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SOME APPLICATIONS OF FRACTIONAL q-CALCULUS AND
FRACTIONAL q-LEIBNIZ RULE

AHMED SALEM

Abstract. In this article, the fractional q-calculus and fractional q-Leibniz
rule are used to generate certain infinite series expansions and transformations

relating some of q-special functions of mathematical physics. Some of these
expansions and transformations thus generated are known, while others appear

to be new.

1. Introduction

The subject of fractional calculus (that is, integrals and derivatives of any real
or complex order) has gained noticeable importance and popularity during the past
three decades or so, due mainly to its demonstrated applications in many seemingly
diverse fields of science and engineering. Much of the theory of fractional calculus is
based upon the familiar Riemann-Liouville fractional derivative (or integral). Many
works involving fractional calculus, especially in the area of closed-form summation
of infinite series [1]. Recently, there was a significant increase of activity in the area
of the q-calculus due to applications of the q-calculus in mathematics, statistics and
physics.

In this paper, a brief review of fractional q-calculus and fractional q-Leibniz rules
for q-integrals of the product of two functions is mentioned and used to generate
certain infinite series expansions and transformations relating q-special functions
of mathematical physics. Some of these expansions and transformations thus gen-
erated are known, while others appear to be new. We first show a list of various
definitions and notations in q-calculus which are useful to understand the subject
of this paper and will be taken from the well known books in this field [2, 3], unless
otherwise stated.
For any complex number a, the basic number and q-factorial are defined as

[a]q =
1 − qa

1 − q
, q �= 1; [n]q! = [n]q[n − 1]q · · · [1]q, n ∈ N; [0]q! = 1 (1.1)

and the scalar q-shifted factorials are defined as

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), n ∈ N. (1.2)
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The limit, limn→∞(a; q)n, is denoted by (a; q)∞ provided |q| < 1. This implies that

(a; q)n =
(a; q)∞

(aqn; q)∞
, n ∈ N0, |q| < 1 (1.3)

and, for any complex number α

(a; q)α =
(a; q)∞

(aqα; q)∞
, |q| < 1 (1.4)

where the principal value of qα is taken.
The q-binomial coefficient is defined for positive integers n, k as[

n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n

(q; q)k(q; q)n−k
=

[
n

n − k

]
q

. (1.5)

This definition can be generalized in the following way. For arbitrary complex α
we have [

α

k

]
q

=
(q−α; q)k

(q; q)k
(−1)kqαk−(k

2) =
Γq(α + 1)

Γq(k + 1)Γq(α − k)
(1.6)

where Γq(z) is the q-gamma function defined by the representation

Γq(z) =
(q; q)∞
(qz ; q)∞

(1 − q)1−z, z �= 0,−1,−2, ...; |q| < 1. (1.7)

For non-negative integer values of the variable z = n, we have

Γq(n + 1) =
(q; q)n

(1 − q)n
= [n]q!, |q| < 1. (1.8)

The basic hypergeometric series is defined as

rφs

[
a1, a2, · · · , ar

b1, b2, · · · , bs
; q, z

]
= rφs(a1, a2, · · · , ar; b1, b2, · · · , bs; q, z)

=
∞∑

n=0

(a1, a2, · · · , ar; q)n

(q, b1, b2, · · · , bs; q)n

(
(−1)nq(

n
2)

)s−r+1

zn (1.9)

for all complex variable z if r ≤ s, 0 < |q| < 1 and for |z| < 1 if r = s + 1.
The exponential function ez has many different q-extensions such as

Eq(z) =
∞∑

n=0

q(
n
2)zn

[n]q!
= (−(1 − q)z; q)∞, (1.10)

eq(z) =
∞∑

n=0

zn

[n]q!
=

1
((1 − q)z; q)∞

. (1.11)

For the convergence of the second series, we need |z| < |1 − q|−1.
The basic hypergeometric series have many properties and identities, here we need
the following identities

1φ0(a;−; q, z) =
∞∑

n=0

(a; q)nzn

(q; q)n
=

(az; q)∞
(z; q)∞

, |z| < 1, (1.12)

1φ1(a; c; q, c/a) =
(c/a; q)∞
(c; q)∞

. (1.13)
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The q-derivative Dqf(z) of a function f is given as

(Dqf)(z) =
f(z) − f(zq)

