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MEASURABLE-LIPSCHITZ SELECTIONS AND SET-VALUED
INTEGRAL EQUATIONS OF FRACTIONAL ORDER

AHMED M. A. EL-SAYED AND YASSINE KHOUNI

ABSTRACT. In this paper we study the sufficient conditions for the existence
of measurable-Lipschitz selection for the set-valued function F :I X R — R
in the two cases when F' has convex or nonconvex values.

An application we prove the existence of an integrable solution for the set-
valued integral equation

t
z(t) € g(¢) +/0 k(t,s)F(s,z(s))ds, t € [0,1].

The set-valued integral equation of fractional-order

t (4 g)B—1
o) ea) + [

will be given as an example.

F(s,z(s))ds, t € [0,1] and B8 € (0,1)

1. INTRODUCTION

The existence of measurable-Lipschitz selection for the set valued map F' has
been studied by V.V. Chistyakov and A. Nowak in [3], when F' is set-valued map
from T' x X into Y, where (X is an interval (open, closed, half-closed, bounded or
not) on the real line R and (Y, d) be a metric space with metric d). P. Bettiol and
H. Frankowska (see [3]) assumed that F' is measurable-Lipschitz set-valued map
and proved some properties of the set of solutions to the differential inclusion

2 (t) € F(t,z(t)), x(t) € K.

Myelkebir Aitalioubrahim in [1] prove the existence theorem of Boundary value
problem of second order (with Neumann Boundary conditions), where F' is mea-
surable in the first argument and Lipschitz in the second argument.

Mireille Broucke and Ari Arapostathis in [5] show that given any finite set of tra-
jectories of a Lipschitz differential inclusion (where F' is measurable in the first
argument and Lipschitz in the second argument) there exists a continuous selection
from the set of its solutions that interpolates the given trajectories. In addition,
we present a result on lipschitzian selections.
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In the sequel we prove the existence of measurable-Lipschitz selection for the set-
valued function F : I x R — R in the two cases when F' has convex or nonconvex
values.

In section (4) as an application we prove the existence of an integrable solution x
for the set-valued integral equation

z(t) €g(t) + /0 k(t,s) F(s,z(s))ds, t €[0,1].

An example we study the existence of integrable solution x for the following set-
valued integral equation of fractional-order

to(p_ g)B1
#(t) € glt) + / (E—s) m)>

2. PRELIMINARIES

F(s,z(s))ds, t € [0,1] and 5 € (0,1).

In this section we establish our notations and we recall some basic definitions
and known results used in the proof of our results here.
Let L' = L'0,1] be the class of equivalent integrable function on the interval
I =10, 1] with the usual norm

lz(t)] = / 12(s)| ds.

P(Y) denoted to the family of nonempty subsets of Y.

P, (Y) denoted to the family of nonempty closed subsets of Y.

P 5qa(Y) denoted to the family of nonempty closed, bounded subsets of Y.

Let (X, d) be a metric space and let A C X, x € X and d(z,A) = inf{d(a,z); a €
A}

Definition 1 For any A, B € P, q(X), the Hausdorff distance is defined by

H(A, B) = max {sup d(a, B), supd(b, A)} .
acA beB

Definition 2 Let (X,d) and (Y,p) be two metric spaces and let T : X —
P, (Y) be a multivalued mapping. Then T is called Lipschitz multivalued mapping
(c—Lipschitz) if there exists a constant ¢ > 0 such that for each z,y € X we
have

H(T(x),T(y)) < cd(z,y)

where H is the Hausdorff metric.

The constant c is called the Lipschitz constant of T'. In particular if ¢ < 1, then
T is called contraction multivalued mapping on X.

Definition 3 Let (7,X) be a measurable space and X be a topological space, a
multivalued function F :T — X is measurable if for each open set O in X the set

FH0) = {teT; F(t)ﬂO;é(/)}

is measurable (i.e. F~1(0) € ¥).

Definition 4 A Polish space is a separable completely metrizable topological space,
and a Suslin space is the image of a Polish space under a continuous mapping.
Remark: An example of Suslin space is a separable completely metrizable topo-
logical space.
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Theorem (Yankov-Von Neumann selection theorem)
If (Q,3, 1) complete measure space, X is Souslin space and

F:Q— P(X)

is multifunction, such that
Gr(F) e X x f(X)

(where B(X) denote the Borel o—field on X). Then F admits a measurable selec-
tion.

3. MEASURABLE-LIPSCHITZ SELECTIONS

In this section we give some various sufficient conditions for the existence of
measurable-Lipschitz selection of the set-valued function F' in the two cases when
F has convex and nonconvex values.

Definition 5 We say that F is measurable-Lipschitz if F(.,x) is measurable for
all x € X and F(t,.) is Lipschitz for all t €T .

