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ABSTRACT 

Implementing green chemistry concepts in all areas of science for eco-friendly and sustainable scientific 

research is necessary. A promising area in which green chemistry principles may have a substantial impact on 

the quality and efficiency of natural products is the extraction of mycotoxins. These compounds are poisonous 

to humans and are frequently found in food and feed. In this literature review, we present the traditional 

extraction methods of mycotoxins during food product analysis using toxic organic solvents and updated 

technical information about green solvents such as deep-eutectic solvents, supercritical CO2, and pressurized 

hot water. Within this review, the extraction of various types of mycotoxins has been discussed, with an 

emphasis on the factors that influence their extraction, such as the molar ratio of the extracting solvent, the 

extraction temperature, co-solvents, the extraction duration, and the recovery percentage.  

1. Introduction 

    Mycotoxins are a type of naturally occurring toxic 

secondary metabolites that can be harmful to human health 

and are known to cause cancer, hepatotoxicity, 

immunosuppression, pneumonia, asthma, and exhaustion 

[1–3]. They also have various effects on the processes of 

metabolism within the body, such as inhibiting protein 

synthesis, disrupting hormonal balance, causing a variety 

of reproductive system diseases, and generally harming 

the health of the host [1,4]. Mycotoxins are produced by a 

wide variety of fungus species like Aspergillus, 

Penicillium, Trichoderma, and Fusarium when 

environmental conditions are ideal for fungal growth [5]. 

These compounds can be found in a variety of foods and 

feeds, including cereals, legumes, seeds, and milk, as well 

as vegetables and fruits [6,7]. High temperatures, moisture 

levels, poor hygienic conditions, and contamination during 

storage and transit all enhance mycotoxin growth in these 

products [8]. Several natural mycotoxins such as 

mailto:mabdelfattah@science.helwan.edu.eg
https://abas.journals.ekb.eg/


Mohamed S. Abdelfattah/ Advances in Basic and Applied Sciences  1 (2023) 21-32 

 

22 
 

aflatoxins, zearalenone, ochratoxin A, alternariol, and 

patulin are reported in literature (Fig. 1) [9]. Aflatoxins are 

characterized by a difuranocoumarin skeleton and are 

formed by several fungal strains like Aspergillus 

parasiticus and Aspergillus flavus via the polyketide 

biosynthetic pathway. The most famous aflatoxins are 

aflatoxins B1, B2, G1, and G2, which can be differentiated 

by observing their UV fluorescence (green or blue) and 

comparing their Rf values on thin-layer chromatography 

[10,11]. Aflatoxin M is also a hydroxylated derivative of 

aflatoxin B1, which is commonly found in milk and milk-

based infant formula [12]. On the other hand, zearalenone, 

which is a nonsteroidal estrogenic mycotoxin, is produced 

by various Fusarium species like Fusarium graminearum, 

F. culmorum, F. equiseti, and F. crookwellense and 

transformed into α-zearalenol and β-zearalenol in animals 

[13]. These compounds can be detected under UV light 

and by HPLC/MS/MS [14,15]. Ochratoxin A is a 

dihydrocoumarins family pentaketide derivative coupled 

to -phenylalanine generated by several Aspergillus and 

Penicillium species. It has been identified in food 

products, most notably contaminated grain, coffee, dried 

grapes, and breast milk [16]. The UV-visible, 

fluorescence, NMR, and MS detection methods are used 

to characterize ochratoxin A [17]. Alternariol and 

alternariol monomethyl ether are a benzochromenone-type 

mycotoxin produced by Alternaria fungi and found in a 

variety of cereals as well as diseased fruits such as 

mandarins, oranges, lemons, melons, apples, and berries 

[18]. Patulin is a harmful unsaturated heterocyclic lactone 

derivative that is biosynthesized by a variety of toxigenic 

Aspergillus species via a polyketide pathway. Penicillium 

expansum is the principal contributor to patulin production 

in rotting apples and has been identified in commercial 

apple juice and other apple products [19]. To identify and 

quantify patulin, liquid chromatography (LC) with a UV 

detector and LC/MS/MS was used [20].  

