x_"sds
Nw—-—0os+1+ ) Nw—-—0s+1+y—a—a ) T(w—0os+1+7y—a —p5)

finally, by the virtue of the definition of the H-function and , we obtained
equation .

On Setting o; = B; = 1 we obtain following particular case for Meijer’s G-
function G" (2):

Corollary 2.3 Let o, o, 3, 8,7, 0, w, a;, b eC,(i=1,2,....p;5=1,2,.....q);
m,n,p,q € I where 0 <m < ¢q,0<n <pand x>0 be such that

_ pwtr—a—a /Hmvn [(aj,aj)Lp
211 r L (bjaﬁj)l,q

Re(o) > 0,Re () > 0, Re(w + 1) > max {O,Re (a +a +B8— 7) ,Re(a/ — ﬁ/)}

then there holds the formula
aa’ 8.8y w mmn (4o _ w+vfa7a/
<on+ Gy (t )) (z) ==

. (@)1 (~w,0), (~w =7 +a+a +8,0) , (~w - +a,0)
(bj)l,qv(_wa —ﬁ'),(—w—'y+a+o/,o),(—w—'y+a’—1—5,0)
(17)
Theorem 2.4 Let a,a/75,ﬁ/,'y,a,w7ai,bj €C,a;p; Ry, (i=1,2,...,p;5 =
1,2,...,q9),m,n,p,q € I where 0 < m < ¢,0 <n < p, and z > 0 be such that
Re (o) >0, Re (y) > 0, and

Re(1-8-10)< 1+min{(—ﬁ),Re (a—i—a, —'y) , Re (a—l—ﬁ, —7)}
then there holds the formula

m,n+3
X Gp+37q+3

(Ig”a 8,8 7’7th;rfén (ta)) (x) — xw+’y—a—a
XHerB’n a'| (aj, Oéj)l,pa (7("]3 U) ) (75‘} +oa+ Ol/ + 5, -7 U) ) ( —w+ o= ﬂaa)
€T
T b B (—w =y +atal o) (~wra+ B =7,0), (—w = B,0)

(18)
Proof. Using and , and then changing the order of integrations, we get

<13f"“ R - L) > (@)

1 / (aj, @)1 " B8 i
S o |: AR e AP Ioc,_a 8,8 V=08 ) (1) ds
211 r Pq (bj76j)1,q | 0, ( )
by using equation under the conditions stated with theorem 2.4, we obtained

o0 " w Irm,n (4o wtv—a—a 1 m,n (0,',0[‘)17
<on,_ By fmen (¢ )}) (z) = 2*t %/ﬁm [(b? 57)1%
VRN L]
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F(—w—l—as—v—l—oz—i—a/)F(Us—w—ka—&—ﬁl —V)F(os—w— )
Fos—w)T'(cs—wt+a+a +8 —y)T(es—w+a—7)

finally, by the virtue of the definition of the H-function and , we obtained
equation (18]

On Setting a; = B; = 1 we obtain following particular case for Meijer’s G-
functions G}, (2):

Corollary 2.4 Let o, ', 3, 6,,7,0,w, a;,b; €C,(1=1,2,....;;7 =1,2,.....q);
m,n,p,q € I where 0 < m < ¢,0 < n < pand > 0 be such that Re (o) >
0, Re(y) >0, and

Re(1-8-10)< 1+min{(—ﬁ)7Re (cH—o/ —fy) , Re (Oé—|-,8, —’y)}
then there holds the formula

X

7 %%ds

(I(()lja 3.8 ”thG;;lén (ta)) (CU) — gwty—a—a

aj)lyp, (—W,O') ) (_w + a"‘a, "’-B, - 730—) ,(_w +oa— 670)
bi)ig (—w—v4+a+a,0),(~w+a+pf —v,0),(—w—B,0)
(19)

On setting o =0 in the operators and , then by the known identities
due to Saxena and Saigo [[30], p.93, eqn. (2.15) and (2.16)], we obtained Saigo
operators [26]. Further, the Riemann-Liouville,Weyl and Erdélyi-Kober fractional
calculus operators are special cases of Saigo’s operators [26]. Therefore, the results
obtained in this article are useful in deriving certain composition formulas involving
Riemann-Liouville, Weyl and Erdélyi-Kober fractional calculus operators with M-
series and H-function.

+3, (
X Gz ars |2
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