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CAUCHY-TYPE PROBLEMS OF A FUNCTIONAL

DIFFERINTEGRAL EQUATIONS WITH ADVANCED

ARGUMENTS

FATMA M. GAAFAR

Abstract. In this article, weighted Cauchy type problems of fractional order

with advanced arguments are considered. An existence result is obtained by
the help of the well-known Schauder fixed point theorem, also a uniqueness
result is given. An example is also given to illustrate the efficiency of the main
theorem.

1. Introduction

Differential equations with advanced and deviated arguments are found to be
important mathematical tools for the better understanding of several real world
problems in physics, mechanics, engineering, economics, etc. see ([1], [5]).
One of the basic problems considered in the theory of differential equations with
advanced arguments is to establish convenient conditions guaranteeing the exis-
tence of solutions of those equations. For the general theory and applications of
differential equations with advanced and deviated arguments, we refer the reader
to the references ([2], [8]-[10], [16]-[19]). For the fractional differential equations
with advanced and deviated arguments see ([3], [12]) and the references therein.
Let C[0, T ] be the space of continuous functions defined on [0, T ].
Consider the Cauchy type fractional problems with advanced argument

(I)

{
Dαu(t) = f(t, u(ϕ(t))) a.e. t ∈ (0, T ], T < ∞
t1−α u(t)|t=0 = b

(II)

{
Dαu(t) = f(t, u(ϕ(t))) a.e. t ∈ (0, T ], T < ∞
I1−α u(t)|t=0 = bΓ(α)

where Dα denote the Riemann-Liouville derivative of order α ∈ (0, 1]. Here we
prove that the two problems (I) and (II) are equivalent and that there exists of
at least one solution of the two problems when the function ϕ(t) is continuous ad-
vanced function.
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In [6] El-Sayed and Abd El-Salam has been studied the existence of at least one
L1−solution of the problem (I) where the function f satisfies the Carathèodory
conditions and ϕ(t) is nondecreasing differentiable function such that ϕ′ ≥ M > 0.

Nonlinear fractional differential equation with weighted initial data has been carried
out by various researchers. In present, there are some papers which deal with the
existence and multiplicity of solutions for weighted nonlinear fractional differential
equations see ([4], [6], [7]) and the references therein.
The interest in the study of fractional-order differential equations lies in the fact
that fractional-order models are more accurate than integer-order models, that is,
there are more degrees of freedom in the fractional-order models. Fractional-order
differential equations are also better for the description of hereditary properties of
various materials and processes than integer-order differential equations. As a con-
sequence, the subject of fractional differential equations is gaining much importance
and attention, see the monographs of Kilbas et al. [11], Podlubny [13].

2. Preliminaries

In this section, we present some definitions, lemmas and notation which will be
used in our theorems.
Definition 2.1. (see [13]-[15]) The Riemann-Liouville fractional integral of order
α > 0 of a Lebesgue-measurable function f : R+ → R is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1 f(s) ds,

when a = 0 we write Iαa f(t) = Iα f(t).
And we have, for α, β ∈ R+ :
(r1) I

α
a : L1 −→ L1.

(r2) I
α
a Iβa f(t) = Iα + β

a f(t).

Definition 2.2. (see [13]-[15]) The Riemann-Liouville fractional derivative of order
α ∈ (0, 1] of a Lebesgue-measurable function f : R+ → R is defined by

Dα f(t) =
d

dt
I1−α f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−α f(s) ds.

Theorem 2.1. (Schauder fixed point Theorem)
Let S be a non-empty, closed , convex and bounded subset of the Banach space
X and let Q : S → S be a continuous and compact operator. Then the operator
equation Qu = u has at least one fixed-point in S.