     The conventional extraction methods applied to extract 

the above-mentioned mycotoxins from food samples are 

carried out using toxic organic solvents that are not safe 

for both environment and human health [21]. This review 

presents a brief discussion about various type of 

mycotoxins and the current understanding of alternative 

green solvents (i.e. deep-eutectic solvents, supercritical 

CO2, and pressurized hot water) used in laboratories, with 

an emphasis on extraction parameters, advanced protocols, 

and the development of safe methods. 

Methodology of the literature review 

    In this review, the author explored the relevant literature 

using multiple online databases, including SciFinder, 

Scopus, PubMed, Google Scholar, Web of Science, and 

Science Direct. He looked for ''green solvents, 

mycotoxins, deep-eutectic solvents, supercritical CO2 

extraction, and pressurized hot water. Reports released in 

the past 10 years were more focused than other research 

works, and the published papers with only abstracts, 

unfinished works, conference proceedings, and 

publications in languages other than English were 

disregarded. 

Conventional extraction methods for mycotoxins  

     Different  traditional methods  for extraction of 

bioactive   secondary   metabolites  [22–27],  including 

mycotoxins from different nutrient materials[28,29], using 

organic solvent extraction (OSE) have been reported. In 

the OSE extraction methods analytes are separated 

according to their relative solubility in two immiscible 

liquids. Solvent extraction typically employs methanol, 

acetonitrile, chloroform, ethyl acetate, isooctane, ethanol, 

and dichloromethane [30]. Patterson and Roberts' multi-

mycotoxin extraction method is the most extensively 

utilized solvent extraction method for aflatoxins and used 

acetonitrile, isooctane, potassium chloride, 

dichloromethane, and sulfuric acid in this approach 

[31,32]. It has gained popularity because it selectively 

extracts many mycotoxins in a single extraction. In order 

to use SE, however, considerable amounts of organic 

solvents need to be consumed, which might be harmful to 

the environment. In addition, solvent extraction is a time-

consuming operation that can last up to 24 hours or more. 

In addition, high-purity solvents are expensive, and there 

are sometimes other expenses associated with properly 

disposing of wastes after usage [29]. In addition to liquid-

liquid extraction, solid-phase extraction (SPE) is 

frequently employed for aflatoxins [33]. Analytes are 

separated using a liquid mobile phase and a solid 

stationary phase in a cartridge. Ethyl (C2), octyl (C8), 

octadecyl (C18), cyanopropyl (CN), aminopropyl (NH), 

and an ion exchange phase are all examples of materials 

employed at the solid adsorbent phase. Although SPE 

techniques are very easy, have higher specificity, and need 

little amounts of solvent, they are also quite expensive, and 

antibodies for some mycotoxins and products are not 

accessible. Alternariol and alternariol monomethyl ether 

had been extracted with acetonitrile or ethyl acetate using 

solid-liquid extraction method, followed by QuEChERS 

and dilution-direct injection [34]. Patulin was also 

extracted from various fruit juices (i.e., apples, pineapples, 

grapes, pears, etc,) using ethyl acetate as a solvent [35,36]. 

Solid-phase extraction (SPE) is another extraction method, 

for patulin, in which the juice sample is mixed with a 

solvent (such as acetonitrile) and eluted through a solid 

phase. This technique was found to be suitable for 

isolating, concentrating, and purifying patulin [37].  

Deep eutectic solvents 

    Deep eutectic solvents (DESs) are a new class of green 

solvents that have gotten a lot of attention from scientists 

in recent decades [38–41]. These DESs can be created 

simply by combining two eco-friendly components, 

hydrogen bond donors (HBDs) and acceptors (HBAs), 

which are capable of forming a eutectic mixture with a low 

melting point. Choline chloride (ChCl) is a common 

material used in the manufacture of these DES and is 

characterized by its low cost, biodegradability, and 

absence of toxicity [42]. It can rapidly form a DES when 

combined with safe hydrogen bond donors such as urea, 

carboxylic acids (e.g., oxalic, citric, succinic, or amino 

acids), or polyalcohol like glycerol and carbohydrates 
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[43]. The most common used deep eutectic solvents 

(DESs) are shown in Fig. 2. 

