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MEASURABLE-LIPSCHITZ SELECTIONS AND SET-VALUED

INTEGRAL EQUATIONS OF FRACTIONAL ORDER

AHMED M. A. EL-SAYED AND YASSINE KHOUNI

Abstract. In this paper we study the sufficient conditions for the existence

of measurable-Lipschitz selection for the set-valued function F : I × R → R
in the two cases when F has convex or nonconvex values.
An application we prove the existence of an integrable solution for the set-
valued integral equation

x(t) ∈ g(t) +

∫ t

0
k(t, s)F (s, x(s))ds, t ∈ [0, 1].

The set-valued integral equation of fractional-order

x(t) ∈ g(t) +

∫ t

0

(t− s)β−1

Γ(β)
F (s, x(s))ds, t ∈ [0, 1] and β ∈ (0, 1)

will be given as an example.

1. Introduction

The existence of measurable-Lipschitz selection for the set valued map F has
been studied by V.V. Chistyakov and A. Nowak in [3], when F is set-valued map
from T ×X into Y , where (X is an interval (open, closed, half-closed, bounded or
not) on the real line R and (Y, d) be a metric space with metric d). P. Bettiol and
H. Frankowska (see [3]) assumed that F is measurable-Lipschitz set-valued map
and proved some properties of the set of solutions to the differential inclusion

x′(t) ∈ F (t, x(t)), x(t) ∈ K.

Myelkebir Aitalioubrahim in [1] prove the existence theorem of Boundary value
problem of second order (with Neumann Boundary conditions), where F is mea-
surable in the first argument and Lipschitz in the second argument.
Mireille Broucke and Ari Arapostathis in [5] show that given any finite set of tra-
jectories of a Lipschitz differential inclusion (where F is measurable in the first
argument and Lipschitz in the second argument) there exists a continuous selection
from the set of its solutions that interpolates the given trajectories. In addition,
we present a result on lipschitzian selections.
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In the sequel we prove the existence of measurable-Lipschitz selection for the set-
valued function F : I ×R → R in the two cases when F has convex or nonconvex
values.
In section (4) as an application we prove the existence of an integrable solution x
for the set-valued integral equation

x(t) ∈ g(t) +

∫ t

0

k(t, s) F (s, x(s))ds, t ∈ [0, 1].

An example we study the existence of integrable solution x for the following set-
valued integral equation of fractional-order

x(t) ∈ g(t) +

∫ t

0

(t− s)β−1

Γ(β)
F (s, x(s))ds, t ∈ [0, 1] and β ∈ (0, 1).

2. Preliminaries

In this section we establish our notations and we recall some basic definitions
and known results used in the proof of our results here.
Let L1 = L1[0, 1] be the class of equivalent integrable function on the interval
I = [0, 1] with the usual norm

∥x(t)∥ =

∫ 1

0

|x(s)| ds.

P (Y ) denoted to the family of nonempty subsets of Y .
Pcl(Y ) denoted to the family of nonempty closed subsets of Y .
Pcl,bd(Y ) denoted to the family of nonempty closed, bounded subsets of Y .
Let (X, d) be a metric space and let A ⊆ X, x ∈ X and d(x,A) = inf{d(a, x); a ∈
A}.
Definition 1 For any A,B ∈ Pcl,bd(X), the Hausdorff distance is defined by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

Definition 2 Let (X, d) and (Y, ρ) be two metric spaces and let T : X →
Pcl(Y ) be a multivalued mapping. Then T is called Lipschitz multivalued mapping
(c−Lipschitz) if there exists a constant c > 0 such that for each x, y ∈ X we
have

H(T (x), T (y)) ≤ c d(x, y)

where H is the Hausdorff metric.
The constant c is called the Lipschitz constant of T . In particular if c < 1 , then
T is called contraction multivalued mapping on X.
Definition 3 Let (T,Σ) be a measurable space and X be a topological space, a
multivalued function F : T → X is measurable if for each open set O in X the set

F−1(O) =
{
t ∈ T ; F (t)

∩
O ̸= ∅

}
is measurable (i.e. F−1(O) ∈ Σ).
Definition 4 A Polish space is a separable completely metrizable topological space,
and a Suslin space is the image of a Polish space under a continuous mapping.
Remark: An example of Suslin space is a separable completely metrizable topo-
logical space.
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Theorem (Yankov-Von Neumann selection theorem)
If (Ω,Σ, µ) complete measure space, X is Souslin space and

F : Ω → P (X)

is multifunction, such that

Gr(F ) ∈ Σ× β(X)

(where β(X) denote the Borel σ−field on X). Then F admits a measurable selec-
tion.