(1 − q)z
, q �= 1, z �= 0, (Dqf)(0) = f ′(0) (1.14)

provided f ′(0) exists. If f is differentiable then Dqf(z) tends to f ′(z) as q → 1.
The Jackson q-integral from a to z is defined as

Iq,af(z) =
∫ z

a

f(t)dqt =
∫ z

0

f(t)dqt −
∫ a

0

f(t)dqt (1.15)

where ∫ x

0

f(t)dqt = x(1 − q)
∞∑

k=0

qkf(xqk) (1.16)

provided the sum converges absolutely. We will denote Iq,0f(z) by Iqf(z).
The q-gamma function has a q-integral representation

Γq(α) =
∫ 1

1−q

0

tα−1Eq(−qt)dqt, �(α) > 0. (1.17)

El-Shahed and Salem [4] defined q-analogues of the incomplete gamma function
and its complementary, respectively, as

γq(α, z) =
∫ z

0

tα−1Eq(−qt)dqt, �(α) > 0, (1.18)

Γq(α, z) =
∫ 1

1−q

z

tα−1Eq(−qt)dqt, �(α) > 0. (1.19)

There is an important relation among q-gamma function and incomplete q-gamma
functions comes from their definitions

Γq(α, z) + γq(α, z) = Γq(α), α �= 0,−1,−2, · · · . (1.20)

Some identities for incomplete q-gamma function and its complementary which have
been studied and proved in [4], will be listed below

Γq(1, z) = Eq(−z), γq(1, z) = 1 − Eq(−z), (1.21)

γq(α + 1, z) = [α]qγq(α, z) − zαEq(−z), (1.22)

Γq(α + 1, z) = [α]qΓq(α, z) + zαEq(−z), (1.23)

γq(α, z) = [α]−1
q zα

1φ1(qα; qα+1; q, zq(1− q)). (1.24)

Salem [5] proved that γq(α, z) is an entire function for fixed complex variable z and
for all complex α �= 0,−1,−2, · · · on the open unit disc |q| < 1 and Γq(α, z) can
also be continued analytically for all complex numbers α, z; | arg(z)| < π by means
of the expansions

Γq(0, z) = E1(z, q) =
1 − q

ln q
ln z − γq +

∞∑
k=1

qkγq(k, z)
[k]q!

(1.25)

=
1 − q

ln q
ln z − γq +

∞∑
k=1

(−1)k−1q
k(k+1)

2 zk

k]q · [k]q!
(1.26)

where E1(z, q) is the q-analogue of the exponential integral and γq = ((1−q)/ ln q)Γ′
q(1)

denotes the q-analogue of the Euler-Mascheroni constant. Here, Γ′
q(1) = d

dz [Γq(z)]z=1.
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2. A brief review of fractional q-calculus

The usual starting point for a definition of fractional operators in q-calculus
taken in [6, 7, 8], is the q-analogue of the Riemann-Liouville fractional integral

Iα
q f(z) =

zα−1

Γq(α)

∫ z

0

(tq/z; q)α−1f(t)dqt. (2.1)

This q-integral was motivated from the q-analogue of the Cauchy formula for a
repeated q-integral

Iα
q,af(z) =

∫ z

a

dqt

∫ t

a

dqtn−1

∫ tn−1

a

dqtn−2 · · ·
∫ t2

a

f(t1)dqt1

=
zn−1

[n − 1]q!

∫ z

0

(tq/z; q)n−1f(t)dqt. (2.2)

The reduction of the multiple q-integral to a single one was considered by Al-Salam
[9]. Formally replacing n by α to get (2.1) when a = 0. Now the q-analogue of
the Riemann-Liouville integral (2.1) seems somewhat reasonable as a definition for
fractional q-integral. The Jackson q-integral (1.16) can be used to get

Iα
q f(z) = zα(1 − q)α

∞∑
k=0

(qα; q)k

(q; q)k
qkf(zqk) (2.3)

= zα(1 − q)α
∞∑

k=0

(−1)k

[−α

k

]
q

q
k(k+1)

2 +αkf(zqk). (2.4)

There are two fractional q-Leibniz rules, the first rule has been derived by Al-Salam
and Verma [7] as

Iα
q {f(z)g(z)} =

∞∑
k=0

[−α

k

]
q

Dk
q f(zq−α−k)Iα+k

q g(z). (2.5)