 

 

 

 

 

Fig. 1: Chemical structures of different mycotoxins 

Fig. 2: Most common hydrogen bond acceptors and hydrogen bond donors used for the preparation of DESs 
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DESs have applications in the extraction of bioactive 

molecules such as phenolic compounds, alkaloids, 

terpenoids, carbohydrates, fatty acids, natural pigments, 

tannins, and nutraceutical components [44,45]. He et al. 

have been extrcted aflatoxins B1, B2, G1, and G2 from 

different oil samples (i.e., corn oil, soybean oil, peanut oil, 

and rapeseed oil) using a series of DESs consisting of 

choline chloride as a hydrogen bond-acceptor and six 

acidic hydrogen-bond-donor (i.e., oxalic acid, lactic acid, 

malonic acid, levulinic acid, trifluoroacetic acid, and 

acetic acids) in different molar ratios (Table 1). The 

extraction efficiency of aflatoxins depended on the type of 

hydrogen-bond donor, extraction time, extraction 

temperature, and volume of DESs. The authors reported 

the best extraction yield of each aflatoxin was reached 

when malonic acid was used as HBD. The optimal 

extraction was obtained using ultrasonic for 50 minutes at 

a temperature of 55°C and ChCl/malonic acid molar ratio 

of 1:2. The technique exhibited better extraction efficiency 

than the usual derivatization technique with trifluoroacetic 

acid. In 2020, the same aflatoxins B1, B2, G1, and G2 

were extracted and determined in ten rice samples using 

DESs without any derivatization [46]. Six DESs based on 

a combination of three hydrogen bond-acceptors (i.e., 

tetramethylammonium chloride, choline chloride, and 

betaine) and malonic acid as hydrogen-bond-donor were 

investigated. The maximum recovery (78.93-113.64%) 

were obtained with tetramethylammonium chloride/ 

malonic acid/water (1:2:1 mole ratio) with a liquid/solid 

ratio of 3 mL/g. The extraction was assisted with vortex 

and ultrasonic for 50 minutes at 55°C. Wu et al. evaluated 

the potential of deep eutectic solvent-based matrix solid-

phase dispersion (DES-MSPD) to extract aflatoxins B1, 

B2, G1, and G2 from millet, peanut, and heepseed [47]. 

The authors used tetrabutylammonium chloride (TBAC) 

as a hydrogen bond-acceptor and hexyl alcohol, dodecyl 

alcohol as well as hexanoic acid as hydrogen-bond-donor. 

Tetrabutylammonium chloride (TBAC)/hexyl alcohol 

DES showed the best recoveries for the target aflatoxins 

B1, B2, G1, and G2 with recoveries 97.87% ~ 98.07%. 

Additionally, they used silica gel (Al2O3) and diatomite as 

dispersants in their MSPD process. They found that silica 

gel was the best dispersant for the extraction of aflatoxins 

from the millet sample, whereas the diatomite was the top 

for the peanut and hempseed specimens.   

In 2019, patulin was extracted from different 

natural juices (i.e., apple, orange, peach, apricot,.etc) using 

alcohol-based deep eutectic solvents with ultrasound-

assisted emulsification liquid-phase microextraction 

(ELPME) [37] (Table 1). The technique depended on 

forming a complex between patulin and Mg(II) in the 

presence of tris buffer.  The authors were successfully 

extracted the formed complex using seven deep eutectic 

solvents. The extraction efficiency was enhanced using 

500 μL of TBACl/2,3-butanediol, 75 μmol L−1 of Mg(II) 

as a complexing agent at pH 8.0, and assistance of 

ultrasound for 12 minutes. The best recovery percentage 

from different juices (90.2% to 106.9%) was obtained 

using tetrabutylammonium chloride (TBACl) and 2,3-

butanediol in the molar ratio 1:2. Ochratoxin A was 

extracted from four cereal-based products (i.e., wheat, 

bread crumbs, biscuits, and bran) using two eutectic 

mixtures of choline chloride/glycerol (1:2) and choline 

chloride/urea (1:2) combined with water [48]. The best 

conditions for the extraction were found after 60 min of 

extraction with choline chloride/urea (1:2) and 40% (w/w) 

of water at room temperature. In these conditions, the 

mean recoveries of ochratoxin A from durum wheat, 

breadcrumbs, biscuits, and bread were 70%, 88%, 75%, 

and 42%, respectively. The authors found that increasing 

the extraction temperature to 40°C with sonication didn’t 

increase the recovery percentages. 

