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THE EFFECT OF FRACTIONAL ORDER ON
SYNCHRONIZATION OF TWO FRACTIONAL ORDER

CHAOTIC AND HYPERCHAOTIC SYSTEMS

A. S. HEGAZI, E. AHMED, A. E. MATOUK

Abstract. This paper studies the synchronization of two commensurate frac-
tional order chaotic and hyperchaotic systems using nonlinear control tech-
nique. We discuss some stability conditions of three and four dimensional
fractional order systems. We apply these stability conditions to chaos and
hyperchaos synchronization. The effect of fractional order on synchronization
of fractional order chaotic and hyperchaotic systems is shown; chaos synchro-
nization of the commensurate fractional order Liu system is achieved, while
it is not achieved in its integer order counterparts using the same nonlinear
controllers. Furthermore, achieving chaos synchronization via nonlinear con-
trol of the novel hyperchaotic system is found just in the fractional order case
when using the same nonlinear control laws. Numerical simulations are used
to verify the theoretical analysis.

1. Introduction

Fractional calculus can be traced back three hundred years ago [1-2]. Recently,
the concept of fractional derivative has been widely investigated [3-5] since it has
tremendous potential to change the way we see, model, and control the nature
around us. Denying fractional derivatives is like saying that zero, fractional, or
irrational numbers do not exist. It has been found that many systems in interdis-
ciplinary fields can be elegantly modeled with the help of the fractional derivatives
such as viscoelastic systems [6], dielectric polarization [7], electrode-electrolyte po-
larization [8], electromagnetic waves [9], quantum evolution of complex systems
[10], nonlinear oscillation of earthquakes [11], diffusion waves [12], electromagnetism
[13], and mechanics [14]. Furthermore, fractional calculus has been recently found
to have useful applications in many scientific fields such as general physics [1-2,
15], kinetic theories [16-17], engineering [1], statistical mechanics [18], quantum
mechanics [19], finance [20], mathematical biology [21-23] and social sciences [24-
25]. Meanwhile, the applications of chaos in physics and engineering have caught
much attention during the past two decades [26-30]. Indeed, chaotic behaviors have
recently been found in many fractional order chaotic systems [31-36]. Moreover,
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chaos synchronization is also one of the most important applications of chaos theory.
Chaos synchronization in integer and fractional order systems has received more
interest [26-30, 37-38] due to its potential applications to many fields of sciences es-
pecially secure communications [39]. Furthermore, a chaotic system has one positive
Lyapunov exponent and a hyperchaotic system is classified as a chaotic system with
more than one positive Lyapunov exponent. Thus, a hyperchaotic system shows
more complex behaviors and abundant dynamics than chaotic system. Recently,
some fractional order hyperchaotic systems have been appeared such as the frac-
tional order hyperchaotic system of Rossler [34], the fractional order hyperchaotic
system of Lorenz [40], the fractional order hyperchaotic system by Deng et al. [41],
the fractional order hyperchaotic system of Chen [42] and the Novel fractional or-
der hyperchaotic system [43]. Based on some stability conditions of fractional order
systems, we show the effect of fractional order on the synchronization of fractional
order chaotic and hyperchaotic systems. For this purpose, we give two examples
one is to synchronize the commensurate fractional order chaotic Liu system and
the other is to synchronize the commensurate novel fractional order hyperchaotic
system, while their integer order counterparts are not synchronized using the same
nonlinear controllers.

2. Preliminaries

The fractional order derivatives have several definitions. We use the Caputo
definition of fractional derivative [1, 44] which is called smooth fractional derivative
and is widely used in real applications:

0D
α
t g(t) =

{ ∫ t
0 (t−τ)m−α−1 dm

dtm g(τ)dτ

Γ(m−α) , m− 1 < α < m,
dm

dtm g(t), m = α,
(2.1)

where m is the least integer which is not less than α and Γ stands for Gamma
function. Here, we use the operator Dα, which is generally called “α-order Caputo
differential operator”, where Dα ≡ 0D

α
t .