3. Measurable-Lipschitz selections

In this section we give some various sufficient conditions for the existence of
measurable-Lipschitz selection of the set-valued function F in the two cases when
F has convex and nonconvex values.
Definition 5 We say that F is measurable-Lipschitz if F (., x) is measurable for
all x ∈ X and F (t, .) is Lipschitz for all t ∈ I .

For the compact convex set-valued functions we have the following selection theo-
rem.
Theorem 1 Let F : I × R → P (R) be a nonempty compact convex set-valued
function satisfies the following conditions:

(i) F (., x) is measurable in I for every x ∈ R,
(ii) F (t, .) is c−Lipschitz set-valued function for each fixed t ∈ I,
(iii) F (t, 0) is integrable in the sense that (∀a ∈ F (t, 0) implies that a is inte-

grable) and there exists an integrable function m , such that |F (t, 0)| ≤
m(t).

Then there exists a selection f of F satisfies the following conditions:

(1) f(., x) is measurable for every x ∈ R,
(2) f(t, .) is c−Lipschitz function,
(3) f(t, 0) is integrable function.

Proof By Corollary [7. Co. 2] we have F (t, .) has c−Lipschitz selection v(.).
Now we define the set of all c−Lipschitz selections of the function F (t, .) by the
set valued function

G(t) = {v ∈ C(R,R) : v is Lipschitz selection of F (t, .)} .

Now we prove that G has a measurable selection.
Let α : I → C(R,R) defined by

α(t) = sup

{
H(F (t, x), F (t, y))

|x− y|
, x, y ∈ R, x ̸= y

}
from the definition of α we have α is measurable, because α can be written as

α(t) = sup {φ(t, x, y), x, y ∈ R, x ̸= y}

such that φ(t, x, y) = H(F (t,x),F (t,y))
|x−y| , thus φ is measurable in t and by the continuity

of φ in (x, y), we have

α(t) = sup {φ(t, x, y), x, y ∈ R and rational, x ̸= y}
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hence α is measurable.
Let β : C(R,R) → R

∪
{+∞} defined as follows

β(v) = sup

{
|v(x)− v(y)|

|x− y|
, x, y ∈ R, x ̸= y

}
for each x, y ∈ R, x ̸= y, we have the function

(v, x, y) 7→ |(v(x)− v(y)|
|x− y|

is continuous in (v, x, y). Therefore by the continuity of this function in (x, y), we
can write β by

β(v) = sup

{
|(v(x)− v(y))|

|x− y|
, x, y ∈ R and rational, x ̸= y

}
therefore the function

v 7→ |(v(x)− v(y)|
|x− y|

is continuous and hence lower semicontinuous.
We define also Γ(t, u) = sup {d(u(x), F (t, x)), x ∈ R},
then the function (t, u, x) 7→ d(u(x), F (t, x)) is measurable in t and continuous in
u and x.
Thus, for each fixed x ∈ R it is Σ× β(C(X,Y ))−measurable.
We have Γ(t, u) = sup {d(u(x), F (t, x)), x is rational} by virtue of the conti-
nuity in x. Consequently, Γ is product-measurable. Note that for each fixed
t ∈ I, Γ(t, .) is lower semicontinuous, being the supremum of continuous func-
tions u 7→ d(u(x), F (t, x)), x ∈ R. Now we set γ(t, v) = sup {Γ(t, v), β(v)− α(t)}
hence γ is product measurable and lower semicontinuous in v.
We have

Gr(G) = {(t, v) ∈ I × C(R,R) : γ(t, v) ≤ 0} = γ−1(]−∞, 0])

hence
Gr(G) ∈ Σ× β(C(R,R))

and therefore G satisfies the Yankov-Von Neumann selection theorem, hence there
exists a measurable selection g of G.
Now we define f(t, x) = g(t)(x), observe that f(t, x) ∈ F (t, x), ∀(t, x) ∈ I × R,
first f(t, .) is clearly Lipschitz (f(t, .) = g(t)(.) is a Lipschitz selection of F (t, .)),
let Uy ⊆ R be open set, we set

U = {v ∈ C(R,R), v(x) ∈ Uy} .
We have U is open in C(R,R), so that

(f(., x))−1(Uy) = {t ∈ I : f(t, x) ∈ Uy} = {t ∈ I : g(t)(x) ∈ Uy}

= {t ∈ I : g(t) ∈ U} = g−1(U) ∈ Σ.