Table 1: Application of DESs on the extraction of 

mycotoxins from some food products 

Extraction 

solvent  

Molar 

ratio 

Type of 

mycotoxin 

Food 

products 

Extract

ion 

method
a 

Recov

ery 

(%) 

Ref. 

Choline 

chloride/ 

malonic 

acid 

1:2 Aflatoxi
ns B1, 

B2, G1, 

and G2 

Corn 
oil, 

soybea

n oil, 
peanut 

oil, and 

rapesee

d oil 

UA/55

°C 

72.1–

113.5 

[46] 

Tetramethy

lammoniu
m 

chloride/m

alonic acid 

1:2 Aflatoxi

ns B1, 
B2, G1, 

and G2 

Rice 

sample

s 

Vorte

x-
UA/55

°C 

78.9–

113.6 

[46] 

Tetrabutyla
mmonium 

chloride 
(TBAC)/he

xyl alcohol 

1:1 Aflatoxi
ns B1, 

B2, G1, 

and G2 

Millet, 
peanut, 

and 
heepse

ed 

MSPD 93.7- 

97.9 

[46] 

Tetrabutyla

mmonium 
chloride/2,

3-

butanediol 

1:2 Patulin Apple 

juice, 
orange 

juice, 

peach 
juice, 

apricot 

juice, 
grape 

juice, 

kiwi 

juice, 

cherry 

juice 
and 

mango 

juice 

UA-

ELPM
E/ 

room 

tempe

rature 

90.2-

106.9 

[37] 

Choline 

chloride/ 

urea   

1:2 Ochrato

xin A 

Wheat, 

breadcr

umbs, 
biscuits 

and 

bran 

Shaki

ng/ 

room 
tempe

rature 

7.00-

89.0 
[48] 

 

a MSPD, matrix solid phase dispersion; UA, ultrasound-

assisted; UA-ELPME, ultrasound-assisted emulsification 

liquid phase microextraction. 
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 Supercritical CO2 as a green solvent  

    Supercritical CO2 extraction is a fascinating approach 

that employs carbon dioxide (CO2) as a non-toxic solvent, 

which is produced as a byproduct of several industrial 

processes and is recoverable at the end of the extraction 

methods [49–51]. The basic principle of this technology is 

achieving a homogenous phase after the evaporation of the 

vapour phase and the separation of liquid beyond the 

critical point. There are two critical points in this 

technology: critical temperature and critical pressure. 

Critical temperature is the temperature at which a gas 

cannot become liquid as long as there is no extra pressure; 

and, critical pressure is the minimum amount of pressure 

needed to liquefy a gas at its critical temperature. This 

supercritical phase facilitates the transformation of the 

fluid into a supersolvent, thereby increasing the 

extraction's efficacy [52,53]. Supercritical CO2 extraction 

has several advantages over traditional solvent extraction 

methods, such as high extraction efficiency due to its great 

diffusivity, high density, which vary with temperature, as 

well as its low viscosity, which make it ideal for the quick, 

selective extraction and fractionation of compounds 

[54,55]. Moreover, high-quality extracts can be easily 

precipitated after a reduction in pressure without the use of 

solvents, as a result of the limited thermal degradation, 

short extraction periods, and high selectivity [56,57]. A 

number of procedures have been recently created owing to 

these benefits, such as the extraction of lipids from olive 

mill wastewater [58] and microalgae [59], and seed oils 

from pomegranate and alfalfa [60]. In case of mycotoxins 

(Table 2), Zougagh and Ríos extracted several 

macrocyclic lactone mycotoxins (i.e., zearalenone, - and 

-zearalenols) from maize flour by supercritical CO2 

extraction [61]. The authors carried out the extraction at 

different temperatures (50, 60, 70, and 80ºC) at constant 

pressure (25 MPa). The highest recovery percent (90–

92%) was achieved at a flow-rate of 1 ml/min CO2 at 80ºC, 

for 10 minutes of static extraction followed by 30 minutes 

of the dynamic model. The authors used 9.1% of methanol 

as a co-solvent to get the highest extraction yield. In this 

technique, a Florisil cartridge coupled to the extractor 

vessel was used to clean-up the analytes and detected the 

compounds by electrochemical and HPLC systems. The 

same author with his co-workers developed and validated 

a computerized program to gain automatically and process 

the same mycotoxins data from the electrochemical 

detector and get the results [62]. They carried out the 

extraction using the same method and conditions, except 

the flow rate (1.3 ml/min) and pressure (30 MPa). 