Theorem 2.1 [45]. Consider the following commensurate linear autonomous frac-
tional order system:

DαX(t) = AX(t), X(0) = X0, (2.2)

with X(t) = (x1, ..., xn)T ∈ Rn, A ∈ Rn×n and α ∈ (0, 1). The autonomous
system (2.2) is:

(1) asymptotically stable if and only if |arg(λ)| > απ/2. Moreover, the compo-
nents of the state decay towards 0 like t−α.

(2) stable if and only if |arg(λ)| ≥ απ/2 for all eigenvalues λ. Here, λ represents
an eigenvalue of the matrix A.

The stability region of the linear fractional order system is shown in figure 1 (in
which J =

√−1).
In the following, we will discuss the stability of the commensurate nonlinear

autonomous fractional order system:

DαX(t) = f(X(t)), X(0) = X0. (2.3)
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The equilibrium solutions of system (2.3) are obtained by equating its right-hand
sides to zero.
Theorem 2.2 Let X∗ = (x∗1, · · · , x∗n) be an equilibrium point of system (2.3),
and J = ∂f

∂X is the Jacobian matrix at the equilibrium point X∗, then X∗ is locally
asymptotically stable if all the eigenvalues (λ1, ..., λn) of the Jacobian matrix J
satisfy the conditions:

|arg(λi)| > απ/2, (i = 1, · · · , n). (2.4)

Proof. Consider the n-dimensional commensurate nonlinear autonomous fractional
order system:

Dαx1(t) = f1(x1, ..., xn), . . . , Dαxn(t) = fn(x1, ..., xn), (2.5)

The initial values of system (2.5) are given as; x1(0) = x10, . . . , xn(0) = xn0.
If xi(t) = x∗i + δi(t), then

Dα(x∗i + δi) = fi(x∗1 + δ1, · · · , x∗n + δn), i = 1, · · · , n.

This implies that

Dαδi(t) = fi(x∗1 + δ1, ..., x∗n + δn),

Using the Taylor expansion and the fact that fi(x∗1, · · · , x∗n) = 0, then

Dαδi(t) ≈ ∂fi

∂x1
|X=X∗ δ1 + · · ·+ ∂fi

∂xn
|X=X∗ δn,

which reduces to the following system

Dαδ = Jδ, δ = (δ1, ..., δn)T , J(X∗) = (
∂fi

∂xj
)ij |X=X∗ , (2.6)

where J(X∗) satisfies the following relation:

B−1JB = C, C = diag(λ1, ... , λn),

where B is the eigenvector of J . System (2.6) has the initial values

δ1(0) = x1(0)− x∗1, · · · , δn(0) = xn(0)− x∗n.

Thus, system (2.6) becomes

Dαδ = (BCB−1)δ, Dα(B−1δ) = C(B−1δ),

hence

Dαξ = Cξ, ξ = B−1δ, ξ = (ξ1, ..., ξn)T ,

therefore

Dαξ1 = λ1ξ1, · · · , Dαξn = λnξn.

The solutions of the last equations are obtained by using Mittag-Leffler functions:

ξ1(t) =
∑∞

k=0
(λ1)

ktkα

Γ(kα+1) ξ1(0) = Eα(λ1t
α)ξ1(0),

...
ξn(t) =

∑∞
k=0

(λn)ktkα

Γ(kα+1) ξn(0) = Eα(λntα)ξn(0).
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Using the conditions (2.4), it follows that ξ1(t), · · · , ξn(t) are decreasing and
consequently δ1(t), · · · , δn(t) are decreasing. So, the equilibrium point X∗ is locally
asymptotically stable if the conditions (2.4) are satisfied.

Thus, the equilibrium point X∗ of the fractional order system (2.3) is as locally
asymptotically stable as its integer order form.

Figure 1. Stability region of linear fractional order system with order α.

