


CHAPTER I

DEFINITIONS AND FUNDAMENTAL THEOREMS,
I.1 Definitions.

An aggregate of numbers arranged in the form of a rectanglar

- table, is called a rectangular - matrix. It will have m rows and
n columns, and may be set in the form:
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The first subscriptglthen, designating the row, the second
designating the column, in which the element is located.

This may be abbreviated to the form:
Eaij] ( i=192’ coe g III.; :l: lgagooogn)o

Two matrices are equal if their corresponding elements are
equal.

Matrices composed of a single row are called simply rows
(or row vectors). Matrices composed of a single column are
called columns (or column vectors).

If the number of rows of a matrix is equal to the
number, n, of columns, it is called gquare, and of the nth
ordero.

Among square matrices, an important role is played
by diagonal matrices, i.e. matrices of which only the
elements along the principat (leading) diagonal are different
from zero:
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If a1l the mumbers &y ¢f such a matriz wre. aqubl ’ss o v the
matrix is said to be ggalsr 5 -snd if ol 141 th!r ma‘brlx is
said to be the unif mevrixe : ;
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Lastlyy 2 matrix all of whose eiements are equel to zero is
called a pull matrix, or zem mat:r,‘ixu We shall designate
it by the symbol Oy -

The determinant whosef eleme:rh are 'she. ‘elements of &
square matrix (without dlsarrangmt) is said to be the
determinant of that mabrix, anﬁl 'ge write the determinant of
A as A} o or offen as deb (A}g 2 2

A is said ¢ bs nonssinguler {pzm Qesuma:r) if its determinant
is not equal o z&roy in the wntrar;v case 1% 38 of couxse

A matrix C whose clements are 'she auma of the ﬁamndi.ns
elements of £ m‘wmmmmg uk.a mmbea-s af nows i
and ¢olumns, is called the gsum of A and. By “ e FE s
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I.5 Multiplication of a matrix by a number.

A matrix whose elements are obtained by multiplying all the :

elements of the matrix A by a numbere is called the product
Of the number o¢ and the matrix A

ol A =z [o(aik] 9 ClesRiliy 2 oo ooy il 20 o nie

I.4 The multiplication of matrices.

lMultiplication of the matrices A and Bis defined only on the
assunption that the number of columng of matrix A equals the
number of rows of matrix B. On this assumption, the elements
of the product , C = AB, are defined in the following manner’
the element in the ith row and the jth column of the matrix
C is equal to the sum of the products of the elemsuts of the
ith row of the matrix A by the correspondy elements of the jth

column of matrix B. Thusg n
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Cij = 841 Py + 855

where

A.o B = Co
mxn nxp mxp

It is to be noted that the product of two rectanguler matrices
18 again a rectangular matrix, the number of row of which is
€qual to the number of rows of the first . mabtrix, and the
Dumber of columns of which is equal to the number of columns
of the second matrix. So,for instance the product of a sgquare
matrix and a matrix composed of one column is a matrix of one
column.
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The commubative law for multiplication does not, generally
speaking, hold. The matrices AB end BA make sense simultaneou-
sly only if both matrices A and B are sguare matrices and of the
same order. Thus,

AB # BA

in general. In particular, the multiplication of a square
maetrix by the unit matrix, of the same order, is commutative,
ey

AL =0 AT

Hence follows the special role of tue unit matrix in the
multiplication of matrices: amongst all square matrices of the
same order, the unit matrix plays the seme role as the numb exr
one does among numbers. If we interchange rows and columns in

G [aijl

_ T
We obtain the transposed matrix or transpose A = [ bij}

the matrix

» Where

bij - aji (i=l929 oo e Il § j = 1929 eoce 39 ID.).

The following rule (the reversal rule) for a tramsposed product
should be noted:
i

)

(AB e B A

Tn conclusion we shall remark that the determinant of a product
of square matrices is equal to the product of the determinants
of the multiplied matricess:

(o =1 21" B
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To5. " ThHe quadratic form,

A homogeneous Polynomial of the second degree in several
Variables x

1 1 cee s X, is called a quadratic
consider only those with real coefficients.
form may be written as

form, We shall

Any quadratic
n
P &z, el x) = Z. Bik Fi Xy»
1K=l
where ai) = Bq

It is obvious that the coefficients 85 Will form s
Square matrix of the order n, which fulfill the condition a.
aki‘ Such matrices are called Symmetrical .

e =

A quadratic form ig gaid to be positive~definite if its
Values are positive forp any real values of x
all zero simultaneously.

lg e o e 3 an ﬂDt

It 1s evident that the diagonal coefficients of a
positive~definite form are positive,

foxr
a.

11 =§>(190, see 5 0)

8 s (0., ST e
am =<§(0909 eoo g l)



fpes =

CHAFTER II

SYSTEUS OF T INEAR EQUATIONS.

This chapter is devoted to three problems that are closely
related to each others the problem of solving & nop~homogeneous
linear algebralc system, Ghe problem OF invepting & mabrix, and
the problem spoken of as elimination.

In theory all of these problems are soluble simply
enoughe. HOWEVEL, if a matrix of high order is commected with
the problem, the actual golution requires & great number of
Gomputational operatlons end storage space in computers.