Hence t 7→ f(t, x) is measurable for each fixed x ∈ R.
Now f(t, 0) ∈ F (t, 0), ∀t ∈ I, then by assumption (iii) ∃ m (integrable) such that
f(t, 0) ≤ m(t), which implies that f(t, 0) is integrable.

For the compact set-valued functions, as a result of [3], we have the following
theorem.
Theorem 2 Let F : I ×R → Pcp(R) be measurable-Lipschitz multifunction.
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Then F has a measurable-Lipschitz selection f : I ×R → R.
Moreover, if there exists an integrable function m , such that |F (t, 0)| ≤ m(t) ,
where

|F (t, x)| = sup {|v| , v(t) ∈ F (t, x), t ∈ I} ,
then f(t, 0) is integrable.
Proof (see [3]).

For the set-valued functions with closed valued ( not necessarily convex ) we have
the following selection theorem.
Theorem 3 Let F : I × R → Pcl(R) be a set-valued function satisfies the
following conditions:

(i) F (., x) is measurable in I for every x ∈ R.
(ii) F (t, .) is c−Lipschitz set-valued function for each fixed t ∈ I.
(iii) F (t, 0) is integrable in the sense that (∀a ∈ F (t, 0) implies that a is inte-

grable) and there exists an integrable function m , such that |F (t, 0)| ≤
m(t).

Then there exists a selection f of F satisfies the following conditions:

(1) f(., x) is measurable for every x ∈ R.
(2) f(t, .) is c−Lipschitz function.
(3) f(t, 0) is integrable.

Proof By Theorem [8, Th. 2] we have F (t, .) has k−Lipschitz selection v(.). Now
we define new set valued function

G(t) = {v ∈ C(R,R) : v is Lipschitz selection of F (t, .)}

Now by the same way as in Theorem 1 we can prove that there exist selection f of
F satisfies the conditions (1)-(3)

4. Set-valued integral equation

Consider the integral equation

x(t) = g(t) +

∫ t

0

k(t, s) f(s, x(s))ds (1)

with the following assumptions

(1) g : I → R is integrable on I,
(2) k(., .) is measurable in the two variable and there exists M > 0 such

that such that
∫ 1

0
|k(t, s)| dt ≤ M, s ∈ I.

(3) f(., x) is measurable for each fixed x ∈ R.
(4) f(t, .) is c−Lipschitz for each fixed t ∈ I.
(5) f(t, 0) = a(t) is integrable.
(6) Mc < 1.

Theorem 4 Assume that the assumptions (1)-(6) are satisfied. Then the integral
equation (1) has a unique integrable solution x.
Proof Let us define the operator G by

(Gx)(t) = g(t) +

∫ t

0

k(t, s)f(s, x(s))ds,
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then the integral equation (1) can be written as

x(t) = (Gx)(t).

From assumption (4) we have

|f(t, x)− f(t, y) ≤ c |x− y| ⇒ |f(t, x)− f(t, 0)| ≤ c |x|
which proves that

|f(t, x)| ≤ |a(t)| + c |x|
Now, let x be integrable function, then

||Gx|| ≤ ||g|| +

∫ 1

0

∫ t

0

|k(t, s) |f(s, x(s))|dsdt

this implies that

||Gx|| ≤ ||g|| +

∫ 1

0

∫ t

0

|k(t, s)| [a(s) + c |x(s)|] dsdt

||Gx|| ≤ ||g|| +

∫ 1

0

[a(s) + c |x(s)|]
∫ 1

s

|k(t, s)|dtds

||Gx|| ≤ ||g|| + M [||a|| + c ||x||]
which proves that G : L1 → L1.
Now from our assumptions we have

∥Gx−Gy∥ ≤
∫ 1

0

∫ t

0

|k(t, s)| |f(s, x(s))− f(s, y(s))| dsdt.

This implies that

∥Gx−Gy∥ ≤ c

∫ 1

0

∫ t

0

|k(t, s)| |x(s)− y(s)| dsdt

and

∥Gx−Gy∥ ≤ c

∫ 1

0

|x(s)− y(s)|
∫ 1

s

|k(t, s)| dtds.