2.1 Numerical simulation of fractional order differential systems
Throughout this paper, the simulations results are carried out using an efficient

method for solving fractional order differential equations that is; the predictor-
correctors scheme which has been investigated in [46-48], and represents a gener-
alization of the Adams-Bashforth-Moulton algorithm. To explain the method we
consider the following fractional order system:

Dαy(t) = g(t, y(t)), 0 ≤ t ≤ T, y(k)(0) = y
(k)
0 , k = 0, ..., m− 1, (2.7)

then the initial value problem (2.7) is equivalent to Volterra integral equation of
the second kind:

y(t) =
[α]−1∑

k=0

tk

k!
y
(k)
0 +

1
Γ(α)

∫ t

0

(t− ς)α−1g(ς, y(ς))dς. (2.8)

Set h = T/N, tn = nh, n = 0, 1, ..., N ∈ Z+. Then (2.8) can be discretized as
follows:

yh(tn+1) =
[α]−1∑

k=0

tkn+1

k!
y
(k)
0 +

hα

Γ(α + 2)
g(tn+1, y

p
h(tn+1)) +

hα

Γ(α + 2)

∑
ωj,n+1g(tj , yh(tj)),

where
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ωj,n+1 =





nα+1 − (n− α)(n + 1)α, j = 0,
(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, 1 ≤ j ≤ n,

1, j = n + 1,

yp
h(tn+1) =

[α]−1∑

k=0

tkn+1

k!
y
(k)
0 +

1
Γ(α)

n∑

j=0

ψj,n+1g(tj , yh(tj)),

ψj,n+1 =
hα

α
((n + 1− j)α − (n− j)α).

The error estimate is maxj=0, 1, ..., N |y(tj)− yh(tj)| = O(hp), in which p = min(2, 1+
α).

3. Systems description

The commensurate fractional order Liu system is given as follows [35]:

Dαx = a(y − x), Dαy = bx− kxz, Dαz = −cz + qx2, (3.1)

where α is the fractional order and α ∈ (0, 1]. The parameters a, c, k, q are all posi-
tive real parameters and b ∈ R. At α = 1, system (3.1) becomes the original integer
order Liu system which exhibits chaotic behaviors using the parameter values a =
10, b = 40, c = 2.5, q = 4 and k = 1 [49]. The equilibrium points of the fractional
order Liu system (3.1) are E0 = (0, 0, 0), E1 = (x̄, ȳ, z̄) = (

√
bc/qk,

√
bc/qk, b/k)

and E2 = (−x̄,− ȳ, z̄). Using the above-mentioned parameter values and fractional
order α = 0.9, system (3.1) shows chaotic behavior (see figure 2).

Now, we consider the commensurate novel fractional order hyperchaotic system
[43]:

Dαx = σ(y − x) + µyz, Dαy = ρx− dxz + y + w, Dαz = xy − ηz, Dαw = −νy,
(3.2)

where α ∈ (0, 1] and σ, η, ρ, d, µ, ν are positive real parameters. At α = 1,σ =
35, η = 4, ρ = 25, d = 5, µ = 35, ν = 100, system (3.2) exhibits hyperchaotic behav-
ior [50]. System (3.2) has only the equilibrium point E0 = (0, 0, 0, 0). Moreover,
system (3.2) shows hyperchaotic behavior using the above choice of the parameter
values and fractional order α = 0.97 (see figure 3).
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Figure 2: Chaotic attractor of the fractional order Liu system with commensurate
order α = 0.9 and parameter values a = 10, b = 40, c = 2.5, q = 4, k = 1.