3. Existence of continuous solutions

Here we study the existence of at least one continuous solution of the nonlocal
Cauchy problems (I) and (II), assuming that:
(h1) The function f : [0, T ]×R → R is measurable in t for all u : [0, T ] → R and
continuous in u for all t ∈ [0, T ] and there exist a bounded measurable function b
and a function a ∈ L1[0, T ] such that

|f(t, u)| ≤ a(t) + b(t) |u| for all (t, u) ∈ [0, T ]×R,

(h2) ϕ : [0, T ] → [0, T ] is continuous advanced function for all t ∈ [0, T ] and
t < ϕ(t).
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Definition 3.1. By a solution of the nonlocal Cauchy problems (I) and (II)
we mean a functions {u : t1−α u(t) is continuous on the interval [0, T ]} and this
function satisfies (I) and (II).
Let C[0, T ] =

{
u : u(t) is continuous on [0, T ] : ||u||C = maxt∈[0,T ] |u(t)|

}
,

C1−α[0, T ] =
{
u : t1−α u(t) is continuous on [0, T ] with the weighted norm

||u||C1−α = ||t1−α u(t)||C
}
.

Lemma 3.1. (see [6]) The solution of the nonlocal problem (I) can be expressed
by the fractional-order integral equation

u(t) = b tα−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(ϕ(s))) ds. (1)

Lemma 3.2. The two problems (I) and (II) are equivalent.
Proof. From problem (II),

Dαu(t) = f(t, u(ϕ(t)))

i.e. D I1−α u(t) = f(t, u(ϕ(t))).

Integrating both sides from 0 to t, we get

I1−α u(t) − I1−α u(t)|t=0 =

∫ t

0

f(t, u(ϕ(s))) ds

I1−α u(t) = bΓ(α) +

∫ t

0

f(t, u(ϕ(s))) ds,

operating by Iα on both sides, we get

I u(t) =
b tα

α
+ I1+α f(t, u(ϕ(t))),

differentiating both sides, then we get (1).
Conversely, let u(t) be a solution of (1), operating by I1−α on both sides of it, then

I1−α u(t) = I1−α b tα−1 + I1−α Iα f(t, u(ϕ(t))) = bΓ(α) +

∫ t

0

f(t, u(ϕ(s))) ds

and I1−α u(t)|t=0 = bΓ(α),

then problem (II) and equation (1) are equivalent.

Theorem 3.1. Assume that the hypothesis (h1) and (h2) hold. If
B Γ(α)T 1+α

Γ(2α) < 1,

then the nonlocal problem (I) has at least one solution u ∈ C1−α[0, T ].
Proof. Define the subset Qr ⊂ C1−α[0, T ] by

Qr = {u(t) ∈ C1−α[0, T ] : ||u(t)||C1−α[0,T ] ≤ r}

and r ≤
b + M T 1−β

Γ(α−β+1)

1 − B Γ(α)T 1+α

Γ(2α)

,

where M = max
[0,T ]

Iβ a(t), 0 < β < α and sup |b(t)| = B.

The set Qr is nonempty, closed and convex.
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Let F : Qr → Qr be an operator defined by

F u(t) = b tα−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(ϕ(s))) ds. (2)

For u ∈ Qr, then F is a continuous operator, since, if {un(t)} is a sequence in Qr

converges to u(t),∀t ∈ [0, T ], then

lim
n→∞

Fun(t) = btα−1 + lim
n→∞

∫ t

0

(t− s)α−1

Γ(α)
f(s, un(ϕ(s))) ds,

by assumptions (h1) and (h2) and the Lebesgue dominated convergence theorem
we deduce that

lim
n→∞

Fun(t) = Fu(t).

Now from equation (2), let u ∈ Qr, then

| t1−α (Fu)(t) | ≤ b + t1−α

∫ t

0

(t− s)α−1

Γ(α)
| f(s, u(ϕ(s))) | ds

≤ b + t1−α

∫ t

0

(t− s)α−1

Γ(α)
(|a(s)| + |b(s)| |u(ϕ(s))|) ds

≤ b + t1−α Iα |a(t)|+ t1−α Iα |b(t)| |u(ϕ(t))|
≤ b + t1−α Iα−β Iβ |a(t)|+B t1−α Iα−β Iβ |u(ϕ(t))|