Therefore

∥Gx−Gy∥ ≤ c M ∥x− y∥
whenever x, y are integrable. Then from Assumption (6) and the Banach Contrac-
tion Mapping Principle we deduce that G has unique fixed point x and therefore
the integral equation (1) has a unique integrable solution x.

Now we present some existence theorems for the solution to the set-valued inte-
gral equation

x(t) ∈ g(t) +

∫ t

0

k(t, s) F (s, x(s))ds. (2)

Consider the following assumptions

(1) g : I → R is integrable on I,
(2) k(., .) is measurable in the two variable and there exists M > 0 such

that such that
∫ 1

0
|k(t, s)| dt ≤ M, s ∈ I,

(3) F is Caratheodory-c−Lipschitz set-valued function, with compact, convex
values,



JFCA-2011/1 MEASURABLE-LIPSCHITZ SELECTIONS 7

(4) F (t, 0) is integrable in the sense that (∀a ∈ F (t, 0) implies that a is inte-
grable) and there exists an integrable function m , such that |F (t, 0)| ≤
m(t),

(5) M c < 1.

Theorem 5 If the assumptions (1)-(5) are satisfied, then set-valued integral equa-
tion (2) admits an integrable solution x.
Proof From Theorem 1 and assumption (3) we deduce that the set-valued func-
tion F admits a measurable-Lipschitz selection f and assumption (4) implies that
f(t, 0) is integrable. Applying Theorem 4 we deduce that the integral equation (1)

x(t) = g(t) +

∫ t

0

k(t, s) f(t, x(s))ds

has a unique integrable solution x and hence the set-valued integral equation (2)
admits an integrable solution in x.
Using Theorems 2 or 3, the result of Theorem 5 can be obtained if we replace
condition (3), in Theorem 5, by one of the following conditions:

(a) F is set-valued function with compact values and satisfies
(1) F (., x) is measurable in [0, 1] for every x ∈ R,
(2) F (t, .) is k−Lipschitz set-valued function for each fixed t ∈ I.

(b) F is set-valued function with closed values and satisfies
(1) F (., x) is measurable in [0, 1] for every x ∈ R,
(2) F (t, .) is k−Lipschitz set-valued function for each fixed t ∈ I.

5. Set-valued integral equation of fractional-order

Definition 6 The fractional-order integral of the function f ∈ L1[a, b] of order
β > 0 is defined by (see [12])

Iβa f(t) =

∫ t

a

(t − s)β − 1

Γ(β)
f(s) ds.

Consider now the set-valued integral equation of fractional-order

x(t) ∈ g(t) +

∫ t

0

(t− s)β−1

Γ(β)
F (s, x(s))ds, t ∈ [0, 1] and β ∈ (0, 1). (3)

Corollary 1 If the assumptions 1 and 3 - 5 of Theorem 5 are satisfied, then the
set-valued integral equation (3) has an integrable solution x.

Proof Let k(t, s) = (t−s)β−1

Γ(β) , then we find that it is measurable in the two

variable and∫ 1

s

K(t, s)dt =

∫ 1

s

(t− s)β−1

Γ(β)
dt =

(t− s)β

Γ(β)β
|1s =

(1− s)β

Γ(β + 1)
.

Therefore ∫ 1

s

|k(t, s)|dt =
(1− s)β

Γ(β + 1)
≤ 1

Γ(β + 1)
= M

and hence the assumptions of theorem 5 are satisfied and therefore the set-valued
integral equation (3) admits an integrable solution x.



8 A. M. A. EL-SAYED AND Y. KHOUNI JFCA-2012/2

References

[1] M. Ailalioubrahim, Neumann boundary-value problems for Differential inclusions in Banach

spaces, Electronic Journal of Differential Equations, Vol. 2010(2010), No. 104, pp. 1-5.
[2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.
[3] P. Bettiol and H. Frankowska, Regularity of solution maps of differential inclusions under

state constraints, Set-Valued Anal 15(2007),21-45.

[4] Y. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V.V. Obukhouskii, Mulivalued Map-
pings, Itogi Nauki i Tekhn. Ser. Mat. Anal., 19, VINITI, Moscow, 1982, 127-230.

[5] M. Broucke, and A. Arapostathis, Continuous interpolation of solutions of Lipschitz inclu-
sions, JMAA 258(201), 565-572.

[6] V. V. Chistyakov, A. Nowak, Regular Caratheodory-type selectors under no convexity as-
sumptions, Journal of Functional Analysis 225(2005) 247-262.
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