      From the Zizyphi Fructus, a common fruit in 

traditional Chinese medicine,  aflatoxins B1, B2, G1, and 

G2 were extracted using the supercritical fluid CO2 

extraction [63]. A high viscosity characterizes these fruits, 

after grinding, due to the absorption of moisture from the 

air. Therefore, sand should be added (1:1) during 

pulverization to reduce humidity's effect on the extraction 

efficiency. The best conditions for higher recovery percent 

(98-105%) were obtained using 20 ml of CO2 at 50ºC, a 

pressure of 41.4 MPa for 15 min of dynamic extraction 

time, and 15 min of static extraction time. The resultant 

extracts were collected in ethyl acetate extract to reduce 

the adverse influences on the environment. In 1998, 

different Fusarium mycotoxins (i.e., 3-

acetyldeoxynivlenol, 15-acetyldeoxynivlenol, 

deoxynivlenol), and derivatives of type B trichothecenes 

(i.e., fusarenone X and nivalenol) were extracted from the 

naturally infected and spiked wheat flour with supercritical 

CO2 with modifiers [64]. The reported conditions for a 

higher recovery percentage (53%) were the static mode for 

30 minutes followed by a dynamic mode for 15 minutes 

with 2 ml/min flow rate of CO2 and 3% of methanol as a 

modifier. The optimum temperature and pressure for the 

extraction method were 55ºC, and 31.8 MPa, respectively. 

The analytes were passed through silica gel as a solid-

phase trap. In 1997, the efficiency of supercritical CO2 to 

extract aflatoxin M1 from beef liver was investigated [65]. 

The best recovery was achieved with a CO2 flow rate of 5 

liters/min at a pressure of 58.6 MPa for 30 minutes in 

dynamic mode at 80ºC. The authors used 

acetonitrile/methanol (2:1, 3.3 vol%) as organic modifiers 

to improve the target analyte's recovery. This technique 

can be used instead of the conventical extraction method 

that uses methylene chloride as an organic solvent. 

Huopalahti et al. extracted the 12,13‐epoxytrichothecene 

mycotoxins (i.e., deoxynivalenol, deacetoxyscirpenol, and 

T-2 toxin) from the yellow cornmeal and rolled oats by 

using supercritical fluid extraction with CO2 and adding 

5% of methanol as a co-solvent [66]. The extraction was 

optimized with the following conditions: the pressure of 

55.7 MPa, a flow rate of CO2 1.2 ml/min at a temperature 

of 60ºC. The process gave a recovery percent up to 95% 

for deoxynivalenol and 85% for deacetoxyscirpenol and T-

2 toxin. The target analytes were collected in methanol and 

defatted with hexane. Holcomb et al developed a 

supercritical CO2 method by adding methanol as a co-

solvent to extract aflatoxins B1, B2, G1, and G2 from corn 

[67]. The extraction was effective at the static conditions 

at 65ºC, 51.7 MPa for 15 minutes, followed by a dynamic 

model for 10 minutes with 20 ml of liquid CO2. The extract 

was collected in chloroform and purified over Sep-Pak 

Florisil cartridge, and the recovery percent reached 77.3, 

82.9, 75.4, and 80.3% for aflatoxins B1, B2, G1, and G2, 

respectively. This technique was effective against the corn 

contaminated with natural aflatoxins, specifically for 

aflatoxin G1. 

      Wu et al. extracted aflatoxins B1, B2, G1, and G2 from 

peanut kernels contaminated with Aspergillus parasiticus 

using supercritical CO2 extraction plus 60% methanol 

[68]. The extraction process's optimum conditions were 

50°C for 15 minutes and pressured up to 20.7 MPa. The 

authors found that the best recovery percent (97.7%) was 

obtained by adding 60% of methanol as a co-solvent and 

adjusting the methanol/ peanut meal ratio to 6 (vol/wt).  