≤ b + T 1−α M

∫ t

0

(t− s)α−β−1

Γ(α− β)
ds

+ B T 1−α Iα−β

∫ t

0

(t− s)β−1

Γ(β)
sα−1 (ϕ(s))1−α |u(ϕ(s))| ds

≤ b + T 1−α M
Tα−β

Γ(α− β + 1)
+B T 1−α ||u||C1−α Iα−β

∫ t

0

(t− s)β−1

Γ(β)
sα−1 ds

≤ b +
M T 1−β

Γ(α− β + 1)
+ B T 1−α ||u||C1−α

Iα−β tα+β−1Γ(α)

Γ(α+ β)

≤ (b +
M T 1−β

Γ(α− β + 1)
) +

B Γ(α)T 1+α

Γ(2α)
||u||C1−α .

Then {Fu(t)} is uniformly bounded in Qr.
In what follows we show that F is a completely continuous operator. For t1, t2 ∈
[0, T ], t1 < t2 such that |t2 − t1| < δ, from (2) we have∣∣t1−α
2 (Fu)(t2)− t1−α

1 (Fu)(t1)
∣∣

≤
∣∣∣∣t1−α
2

∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds − t1−α

1

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds

∣∣∣∣
≤

∣∣∣∣t1−α
2

∫ t1

0

(t2 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds + t1−α

2

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds

− t1−α
1

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds

∣∣∣∣
≤

∣∣∣∣(t1−α
2 − t1−α

1

) ∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds+ t1−α

2

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, u(ϕ(s)))ds

∣∣∣∣
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≤
∣∣t1−α
2 − t1−α

1

∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
| f(s, u(ϕ(s))) | ds+ t1−α

2

∫ t2

t1

(t2 − s)α−1

Γ(α)
| f(s, u(ϕ(s))) | ds

≤
∣∣t1−α
2 − t1−α

1

∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
(|a(s)| + |b(s)| |u(ϕ(s))|) ds

+t1−α
2

∫ t2

t1

(t2 − s)α−1

Γ(α)
(|a(s)| + |b(s)| |u(ϕ(s))|) ds

≤
∣∣t1−α
2 − t1−α

1

∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
|a(s)| ds +

∣∣t1−α
2 − t1−α

1

∣∣ ∫ t1

0

(t1 − s)α−1

Γ(α)
|b(s)| |u(ϕ(s))|ds

+t1−α
2

∫ t2

t1

(t2 − s)α−1

Γ(α)
|a(s)| ds + t1−α

2

∫ t2

t1

(t2 − s)α−1

Γ(α)
|b(s)| |u(ϕ(s))|ds

Since 0 < β < α, then the last equation can be written as

∣∣t1−α
2 (Fu)(t2)− t1−α

1 (Fu)(t1)
∣∣

≤
∣∣t1−α
2 − t1−α

1

∣∣ Iα−β Iβ a(t1) + B
∣∣t1−α
2 − t1−α

1

∣∣ Iα−β Iβ |u(ϕ(t1))|

+ t1−α
2 Iα−β

t1 Iβt1 a(t2) + B t1−α
2 Iα−β

t1 Iβt1 |u(ϕ(t2))|

≤ M
∣∣t1−α
2 − t1−α

1

∣∣ ∫ t1

0

(t1 − s)α−β−1

Γ(α− β)
ds + M t1−α

2

∫ t2

t1

(t2 − s)α−β−1

Γ(α− β)
ds

+ B
∣∣t1−α
2 − t1−α

1

∣∣ Iα−β

∫ t1

0

(t1 − y)β−1

Γ(β)
yα−1 (ϕ(y))1−α |u(ϕ(y))| dy

+ B t1−α
2 Iα−β

t1

∫ t2

t1

(t2 − s)β−1

Γ(β)
sα−1 (ϕ(s))1−α |u(ϕ(s))| ds

≤ M
∣∣t1−α
2 − t1−α

1

∣∣ Tα−β

Γ(α− β + 1)
+ M t1−α

2

(t2 − t1)
α−β

Γ(α− β + 1)

+B ||u||C1−α

∣∣t1−α
2 − t1−α

1

∣∣ Iα−β

∫ t1

0

(t1 − y)β−1

Γ(β)
yα−1 dy

+B ||u||C1−α t1−α
2 Iα−β

t1

∫ t2

t1

(t2 − s)β−1

Γ(β)
sα−1 ds.