For the compact convex set-valued functions we have the following selection theo-
rem.
Theorem 1 Let F:I x R — P(R) be a nonempty compact convex set-valued
function satisfies the following conditions:
(i) F(.,z) is measurable in I for every x € R,
(ii) F'(t,.) is c—Lipschitz set-valued function for each fixed ¢ € I,
(i) F(t,0) is integrable in the sense that (Va € F(¢,0) implies that a is inte-
grable) and there exists an integrable function m , such that |F(¢,0)] <
m(t).
Then there exists a selection f of F' satisfies the following conditions:

(1) f(.,z) is measurable for every z € R,
(2) f(t,.) is c—Lipschitz function,
(3) f(t,0) is integrable function.

Proof By Corollary [7. Co. 2] we have F(t,.) has c—Lipschitz selection v(.).
Now we define the set of all c¢—Lipschitz selections of the function F(t,.) by the
set valued function

G(t) ={ve C(R,R) : vis Lipschitz selection of F(t,.)}.

Now we prove that G has a measurable selection.
Let a: I — C(R, R) defined by

H(F(t,z), F(t,y))
|z —yl

from the definition of o we have a is measurable, because a can be written as

a(t):sup{ ,JU,yGRvﬂ??ﬁy}

oft) =sup{e(t,z,y), z,y € R, © #y}
H(F(t,x)

such that p(t, z,y) = ﬁ(w)), thus ¢ is measurable in ¢ and by the continuity

of ¢ in (z,y), we have

a(t) =sup{p(t,z,y), z,y € R and rational, x # y}



4 A. M. A. EL-SAYED AND Y. KHOUNI JFCA-2012/2

hence « is measurable.
Let 5: C(R,R) — R|J{+o0} defined as follows

B(v) =Sup{|v($>_v(y)|, z,y € R, w#y}

[z =y
for each z,y € R, x # y, we have the function
|(v(z) = v(y)|
|z =y
is continuous in (v, z,y). Therefore by the continuity of this function in (z,y), we
can write 8 by

B(v) = sup {

therefore the function

(v,z,y) —

M, x,y € R and rational, x # y}

|z =yl
[(v(@) —v()]

|z =yl
is continuous and hence lower semicontinuous.
We define also T'(t,u) = sup {d(u(z), F(t,z)), = € R},
then the function (¢,u,z) — d(u(x), F(t,z)) is measurable in ¢ and continuous in
u and x.
Thus, for each fixed z € R it is ¥ x B(C(X,Y))—measurable.
We have T'(t,u) = sup{d(u(z), F(t,x)), = is rational} by virtue of the conti-
nuity in x. Consequently, I' is product-measurable. Note that for each fixed
t € I, T'(t,.) is lower semicontinuous, being the supremum of continuous func-
tions u — d(u(z), F(t,z)), € R. Now we set v(¢,v) = sup{I'(¢,v), B(v) — a(t)}
hence 7 is product measurable and lower semicontinuous in v.
We have

Gr(G) ={(t,v) € I x C(R,R) : ~(t,v) <0} =77"(] = 00,0])

V=

hence

Gr(G) e ¥ x B(C(R, R))
and therefore G satisfies the Yankov-Von Neumann selection theorem, hence there
exists a measurable selection g of G.
Now we define f(t,z) = g(t)(x), observe that f(t,z) € F(t,z), V(t,z) € I x R,
first f(t,.) is clearly Lipschitz (f(t,.) = g(¢)(.) is a Lipschitz selection of F'(t,.)),
let Uy C R be open set, we set

U={veC(R,R), v(z) e U,}.
We have U is open in C(R, R), so that
(fC,2) N U) ={tel: flt,x)eU,}={tel: gt)(x) €Uy}
={tel: git)eU}=9g ' (U)eX.

Hence ¢+ f(t,z) is measurable for each fixed z € R.

x
Now f(t,0) € F(t,0), Vt € I, then by assumption (iii) 3 m (integrable) such that
f(t,0) < m(t), which implies that f(¢,0) is integrable.

For the compact set-valued functions, as a result of [3], we have the following
theorem.
Theorem 2 Let F':I x R — P.,(R) be measurable-Lipschitz multifunction.
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Then F has a measurable-Lipschitz selection f: 1 X R — R.
Moreover, if there exists an integrable function m , such that |F(¢,0)] < m(t)
where

|F(t,z)| =sup{|v|, v(t) € F(t,x), t € I},

then f(¢,0) is integrable.
Proof (see [3]).

For the set-valued functions with closed valued ( not necessarily convex ) we have
the following selection theorem.

Theorem 3 Let F : I x R — Py(R) be a set-valued function satisfies the
following conditions:

(i) F(.,x) is measurable in I for every x € R.
(ii) F(t,.) is c—Lipschitz set-valued function for each fixed ¢ € I.
(i) F(¢,0) is integrable in the sense that (Va € F(¢,0) implies that a is inte-
grable) and there exists an integrable function m , such that |F(¢,0)] <
m(t).
Then there exists a selection f of F satisfies the following conditions:
(1) f(.,z) is measurable for every z € R.
(2) f(t,.) is c—Lipschitz function.
(3) f(t,0) is integrable.
Proof By Theorem [8, Th. 2] we have F(t,.) has k—Lipschitz selection v(.). Now
we define new set valued function

G(t) ={ve C(R,R): v is Lipschitz selection of F(t,.)}

Now by the same way as in Theorem 1 we can prove that there exist selection f of
F satisfies the conditions (1)-(3)

4. SET-VALUED INTEGRAL EQUATION

Consider the integral equation

o(t) = g(t) + / K(t,s) f(s,2(s))ds (1)

with the following assumptions

(1) g:I— R is integrable on I,

(2) k(.,.) is measurable in the two variable and there exists M > 0 such
that such that fol |k(t,s)| dt <M, sel.