Their proof for fractional q-Leibniz rule was derived based on the q-type interpo-
lation series such formula in a slightly different form of q-Taylor series. Obviously,
(2.5) is valid whenever the functions f(z) and g(z) are such that the series in
(2.3) and (2.4) are absolutely convergent. In the case g(z) = 1, they obtained the
fractional q-integral

Iα
q f(z) =

1
Γq(α)

∞∑
k=0

(−1)kq−
k(k−1)

2 −αkzα+k

[k]q![α + k]q
Dk

q f(zq−α−k). (2.6)

Agarwal [10] defined the second q-extension of the Leibniz rule for the fractional
q-integrals for a product of two functions in terms of a series involving fractional
q-integrals of the individual functions in the following manner

Iα
q {f(z)g(z)} =

∞∑
k=0

[−α

k

]
q

Dk
qf(z)Iα+k

q g(zqk) (2.7)

where f(z) and g(z) are two regular functions such that

f(z) =
∞∑

r=0

arz
r, |z| < R1 and g(z) =

∞∑
r=0

brz
r, |z| < R2
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then for the result (2.7), |z| < R = min{R1, R2}. Similarly, in the case g(z) = 1,
yields

Iα
q f(z) =

1
Γq(α)

∞∑
k=0

(−1)kq
k(k+1)

2 zα+k

[k]q![α + k]q
Dk

q f(z). (2.8)

3. Applications

Yadav and Purohit [11, 12] investigated the applications of q-Leibniz rule of frac-
tional order q-derivatives and deduced several interesting transformations involving
various basic hypergeometric functions of one variable including the basic analogue
of Fox’s H-function. In the present section, the fractional q-integral formula (2.3)
is used to represent some q-special functions expressed as fractional q-integrals by
assigning specific values to the function f and to the parameter α. After repre-
senting these expressions, it is useful to find some transformations by joining the
results. Also the fractional q-Leibniz rule (2.7) is used to generate certain infinite
series expansions relating q-special functions of mathematical physics by assigning
specific values to the functions f and g, and to the parameter α.

3.1. q-Special functions expressed as fractional q-integrals. For this purpose
it is convenient to get a list of q-special functions in terms of fractional q-integrals
using the fractional q-integral (2.3) after assigning the values of the function f and
the parameter α, and simplifying the results using some well known transformations
as follow
Basic Gauss hypergeometric function

2φ1(qα, qβ; qγ ; q, z) =
z1−γΓq(γ)

Γq(β)
Iγ−β
q

{
zβ−1

(z; q)α

}
, (3.1)

�(γ) > �(β) > 0; |z| < 1,

2φ1(qγ−α, z(1 − q); 0; q, qα) =
z1−γEq(−z)
(1 − q)γ−α

Iγ−α
q

{
zα−1eq(z)

}
, (3.2)

�(γ) > �(α) > 0; |z| < |1− q|−1.

Basic confluent hypergeometric function

1φ1(qα; qγ ; q, z(1− q)) =
z1−γΓq(γ)

Γq(α)
Iγ−α
q

{
zα−1Eq(−z)

}
, �(γ) > �(α) > 0.

(3.3)
Incomplete q-gamma function

γq(α, z) = Γq(α)Eq(−z)Iα
q {eq(z)}, �(α) > 0; |z| < |1− q|−1. (3.4)

The q-Laguerre function

L(α)
ν (z; q) =

z−α(−z; q)∞
Γq(ν + 1)

I−ν
q

{
zν+α

(−z; q)∞

}
, �(ν + α) > −1,�(ν) < 0 (3.5)

where L
(α)
ν (z; q) denotes the q-Laguerre function which we can define it as

L(α)
ν (z; q) =

[
α + ν

ν

]
q

1φ1(q−ν ; qα+1; q,−zqα+ν+1). (3.6)
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To prove (3.1), substituting f(z) = zβ−1/(z; q)α into (2.3) yields

Iγ−β
q

{
zβ−1

(z; q)α

}
= zγ−1(1 − q)γ−β

∞∑
k=0

(qγ−β; q)k(zqα+k; q)∞
(q; q)k(zqk; q)∞

qkβ

=
zγ−1(1 − q)γ−β(zqα; q)∞

(z; q)∞

∞∑
k=0

(qγ−β ; q)k(z; q)k

(q; q)k(zqα; q)k
qkβ

=
zγ−1(1 − q)γ−β(zqα; q)∞

(z; q)∞
2φ1(qγ−β , z; zqα; q, qβ).