Taylor et al. proposed 34.5 MPa and 80°C as proper 

conditions to accomplish supercritical fluid extraction of 

aflatoxin B1 from commercial corn samples [69]. The 

authors studied  
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Table 2: Application of supercritical CO2 extraction in some food products 

Extraction 

solvents 

Type of 

mycotoxins 

Food 

products 

Extraction 

methoda 

Temperature 

(°C)/ 

Pressure 

(MPa) 

Extraction 

time in min 

(static + 

dynamic) 

Flow rate of 

CO2 

(ml/min) 

Recovery 

(%) 
Ref. 

CO2 (+ 9.1% 

methanol) 
Zearalenone, -

Zearalenol and -

zearalenol 

Maize 

flour 

SPE 80/25 10+30  1 90–92 [61] 

CO2 (+ 10% 

methanol) 
Zearalenone,, -

Zearalenol and -

zearalenol 

Maize 

flour 

SPE 80/30 30+10  1.3 90–92 [61] 

CO2  Aflatoxins B1, 

B2, G1, and G2 

Zizyphi 

Fructus 

Solvent 

(ethyl 

acetate) 

50/41.4 15 + 15 - 98-105 [63]  

CO2 (+ 3% 

methanol) 

Deoxynivlenol, 

3-

acetyldeoxynivle

nol, 15-

acetyldeoxy-

nivlenol, 

fusarenone X and 

nivalenol 

Wheat SPE 55/31.8 30 +15  2 53 [64]  

CO2 (+ 

acetonitrile: 

methanol 2:1) 

Aflatoxin M1 Beef 

liver 

SPE  80/58.6 0+ 30 5000 0.36* [65] 

CO2 (+ 5% 

methanol) 

Deoxynivalenol, 

deacetoxyscirpen

ol, and T-2 toxin 

  

Yellow 

corn 

meal and 

rolled 

oats 

Bubbling 

in 

methanol 

followed 

by 

defatting 

with 

hexane 

and 

evaporatio

n 

60/55.7  - 1.2 85-95 [66] 

CO2 (+methanol) Aflatoxins B1, 

B2, G1, and G2 

Corn SPE 65/51.7  10 +15  - 77.3–80.3 [66]  

CO2 (+ 60% 

methanol) 

Aflatoxins B1, 

B2, G1, and G2 

Peanut 

kernels 
IAC 50/20.7 15  - 97.6 [68] 

CO2 (+ 

acetonitrile: 

methanol 2:1) 

Aflatoxin B1 Corn SPE 80/34.5 - - 90 [69] 

CO2 (+ 5.6% 

methanol) 

Aflatoxin B1 Peanut 

meals, 

animal 

feed 

SFE  40/83.1 150 270 70 [70] 

a SPE, solid-phase extraction; IAC, Immunoaffinity column. 

*Recovery is expressed in ppb 
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Table 3: Application of pressurized hot water extraction in some food products 

Extraction 

solvents 

Type of 

mycotoxins 

Matrix Extraction 

methoda 

Temperature 

(°C)/ 

Pressure 

(MPa) 

Extraction 

time (min) 

Flow rate 

of   

(ml/min) 

Recovery 

(%) 

Ref. 

Alkaline 

aqueous 

solution 

Aflatoxins 

B1, B2, G1, 

and G2 

TCMs d-SPE 100/- 10 - 72.7- 

114.5 

[80] 

PHW (+ 45% 

methanol) 

Multi-

mycotoxins 

(i.e., 

Aflatoxins 

B1, B2, G1, 

and G2; 

alternariol 

monomethyl 

ether; 

fumonisins 

B1, B2, and 

B3; 

ochratoxins A 

and B; 

sterigmatocys

tin; T-2 toxin; 

zearalenone; 

α-zearalenol; 

and β- 

zearalenol) 

Maize 

Sorghu

m  

Millet 

 162/6.89  5 14–129 [78] 

PHW (+ 40% 

methanol) 

Aflatoxins B1 Maize - 100/- - - 116 [79] 

PHW, pressurized hot water; TCM, Traditional Chinese medicines; d-SPE, dispersive solid phase extraction. 