Figure 3: Hyperchaotic attractor of the novel fractional order hyperchaotic system
with commensurate order α = 0.97 and σ = 35, η = 4, ρ = 25, d = 5, µ = 35 and
ν = 100.
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4. Some stability conditions of the fractional order systems

Consider the n-dimensional commensurate fractional order system

Dαx1(t) = f1(x1, ..., xn), ... , Dαxn(t) = fn(x1, ..., xn), (4.1)

where 0 < α ≤ 1. The point Ē = (x̄1, ..., x̄n) is defined as an equilibrium point of
(4.1). The characteristic equation of the equilibrium point Ē is given as:

P (λ) = λn + a1λ
n−1 + ... + an = 0, (4.2)

whose discriminant is given as follows:

D(P ) = (−1)n(n−1)/2R(P, P ′), (4.3)

where P ′ is the derivative of P, R(P,Q) is the determinant of the corresponding
Sylvester (n + l)⊗ (n + l) matrix and Q(λ) = λn + b1λ

l−1 + ... + bl.
At n = 3, the characteristic equation of the equilibrium solution Ē = (x̄1, x̄2, x̄3)

is given as

P (λ) = λ3 + a1λ
2 + a2λ + a3 = 0, (4.4)

and the discriminant D(P ) of P (λ) is defined as

D(P ) = 18a1a2a3 + (a1a2)2 − 4a3(a1)3 − 4(a2)3 − 27(a3)2. (4.5)

Thus, we have the following Proposition [36, 51]:

Proposition 4.1 In the case n = 3, if the conditions D(P ) < 0, a1 > 0, a2 >
0, a1a2 = a3 are satisfied, then the equilibrium point Ē of system (4.1) is not
locally asymptotically stable when α = 1. However, Ē is locally asymptotically
stable when 0 < α < 1.

At n = 4, the characteristic equation (4.2) is reduced to:

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (4.6)

and its discriminant is given by

D(P ) = −4a3
3a

3
1 + a2

2a
2
1a

2
3 + 18a3

3a2a1 − 6a2
1a

2
3a4 − 4a3

2a
2
1a4 − 80a3a

2
2a1a4 + 144a2

3a2a4

−192a3a
2
4a1 + 144a2a

2
1a

2
4 + 18a3a2a

3
1a4 − 27a4

3 − 4a3
2a

2
3 − 128a2

4a
2
2 − 27a4

1a
2
4

+256a3
4 + 16a4

2a4.
(4.7)

In this case, the equilibrium point Ē = (x̄1, x̄2, x̄3, x̄4) is locally asymptotically
stable if all the roots of equation (4.6) satisfy the following conditions [45]:

|arg(λi)| > απ/2, (i = 1, 2, 3, 4). (4.8)

Furthermore, a fractional Routh-Hurwitz condition for the stability of fractional
order hyperchaotic systems is introduced in the following Proposition [43]:

Proposition 4.2 The equilibrium point Ē = (x̄1, x̄2, x̄3, x̄4) is locally asymptoti-
cally stable, for all α ∈ (0, 1), if the following conditions are satisfied:

D(P ) < 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a2 = a1a4/a3 + a3/a1. (4.9)
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Remark 4.1 If α = 1, then the equilibrium point Ē in Proposition 4.2 is not locally
asymptotically stable.

5. Application to the synchronization of the commensurate
fractional order Liu system

In this section, we will show the effect of the fractional order 0 < α < 1 on
the synchronization of the drive and response commensurate fractional order Liu
systems using nonlinear control. The drive system is given as follows:

Dαx1 = a(y1 − x1), Dαy1 = bx1 − kx1z1, Dαz1 = −cz1 + qx2
1, (5.1)

and the response system is

Dαx2 = a(y2 − x2) + u1, Dαy2 = bx2 − kx2z2 + u2, Dαz2 = −cz2 + qx2
2 + u3,

(5.2)

where the controllers u1, u2 and u3 are nonlinear control functions.
By subtracting (5.1) from (5.2) and setting e1 = x2 − x1, e2 = y2 − y1, e3 =

z2 − z1, we get:

Dαe1 = a(e2 − e1) + u1, Dαe2 = be1 + kx1z1 − kx2z2 + u2, Dαe3 = −ce3 + q(x1 + x2)e1 + u3.
(5.3)

If we choose the control laws as follow:

u1 = −k1e1, u2 = k(x1e3 + z1e1 + e1e3 − x̄e3 − z̄e1)− k2e2, u3 = −q(x1 + x2)e1 + 2x̄qe1 − k3e3,
(5.4)

then the error dynamical system (5.3) has the following characteristic equation:

P (λ) = λ3 + (r1 + r2 + k2)λ2 + (r1r2 + r1k2 + r2k2)λ + r1r2k2 + 2abc = 0, (5.5)

where r1 = c + k3 > 0 and r2 = a + k1 > 0.