Using the well known Heines transformation formulas for the 2φ1 series [10]

2φ1(a, b; c; q, z) =
(az, b; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b), |z| < 1; |b| < 1

would yield the desired result. The proof of other formulas is similar.
Also, we can obtain another list by using fractional q-Leibniz rule (2.7) after

assigning the values of the functions f and g and the parameter α, and simplifying
the results as follow

2φ2(qγ−β , qα; qγ , zqα; q, zqβ) =
z1−γΓq(γ)(z; q)α

Γq(β)
Iγ−β
q

{
zβ−1

(z; q)α

}
, (3.7)

�(γ) > �(β) > 0; z ∈ C,

1φ1(qγ−α; qγ ; q, zqα(1 − q)) =
z1−γΓq(γ)Eq(−z)

Γq(α)
Iγ−α
q

{
zα−1eq(z)

}
, (3.8)

�(γ) > �(α) > 0; |z| < |1− q|−1,

3φ2(qγ−α, 0, 0; qγ, z(1 − q); q, zqα(1 − q)) =
z1−γΓq(γ)eq(z)

Γq(α)
Iγ−α
q

{
zα−1Eq(−z)

}
,

�(γ) > �(α) > 0; |zqα| < |1 − q|−1. (3.9)

3.2. Transformation formulas. Three well known transformations can be ob-
tained from comparing the relations (3.1), (3.2) and (3.3) with the relations (3.7),
(3.8) and (3.9), respectively, as follow

2φ1(a, b; c; q, z) =
(az; q)∞
(z; q)∞

2φ2(a, c/b; c, az; q, bz), |z| < 1, (3.10)

2φ1(a, b; 0; q, z) =
(az; q)∞
(z; q)∞

1φ1(a; az; q, bz), |z| < 1, (3.11)

1φ1(a; c; q, z) = (z; q)∞ 3φ2(c/a, 0, 0; c, z; q, az), |az| < 1. (3.12)

3.3. Series expansions. The above results can be used to establish some new
expansions associated with some of q-special functions. These expansions will be
obtained by means of changing the positions of the functions f and g in the frac-
tional q-Leibniz rule (2.7). We can derive these expansions as follow
i) Expansion of basic Gauss hypergeometric function.

2φ1(qα, qβ;qγ ; q, z) =
Γq(γ)

Γq(β)Γq(γ − β)

∞∑
k=0

(q1−β; q)kqβk

(q; q)k[γ − β + k]q

× 2φ1(q, qα; qγ−β+k+1; q, zqk), |z| < 1 (3.13)
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or, equivalently

2φ1(a, b; c; q, z) =
(b, qc/b; q)∞

(q, c; q)∞

∞∑
k=0

(q/b, c/b; q)kb
k

(q, qc/b; q)k
2φ1(q, a; cqk+1/b; q, zqk), |z| < 1.

(3.14)
To prove the formula (3.13), we need

Dk
q zβ−1 = (−1)kqβk− k(k+1)

2
(q1−β; q)k

(1 − q)k
zβ−k−1, �(β) > 0, (3.15)

Iλ
q

{
1

(z; q)α

}
=

zλ

Γq(λ + 1) 2φ1(q, qα; qλ+1; q, z), |z| < 1 (3.16)

where the formula (3.16) comes from (3.1) by putting β = 1, 1 − γ = −λ. Substi-
tuting into the fractional q-Leibniz rule (2.7) would yield

Iγ−β
q

{
zβ−1

(z; q)α

}
=

∞∑
k=0

[
β − γ

k

]
q

Dk
q{zβ−1}Iγ−β+k

q

{
1

(zqk; q)α

}

=
zγ−1

Γq(γ − β + 1)

∞∑
k=0

(qγ−β ; q)k(q1−β; q)k

(q; q)k(qγ−β+1 ; q)k
qβk

2φ1(q, qα; qγ−β+k+1; q, zqk)

=
zγ−1

Γq(γ − β)

∞∑
k=0

(q1−β; q)k

(q; q)k[γ − β + k]q
qβk

2φ1(q, qα; qγ−β+k+1; q, zqk).