 

different parameters like pressures (13.8-103.4 MPa), 

temperatures (40-80°C), amount of supercritical carbon 

dioxide (SC-(202) (up to 0.5 liters of CO2), and co-

solvents to enhance the extraction method. The optimum 

organic modifier was 15% of acetonitrile/methanol (2:1). 

The resulting extract was trapped in different solvents, 

including chloroform, which is regarded as a harmful 

solvent. This technique gave more than 90% aflatoxin B1 

recovery when compared to the traditional solvent 

extraction method. Aflatoxin B1 was also extracted from 

peanut meals and animal feed using supercritical fluid 

extraction using CO2 plus 5.6% of methanol as a modifier 

[70]. Different temperatures and pressures were applied to 

increase the extraction method's selectivity and get a 

higher recovery percent. The optimum operating 
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conditions were 40ºC at a pressure of 83.1 MPa for 150 

minutes and a CO2 flow rate of 270 ml/min.  

Pressurized hot water as a green solvent 

     Pressurized hot water extraction (PHWE) or subcritical 

water extraction (SWE) is an eco-friendly extraction 

technology in which water becomes subcritical when 

heated between its typical boiling point of 100°C and its 

critical point of 347°C under high pressure (i.e., 221.2 bar) 

[55,71,72]. Under such conditions, water remains in liquid 

form and is considered a good substitute for organic 

solvents. The polarity of PHW can be controlled by 

adjusting the temperature and pressure, where the 

dielectric constant is the parameter utilized to calculate the 

polarity of water at subcritical conditions [73]. The 

advantage of PHWE over conventional methods is that it 

can extract compounds with different polarities in shorter 

extraction times and higher extraction yields. It was used 

to extract polyphenols from T. chebula fruits, pectins 

found in citrus peel and apple pomace, flavanones from 

orange peels [74], tannins from the bark of Norway spruce 

and Scots pine  [75], and bioactive compounds from okra 

seeds [76] and garlic [77]. 

 Gbashi and his co-workers started to exctract 

aflatoxin B1 (Table 3) from maize using pressurized hot 

water extraction (PHWE) [78,79]. The authors carried out 

the extraction at different temperatures and various 

percentages of methanol (0%, 20%, 40%, and 60%) as a 

cosolvent. They documented that the optimal conditions 

for the extraction were 100ºC with the addition of 40% 

methanol. The maximum recovery rate was 116%. The 

same research group extracted multi-mycotoxins from 

several maize samples in a single step using pressurized 

hot water extraction (PHWE) with ethanol (EtOH) as a 

cosolvent [78,79]. They optimized temperature and 

solvent composition to be 162°C and 45%, respectively, 

and achieved recoveries (14-129%) higher than other 

conventional mycotoxin extraction methods. Wang et al. 

investigated the extraction of aflatoxins B1, B2, G1, and 

G2 from several types of traditional Chinese medicines 

(i.e., rhizomes, roots, fruits, seeds, flowers, grasses, and 

leaves) using only water at pH of 13, followed by 

dispersive solid-phase extraction at room temperature for 

10 minutes [80]. The method was based on the cleavage of 

the lactone ring of aflatoxins in a strong alkaline media. 

Then, absorbed the formed negatively charged substituted 

coumaric acid on the positively charged mixed-mode 

anion exchange (MAX) followed by elution with 

acetonitrile/trifluoroacetic acid. The authors studied the 

extraction efficiency at different pH values starting from 9 

to 14 and found the efficiency was enhanced from 9 to 13 

and declined from pH 13 to 14. Therefore, pH 13 was 

selected as the optimum value for the extraction 

methodology. The recovery rate was found to be 72.7- 

114.5% for the 15 kinds of traditional Chinese medicines 

(TCMs).  

Conclusions 

 This review summarizes the recent trends in using 

different green solvents to extract different types of 

mycotoxins during the analysis of food products. It was 

found that both deep-eutectic solvents and supercritical 

CO2 have great potential for multi-mycotoxin extraction 

with a higher recovery percent, than pressurized hot water. 

This review will be useful to researchers as well as 

industries involved in mycotoxin research to choose eco-

friendly method with the appropriate green solvents for 

increasing the quality and efficacy of analysis. 
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