5.1 Numerical algorithms and approximate solutions
Based on the predictor-corrector scheme, systems (5.1) and (5.2) can be dis-

cretized as follow:




xn+1 = x0 + hα

Γ(α+2) (
∑n

j=0 γ1,j,n+1.a(yj − xj) + a(yp
n+1 − xp

n+1)),
yn+1 = y0 + hα

Γ(α+2) (
∑n

j=0 γ2,j,n+1.(bxj − kxjzj) + (bxp
n+1 − kxp

n+1z
p
n+1)),

zn+1 = z0 + hα

Γ(α+2) (
∑n

j=0 γ3,j,n+1.(−czj + qx2
j ) + (−czp

n+1 + q(xp
n+1)

2)),
x̂n+1 = x̂0 + hα

Γ(α+2) (
∑n

j=0 γ1,j,n+1.(a(ŷj − x̂j) + u1(xj , yj , zj , x̂j , ŷj , ẑj))
+a(ŷp

n+1 − x̂p
n+1) + u1(x

p
n+1, y

p
n+1, z

p
n+1, x̂

p
n+1, ŷ

p
n+1, ẑ

p
n+1)),

ŷn+1 = ŷ0 + hα

Γ(α+2) (
∑n

j=0 γ2,j,n+1.(bx̂j − kx̂j ẑj + u2(xj , yj , zj , x̂j , ŷj , ẑj))
+bx̂p

n+1 − kx̂p
n+1ẑ

p
n+1 + u2(x

p
n+1, y

p
n+1, z

p
n+1, x̂

p
n+1, ŷ

p
n+1, ẑ

p
n+1)),

ẑn+1 = ẑ0 + hα

Γ(α+2) (
∑n

j=0 γ3,j,n+1.(−cẑj + qx̂2
j + u3(xj , yj , zj , x̂j , ŷj , ẑj))

−cẑp
n+1 + q(x̂p

n+1)
2 + u3(x

p
n+1, y

p
n+1, z

p
n+1, x̂

p
n+1, ŷ

p
n+1, ẑ

p
n+1)),

(5.6)

in which
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



xp
n+1 = x0 + 1

Γ(α)

∑n
j=0 β1,j,n+1.a(yj − xj),

yp
n+1 = y0 + 1

Γ(α)

∑n
j=0 β2,j,n+1.(bxj − kxjzj),

zp
n+1 = z0 + 1

Γ(α)

∑n
j=0 β3,j,n+1.(−czj + qx2

j ),
x̂p

n+1 = x̂0 + 1
Γ(α)

∑n
j=0 β1,j,n+1.(a(ŷj − x̂j) + u1(xj , yj , zj , x̂j , ŷj , ẑj)),

ŷp
n+1 = ŷ0 + 1

Γ(α)

∑n
j=0 β2,j,n+1.(bx̂j − kx̂j ẑj + u2(xj , yj , zj , x̂j , ŷj , ẑj)),

ẑp
n+1 = ẑ0 + 1

Γ(α)

∑n
j=0 β3,j,n+1.(−cẑj + qx̂2

j + u3(xj , yj , zj , x̂j , ŷj , ẑj)),

and

γi,j,n+1 =





nα+1 − (n− α)(n + 1)α, j = 0,
(n− j + 2)α+1 − 2(n− j + 1)α+1 + (n− j)α+1, 1 ≤ j ≤ n,
1, j = n + 1,