Using the previous relation and (3.1) would yield the proof.
ii) Expansions of basic confluent hypergeometric function.
Similarly, by using (3.3), we can get

1φ1(qα; qγ ; q, z) =
Γq(γ)

Γq(α)Γq(γ − α)

∞∑
k=0

(q1−α; q)kqαk

(q; q)k[γ − α + k]q
1φ1(q; qγ−α+k+1; q, zqk)

(3.17)
or, equivalently

1φ1(a; c; q, z) =
(a, qc/a; q)∞

(q, c; q)∞

∞∑
k=0

(q/a, c/a; q)ka
k

(q, qc/a; q)k
1φ1(q; cqk+1/a; q, zqk). (3.18)

When z = c/a, we get the q-binomial theorem (1.12) via the identity (1.13).
iii) Expansions in the incomplete q-gamma function.
As above, substituting the relations (3.4) and (3.15) into fractional q-Leibniz rule
(2.7) and comparing with (3.2) following by using the transformation (3.11) would
yield for �(β) > 0

1φ1(qβ ; qα+β; q, zqα(1−q)) =
z−βΓq(α + β)
Γq(α)Γq(β)

∞∑
k=0

(q1−α; q)k(z(1 − q); q)k

(q; q)kqk(k+β−α)zk
γq(β+k, zqk)

(3.19)
It is obvious that if z = 1/(1−q), the expansion (3.19) returns to the identity (1.13)
and if α = 1, we arrive at the well known relation between incomplete q-gamma
function and basic confluent hypergeometric function (1.24).



8 A. SALEM JFCA-2012/2

Another series expansion in terms of incomplete q-gamma function can be ob-
tained from the fact eq(z)Eq(−z) = 1 and the relation

Iα+k
q {1} =

zα+k

Γq(α + k + 1)
(3.20)

with taking f(z) = Eq(−z) and g(z) = eq(z) in fractional q-Leibniz rule (2.7)
∞∑

k=0

γq(α + k, zqk)
[k]q!

q−αk =
zα

[α]q
. (3.21)

The above relation can be rewritten as
∞∑

k=1

γq(α + k, zqk)
[k]q!

q−αk =
zα − Γq(α + 1)

[α]q
+ Γq(α, z). (3.22)

Taking the limit as α → 0 with applying l’Hôspital rule to the first term on the
right hand side would yield

Γq(0, z) =
1 − q

ln q
ln z − γq +

∞∑
k=1

γq(k, zqk)
[k]q!

. (3.23)

From the equations (1.25) and (1.26), we can arrive at
∞∑

k=1

γq(k, zqk)
[k]q!

=
∞∑

k=1

qkγq(k, z)
[k]q!

=
∞∑

k=1

(−1)k−1q
k(k+1)

2 zk

[k]q · [k]q!
. (3.24)

iv) Expansion of q-exponential function.
In the case of choosing f(z) = eq(z) and g(z) = Eq(−z) in (2.7), the q-exponential
function can be expanded in basic confluent hypergeometric function as

Eq(−z) =
∞∑

k=0

(−1)kq
k(k+1)

2 (qα; q)kzk

[k]q!(qα+1; q)k
1φ1(q; qα+k+1; q, zqk(1 − q)) (3.25)

or equivalently

(z; q)∞ =
∞∑

k=0

(−1)kq
k(k+1)

2 (a; q)kzk

(q; q)k(aq; q)k
1φ1(q; aqk+1; q, zqk). (3.26)

Notice that the previous expansion will return immediately to (1.10) when a = 0.
Using the fact eq(z)Eq(−z) = 1 and the relations (3.21) and (3.25) would yield the
following equation
∞∑

k=0

γq(α + k, zqk)
[k]q!

q−αk = zαeq(z)
∞∑

k=0

(−1)kq
k(k+1)

2 zk

[k]q![α + k]q
1φ1(q; qα+k+1; q, zqk(1 − q))

(3.27)
which can also be rewritten as

Γq(α + 1) − zαeq(z) 1φ1(q; qα+1; q, z(1− q))
[α]q

− Γq(α, z) +
∞∑

k=1

γq(α + k, zqk)
[k]q!

q−αk

= zαeq(z)
∞∑

k=1

(−1)kq
k(k+1)

2 zk

[k]q![α + k]q
1φ1(q; qα+k+1; q, zqk(1 − q)). (3.28)
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Taking the limit as α → 0 with applying l’Hôspital rule to the first term on the
right hand side and taking into account the relation (3.23) would yield

lim
α→0

d

dα
[ 1φ1(q; qα+1; q, z(1−q))] =

ln q

1 − q

∞∑
k=1

(−1)kq
k(k+1)

2 zk

[k]q![k]q
1φ1(q; qk+1; q, zqk(1−q)).