) f(.,x) is measurable for each fixed z € R.

) f(t,.) is c—Lipschitz for each fixed t € I.

) f(£,0) = a(¢) is integrable.

) Mc<1.

Theorem 4 Assume that the assumptions (1)-(6) are satisfied. Then the integral

equation (1) has a unique integrable solution z.

Proof Let us define the operator G by

(3
(4
(5
(6

(Ga)(t) = g(t) + / K(t,5)f (s, 2(s))ds,
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then the integral equation (1) can be written as

a(t) = (Gz)(1).

From assumption (4) we have
[ftz) = flty) < cle—yl = [f{t,z) = f{,0)] < clzf
which proves that
|t z)] < la(@)] + ¢z
Now, let = be integrable function, then

1G]l < lloll + / / Ik(t, ) |f (s, 2(s)|dsdt

this implies that

G|l < gl + /O /0 |k(t;5)] [als) + clx(s)]] dsdt

|G|

IN

gl +/0 [a(s) + c|:c(s)|]/ \k(t, s)|dtds

G|l < llgll + M [llal] + ¢ [|=]
which proves that G : L' — L1.
Now from our assumptions we have

|Gz — Gy|| S/O /0 [kt ) |f(s,2(s)) = f(s,y(s))] dsd.

This implies that

1 t
IGz — Gyl < e / / k(t, )| |2(s) — y(s)]| dsdt
0 0
and
1 1
|Gz — Gyl < e / 2(s) — y(s)] / Ik(t, )| deds.
0 s
Therefore

|Gz =Gyl < ¢ M |z —y]

whenever x, y are integrable. Then from Assumption (6) and the Banach Contrac-
tion Mapping Principle we deduce that G has unique fixed point = and therefore
the integral equation (1) has a unique integrable solution x.

Now we present some existence theorems for the solution to the set-valued inte-
gral equation

¢
x(t) € g(t) + / k(t,s) F(s,z(s))ds. (2)
0
Consider the following assumptions
(1) g:I— R is integrable on I,
(2) k(.,.) is measurable in the two variable and there exists M > 0 such
that such that [, |k(t,s)| dt < M, s €I,

(3) F is Caratheodory-c—Lipschitz set-valued function, with compact, convex
values,
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(4) F(t,0) is integrable in the sense that (Va € F(¢,0) implies that a is inte-
grable) and there exists an integrable function m , such that |F(¢,0)] <
m(t),
(5) Mec <1
Theorem 5 If the assumptions (1)-(5) are satisfied, then set-valued integral equa-
tion (2) admits an integrable solution x.
Proof From Theorem 1 and assumption (3) we deduce that the set-valued func-
tion F' admits a measurable-Lipschitz selection f and assumption (4) implies that
f(t,0) is integrable. Applying Theorem 4 we deduce that the integral equation (1)

x(t) = g(t) + /0 k(t,s) f(t,z(s))ds

has a unique integrable solution z and hence the set-valued integral equation (2)
admits an integrable solution in =x.

Using Theorems 2 or 3, the result of Theorem 5 can be obtained if we replace
condition (3), in Theorem 5, by one of the following conditions:

(a) F is set-valued function with compact values and satisfies
(1) F(.,x) is measurable in [0, 1] for every = € R,
(2) F(t,.) is k—Lipschitz set-valued function for each fixed ¢ € I.
(b) F is set-valued function with closed values and satisfies
(1) F(.,x) is measurable in [0, 1] for every = € R,
(2) F(t,.)is k—Lipschitz set-valued function for each fixed t € I.

5. SET-VALUED INTEGRAL EQUATION OF FRACTIONAL-ORDER

Definition 6 The fractional-order integral of the function f € L'[a,b] of order
B > 0 is defined by (see [12])

gy = [ =S
R e O

Consider now the set-valued integral equation of fractional-order

z(t) €g(t) + /Ot (t— 5" F(s,z(s))ds, t €[0,1] and B € (0,1).  (3)

()

Corollary 1 If the assumptions 1 and 3 - 5 of Theorem 5 are satisfied, then the

set-valued integral equation (3) has an integrable solution x.

Proof Let k(t,s) = (t}s();)il, then we find that it is measurable in the two

variable and

1 s (s, (18
l K@$ﬁ*l e T T T TE

Therefore

!  (1—s)8 1
/S Ml = T3 7T < T

and hence the assumptions of theorem 5 are satisfied and therefore the set-valued
integral equation (3) admits an integrable solution z.
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