βi,j,n+1 = hα

α ((n− j + 1)α − (n− j)α), 0 ≤ j ≤ n, i = 1, 2, 3,

where (x, y, z)T , (x̂, ŷ, ẑ)T represent the states of the drive and response systems
(5.1), (5.2) respectively and h = T

N , tn = nh, n = 0, 1, ..., N ∈ Z+.
Based on the above-mentioned discretization scheme, the drive and response sys-

tems (5.1), (5.2) are numerically integrated with the parameter values a = 10, b =
40, c = 2.5, q = 4, k = 1 and the control laws (5.4) using the feedback control gains
k1 = 2, k2 = 4.3783, k3 = 1. For this choice of the parameter values and feedback
control gains, it is easy to verify that the characteristic equation (5.5) satisfies the
conditions D(P ) < 0, a1 > 0, a2 > 0, a1a2 = a3 and a3 > 0 (where a1, a2, a3 are the
coefficients of the polynomial (5.5)). Consequently, it follows that the zero solution
of the error dynamical system (5.3) is locally asymptotically stable for α ∈ (0, 1),
however this zero solution is not locally asymptotically stable when α = 1 (see
Proposition 4.1). This implies that the synchronization is achieved between the
fractional order drive and response systems (5.1), (5.2) using the controllers (5.4),
but it is not achieved between their integer order counterparts when using the same
control laws (5.4). Figures 4a and 4b show the behavior of synchronization errors
between the drive and response systems (5.1), (5.2) with the controllers (5.4) and
the orders α = 0.9 and α = 1.0 respectively.

(a)
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(b)

Figure 4: Shows the synchronization errors between the drive and response sys-
tems (5.1) and (5.2) using the controllers (5.4) and feedback control gains k1 =
2, k2 = 4.3783, k3 = 1;(a) The synchronization errors converge to zero when using
fractional order α = 0.9; (b) The synchronization errors do not tend to zero when
using α = 1.

6. Application to the synchronization of the commensurate novel
fractional order hyperchaotic system

The master commensurate novel fractional order hyperchaotic system is given
as follows: 




Dαxm = σ(ym − xm) + µymzm,
Dαym = ρxm − dxmzm + ym + wm,
Dαzm = xmym − ηzm,
Dαwm = −νym,

(6.1)

and the slave system is described by:



Dαxs = σ(ys − xs) + µyszs + v1(t),
Dαys = ρxs − dxszs + ys + ws + v2(t),
Dαzs = xsys − ηzs + v3(t),
Dαws = −νys + v4(t),

(6.2)

where vi(t) (i = 1, 2, 3, 4) is the feedback control function. Define the error variables
as:

e1 = xs − xm, e2 = ys − ym, e3 = zs − zm, e4 = ws − wm. (6.3)

Thus, the error dynamical system can be obtained as follows:





Dαe1 = σ(e2 − e1) + µyszs − µymzm + v1(t),
Dαe2 = ρe1 + e2 + e4 − dxszs + dxmzm + v2(t),
Dαe3 = −ηe3 + xsys − xmym + v3(t),
Dαe4 = −νe2 + v4(t),

(6.4)
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Let the nonlinear feedback control functions be given as:

v1(t) = −µ(e2e3 + zme2 + yme3)− k1e1, v2(t) = d(e1e3 + zme1 + xme3)− k2e2,
v3(t) = −(e1e2 + yme1 + xme2 + k3e3), v4(t) = −k4e4,

(6.5)

where k1, k2, k3 and k4 are positive feedback control gains. Then, the error dy-
namical system (6.4) is reduced to:

Dαe1 = σ(e2 − e1)− k1e1, D
αe2 = ρe1 + e2 + e4 − k2e2, D

αe3 = −ηe3 − k3e3, Dαe4 = −νe2 − k4e4.
(6.6)

The characteristic equation of the error dynamical system (6.6) is given by:

P (λ) = λ4 + (−1 + k4 + k1 + σ + k3 + η + k2)λ3 + (k2k4 − σρ + k2k3 + σk2 + σk4 + ση
+σk3 + k1k4 + ηk4 + k3k4 + k1k2 − η + k1k3 + ηk1 + ηk2 + ν − σ − k3 − k4 − k1)λ2