Since s > 0 for s in (t1, t2), then sα−1 is bounded by tα−1
1

≤ M
∣∣t1−α
2 − t1−α

1

∣∣ Tα−β

Γ(α− β + 1)
+ M T 1−α (t2 − t1)

α−β

Γ(α− β + 1)

+ B ||u||C1−α

∣∣t1−α
2 − t1−α

1

∣∣ Iα−β tα+β−1
1 Γ(α)

Γ(α+ β)

+ B ||u||C1−α t1−α
2 tα−1

1 Iα−β
t1

∫ t2

t1

(t2 − s)β−1

Γ(β)
ds

≤ M
∣∣t1−α
2 − t1−α

1

∣∣ Tα−β

Γ(α− β + 1)
+ M T 1−α (t2 − t1)

α−β

Γ(α− β + 1)

+
B t2α−1

1 Γ(α) Γ(α− β)

Γ(2α)
||u||C1−α

∣∣t1−α
2 − t1−α

1

∣∣ + B ||u||C1−α

(t2 − t1)
β

Γ(β + 1)
.



76 FATMA M. GAAFAR JFCA-2014/5(2)

Hence the class {Fu(t)} is equi-continuous, by Arzelá-Ascoli Theorem then {Fu(t)}
is relatively compact. Since all conditions of Schauder fixed point Theorem are hold,
then F has a fixed point in Qr. Therefor the the nonlocal problem (I) and (II)
has at least one solution u ∈ C1−α[0, T ].

Theorem 3.2. Let f : [0, T ] × R → R be continuous and satisfy the Lipschitz
condition

|f(t, u1) − f(t, u2)| ≤ L |u1 − u2|, L > 0 for all u1, u2 ∈ R.

If the condition (h2) is satisfied and

21−2α
√
π LTα

Γ(α+ 1
2 )

< 1,

then the problems (I) and (II) have a unique solution u ∈ C1−α[0, T ].
Proof. Let F be an operator defined by (2), then F : C1−α[0, T ] → C1−α[0, T ]
and∣∣t1−α(Fu)(t)− t1−α(Fv)(t)

∣∣ ≤ t1−α

∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(ϕ(s)))− f(s, v(ϕ(s)))| ds

≤ Lt1−α

∫ t

0

(t− s)α−1

Γ(α)
|u(ϕ(s))− v(ϕ(s))| ds

≤ L t1−α

∫ t

0

sα−1(t− s)α−1

Γ(α)
(ϕ(s))1−α |u(ϕ(s))− v(ϕ(s))| ds

≤ L t1−α ||u− v||C1−α

∫ t

0

sα−1(t− s)α−1

Γ(α)
ds

≤ L t1−α ||u− v||C1−α

t2α−1Γ(α)

Γ(2α)

≤ 21−2α
√
π LTα

Γ(α+ 1
2 )

||u− v||C1−α .

This means that∣∣∣∣t1−α(Fu)(t)− t1−α(Fv)(t)
∣∣∣∣
C
≤ 21−2α

√
π LTα

Γ(α+ 1
2 )

||u−v||C1−α .

Then by using Banach fixed point Theorem, the operator F has a unique fixed
point u(t) ∈ C1−α.

4. Example

In this section we provide an example illustrating the main results.

Example 4.1 Consider the nonlinear fractional differential problem

D
1
2u(t) = cos2 t +

u(2t) + sinu(2t)

3 + t2
a.e. t ∈ (0, 1],

t
1
2 u(t)|t=0 = b

Observe, the above problem is a special case of problem (I). Indeed if we put
ϕ(t) = 2t,
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f(t, u) = cos2 t +
u+ sinu

3 + t2
and α =

1

2
.

Then we can easy check that the assumptions of Theorem 3.1 are satisfied.
Then the problem has at least one solution u ∈ C1−α[0, 1].
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