(3.29)
This implies that

∞∑
k=1

(−1)kq
k(k−1)

2 zk

[k]q!
Hk,q =

∞∑
k=1

(−1)kq
k(k+1)

2 zk

[k]q!(1 − qk) 1φ1(q; qk+1; q, zqk(1 − q)) (3.30)

where Hk,q is a q-harmonic number defined by [13] as

Hk,q =
k∑

i=1

qi

1 − qi
. (3.31)

A useful generating function for q-harmonic number can be obtained by putting
z = 1/(1 − q) and inserting (1.13) as

(q; q)∞ = 1 +
∞∑

k=1

(−1)kq
k(k−1)

2

(q; q)k
Hk,q. (3.32)

The relation (3.30) after replacing z by −z when q → 1− will return to the well
known exponential generating function for a harmonic number [14]

∞∑
k=1

zk

k!
Hk = ez

∞∑
k=1

γ(k, z)
k!

= ez(E1(z) + γ + ln z) (3.33)

where E1(z) is the exponential integral and γ is the Euler-Mascheroni constant.
v) Expansion of q-Laguerre function.
In the case of f(z) = zα+ν and g(z) = 1/(−z; q)∞ in fractional q-Leibniz rule (2.7)
after simplifying the results and using the relation (3.5), we can derive an expansion
of q-Laguerre function (3.6) as

L(α)
ν (z; q) =

∞∑
k=0

(q−α−ν; q)k(−z; q)k

(q; q)k
(−1)kqαk+ k(k+1)

2 L
(k−ν)
ν−k (zqk; q) (3.34)

which can also be rewritten as

L(α)
ν (−z(1 − q); q) =

zν

Γq(−ν)Γq(ν + 1)

∞∑
k=0

(q−α−ν; q)k(z(1 − q); q)k

(q; q)kzk

× qk(α+2ν−k+1)γq(k − ν, zqk), �(ν) < 0. (3.35)

vi) q-Analogue of the Hadamard expansion.
Finally, the expansions (3.13), (3.19) and (3.35) after assigning a suitable values
for its parameters can be converted to the expansion

1φ1(qν+1/2; q2ν+1; q, zqν+1/2(1 − q)) =
Γq(2ν + 1)Eq(−z)
zν+1/2Γ2

q(ν + 1/2)

∞∑
k=0

(q1/2−ν; q)kq−k2

(q; q)kzk

× eq(zqk)γq(ν + k + 1/2, zqk), �(ν) > −1
2
, |z| < |1 − q|−1 (3.36)
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which can be considered a q-analogue of the Hadamard expansion [15]

Iν(z) =
ez

√
2πz

∞∑
n=0

(1/2− ν)n

n!(2z)n

γ(n + ν + 1/2, 2z)
Γ(ν + 1/2)

, �(ν) > −1
2

(3.37)

where Iν(z) is the modified Bessel function defined as

Iν(z) =
∞∑

n=0

(z/2)ν+2n

n!Γ(n + ν + 1)
. (3.38)

Indeed, in view of the familiar relation [16]

Iν(z) =
(z/2)ν

Γ(ν + 1)
e±z

1F1(ν +
1
2
; 2ν + 1;∓2z)

and the relation [17]

γ(α, z) = α−1zαe−z
1F1(1; α + 1; z).

It is easy to rewrite the Hadamard expansion (3.37) in its equivalent form

1F1(ν +
1
2
; 2ν + 1;−z) =

Γ(2ν + 1)
zν+1/2Γ2(ν + 1/2)

∞∑
n=0

(1/2− ν)n

n!zn

× γ(n + ν +
1
2
, z), �(ν) > −1

2
. (3.39)

It is obvious that the expansion (3.36) tends to the equivalent Hadamard expansion
(3.39) as q → 1.
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