+(k2k3k4 + ηk2k4 + σk2k3 + σηk2 + k1k3k4 + ηk1k4 + σk3k4 + σηk4 − σηρ− σρk3

+k1k2k3 + ηk1k2 − ηk4 − k3k4 − k1k3 − ηk1 − σk3 − ση − k1k4 + νk1 + k1k2k4 + σk2k4

−σρk4 − σk4 + σν + νk3 + νη)λ− k1k3k4 − ηk1k4 − σηρk4 + ηk1k2k4 − σk3k4

+k1k2k3k4 + νηk1 + νk1k3 − σηk4 − σρk3k4 + σηk2k4 + σνη + σνk3 + σk2k3k4 = 0.
(6.7)

6.1 Numerical algorithms and approximate solutions
In the following, the predictor-corrector scheme is used to integrate the fractional

order master and slave systems (6.1) and (6.2) numerically under the control laws
(6.5). Set h = T

N , tn = nh, n = 0, 1, ..., N ∈ Z+, let (x, y, z, w)T and (x̃, ỹ, z̃, w̃)T

refer to (xm, ym, zm, wm)T and (xs, ys, zs, ws)T , respectively. The master and slave
systems (6.1), (6.2) can be discretized as follow:





xn+1 = x0 + hα

Γ(α+2) (
∑n

j=0 γ′1,j,n+1.(σ(yj − xj) + µyjzj) + σ(yp
n+1 − xp

n+1) + µyp
n+1z

p
n+1),

yn+1 = y0 + hα

Γ(α+2) (
∑n

j=0 γ′2,j,n+1.(ρxj − dxjzj + yj + wj) + (ρxp
n+1 − dxp

n+1z
p
n+1 + yp

n+1 + wp
n+1)),

zn+1 = z0 + hα

Γ(α+2) (
∑n

j=0 γ′3,j,n+1.(xjyj − ηzj) + (xp
n+1y

p
n+1 − ηzp

n+1)),
wn+1 = w0 + hα

Γ(α+2) (
∑n

j=0 γ′4,j,n+1.(−νyj) + (−νyp
n+1)),

x̃n+1 = x̃0 + hα

Γ(α+2) (
∑n

j=0 γ′1,j,n+1.(σ(ỹj − x̃j) + µỹj z̃j + v1(xj , yj , zj , x̃j , ỹj , z̃j))
+σ(ỹp

n+1 − x̃p
n+1) + µỹp

n+1z̃
p
n+1 + v1(x

p
n+1, y

p
n+1, z

p
n+1, x̃

p
n+1, ỹ

p
n+1, z̃

p
n+1)),

ỹn+1 = ỹ0 + hα

Γ(α+2) (
∑n

j=0 γ′2,j,n+1.(ρx̃j − dx̃j z̃j + ỹj + w̃j + v2(xj , yj , zj , x̃j , ỹj , z̃j))
+ρx̃p

n+1 − dx̃p
n+1z̃

p
n+1 + ỹp

n+1 + w̃p
n+1 + v2(x

p
n+1, y

p
n+1, z

p
n+1, x̃

p
n+1, ỹ

p
n+1, z̃

p
n+1)),

z̃n+1 = z̃0 + hα

Γ(α+2) (
∑n

j=0 γ′3,j,n+1.(x̃j ỹj − ηz̃j + v3(xj , yj , zj , x̃j , ỹj , z̃j))
+x̃p

n+1ỹ
p
n+1 − ηz̃p

n+1 + v3(x
p
n+1, y

p
n+1, z

p
n+1, x̃

p
n+1, ỹ

p
n+1, z̃

p
n+1)),

w̃n+1 = w̃0 + hα

Γ(α+2) (
∑n

j=0 γ′4,j,n+1.(−νỹj + v4(xj , yj , zj , x̃j , ỹj , z̃j))
−νỹp

n+1 + v4(x
p
n+1, y

p
n+1, z

p
n+1, x̃

p
n+1, ỹ

p
n+1, z̃

p
n+1)),

where
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



xp
n+1 = x0 + 1

Γ(α)

∑n
j=0 β′1,j,n+1.(σ(yj − xj) + µyjzj),

yp
n+1 = y0 + 1

Γ(α)

∑n
j=0 β′2,j,n+1.(ρxj − dxjzj + yj + wj),

zp
n+1 = z0 + 1

Γ(α)

∑n
j=0 β′3,j,n+1.(xjyj − ηzj),

wp
n+1 = w0 + 1

Γ(α)

∑n
j=0 β′4,j,n+1.(−νyj),

x̃p
n+1 = x̃0 + 1

Γ(α)

∑n
j=0 β′1,j,n+1.(σ(ỹj − x̃j) + µỹj z̃j + v1(xj , yj , zj , x̃j , ỹj , z̃j)),

ỹp
n+1 = ỹ0 + 1

Γ(α)

∑n
j=0 β′2,j,n+1.(ρx̃j − dx̃j z̃j + ỹj + w̃j + v2(xj , yj , zj , x̃j , ỹj , z̃j)),

z̃p
n+1 = z̃0 + 1

Γ(α)

∑n
j=0 β′3,j,n+1.(x̃j ỹj − ηz̃j + v3(xj , yj , zj , x̃j , ỹj , z̃j)),

w̃p
n+1 = w̃0 + 1

Γ(α)

∑n
j=0 β′4,j,n+1.(−νỹj + v4(xj , yj , zj , x̃j , ỹj , z̃j)),

and

γ′i,j,n+1 =





nα+1 − (n− α)(n + 1)α, j = 0,
(n− j + 2)α+1 − 2(n− j + 1)α+1 + (n− j)α+1, 1 ≤ j ≤ n,
1, j = n + 1,

β′i,j,n+1 = hα

α ((n− j + 1)α − (n− j)α), 0 ≤ j ≤ n, i = 1, 2, 3, 4.

Using the control laws (6.5) with feedback control gains k1 = 838.886, k2 =
1, k3 = 1, k4 = 1 and the parameter values, σ = 35,η = 4,ρ = 25,d = 5,µ = 35,ν =
100, it is easy to verify that D(P ) < 0,a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a2 =
a1a4/a3 +a3/a1. Therefore, Proposition 4.2 implies that the zero equilibrium point
of (6.6) is locally asymptotically stable, and the synchronization errors approach
zero for the fractional orders 0 < α < 1. However, the zero equilibrium point of
(6.6) is not locally asymptotically stable when α = 1 (see Remark 4.1). Thus, using
the above-mentioned parameter values and feedback control gains, the fractional
order master and slave systems (6.1) and (6.2) are synchronized, but their integer
order counterparts are not synchronized (see figure 5:a-b).

(a)
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(b)

Figure 5: Synchronization errors between the master and slave systems (6.1) and
(6.2) with the controllers (6.5) and feedback control gains k1 = 838.886, k2 =
1, k3 = 1, k4 = 1; (a) The synchronization errors tend to zero when using fractional
order α = 0.97; (b) The synchronization errors do not tend to zero when using
α = 1.

7. Conclusion

Some stability conditions of the fractional order systems have been used to
achieve synchronization of chaotic and hyperchaotic fractional order systems. Two
examples have been given to achieve chaos synchronization of the commensurate
fractional order Liu and hyperchaos synchronization of the commensurate novel
fractional order hyperchaotic systems using nonlinear feedback control technique.
However, their integer order counterparts have not been synchronized using the
same nonlinear control laws. These results show the effect of fractional order on
synchronization of chaotic and hyperchaotic systems. This technique is generic
and can successfully be applied to other fractional order chaotic and hyperchaotic
systems. Numerical simulations have been used to show the effectiveness of the
proposed synchronization techniques.
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