Numerical methods solving the stated problems are
divisible into two groupss exact and iterstive methods. BY
exact methods We understand methods that give the solution of a
problgm_by—mgans of a finite number Of elementary arithmetlc
operatlionsS. The number of computational operatilons necessary
for the solution of the problel depends only upon the form of
the compatational scheme (Algorithm) and upon the order of
the matrix definlng the given problem. Tnexactitude in the .
golution found occurs as bthe result of the inevitable rounding-
off of the figures in the course of the computation. Along with

this, one may Tunl up against the plhenomenon of the disesppearance
of significent® figures in the course of the compubtation, &% the
result of the subtraction of fwo numbers differing"little from
each other. Thig loss of gignificant figures may occasion such 1
an important reduction in the accuracy of the presult thab it

ig aften necessary to alter the compuoational scheme because of
it, or re—do the work with a greater number of significant figures
in the intermediate calculationse.
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Pundamental method of this group is the metinod based on the
of elimination . This algerithm of this method with

) the name of Gauss is assoclated, consists = when applied

e solution of a non—homogeneous linear system - of a chain of

sssive eliminations by means of which the given systen 1is
sformed into a system with a triangular matrix whose solution

nts no diffienlty,

Many different algosithms have been developed snd are
ntly employed for all three of the problems mentioned.

Tterative methods afford a means by which a system of
r equations may be solved approximately. The solution of
stem by iterative methods is obtained as the limit of succe-
> gpproximetions computed by some uniform process. The
ergence of these spproximations depends essentlally on the
snts of the matrix defining the given problem. The rate

1e convergence depends also on a happy choice of the initial
ximation on which the iterative process is founded.

The immense advnatage of the iterative schemes consists
ne simplicity and uniformity of the operations to be effected,
therefore in the possibility of completely mechanizing the
oss of computation.

» Linear functions - Exchange.

simiplicity we consider a linear function y of two independent
glesern o aclie

sogteg i I 0 SR SR W o B R

s a, b are fixed given coefficients and the constant

, & given number. In a spaces system of coerdinates with
ixes X, X'y yy the linear function will be represented by
e. If the constant k vanisheg, the function
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is said to be a homogeneous linear function or shortly a
1inear form . The mentioned plane will then pass through the
origin., Let now a gsecond linear form

s = exek dx?
of the seme varisbles X,x' be given. Assuming a # 0 We can
calculate x from the first form and gubstitute it in the second

b
¥ o= = X'

a

y's=

mie ol

y + (a- 2)x

this results in two new linesr forms which are so characterized
that the independent varisble x has become a function, while

Y has become au indpendent variable. We say simply, ¥ and ¥
have been exchanged , and we call the whole process an exghange
step . It forms the basis for almost all algorithms of linear

algebra, which sre mostly composed of several exchange steps.

The previous example of an exchange step can be represente
by ‘the following schemes

p 4 x* X p:s

T a5 B e 5

Y =|a b x=13 = =
. ey % E:. - .9-.9;
yi=je d y'=1 2 (d=i==)

The column x and Lhe row y of btue exchenged varicbles intersect
at the element a which we call the pivot element ox pivob.

The transformation of the element d, which lies in the same
diagonal opposite to a, is the most complicated; the correction

%& can be obbained by multipiying the two elements of the obhe:

diagonal and dividing the result by the pivet. 'We shall cagll 1l



gt

rule the rectangle rule,

We proceed now to linear forms of several verisbles, for
€Xample in the schematic forms

Xl X2 X5 xq_
B S5 1 ety
Vars Weon w8 o8y Bou
Gy e 34

a
=5
TS o8y . 8o Buz 8y

Explicitly we write for example

das sty et 8, TNt 05 I by X,
T in general
4

Iy =2 Gk Fi 9 (i=1929594)°
K=

f
|
Iow, let us éxchange an indpendent variabde with a dependent one,
o8, X3 > ¥,. The pivot column %y intersects the pivot row

t the pivot element 8535 the exchange is Possible only if a25#o.x2
lays the role of x in the previous elementary example, wheress
> that of y. A1l other variables Xys Xy X, and Iqs SEXI A

chave exactly in the same Manner as x' & ! respectively,
=eTefore, we get
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g followss

" " b1 ]

’ -10-
£y z5 T2 £y
¥, = 'i:!-j' of
1 X311 K12 = 14
25
x; = LS iee -~ G
a5z %8s NS 25
az
Dol = oL 31 L .."éi ol
1 a,=
Iy X1 oLu2 E;EZ o 14
5@ b
¥
where % a - M q/ a
T e o 11 a3 12 12
Xy = 21y
8,7 8
s i 21
Xzy = Bz
y (e
3 L Rons Xy
o _——-—Q-a 52 = 8,
25
X = =
Gy T Py
The rules for an exchange step can beé summarized a
1. The pivot is changed into 1its reciprocal value.
o Al other elements of the pivot column are ai
Be Bt ) | 7" n 1" 1A} TOW 1
and then given opposite signs.

&

L)

vided by the ]
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4; An element of the rest of the matrix is transformed by
forming the rectangle of 4 eleménts, which contains the pivot
in the apposite corner; then the rectangle rule is applied.

Exemples
% X, xz % y; XB
ylz 5 2 l ylz 005 205 Ll
y2= = & 5 y2= 0 2 18
i [ 2 2 X,= 0.5 0.5 =1
—’\) .5 '“l

To simplify the calculations we wrote under the old matrix the

new pivot row (excluding the element in the pivot column), We
denote this row by the cellar row. Thus we can modify the previous
rule 4 as follows: _

’ I et )

4., An element of the rest of the matrix is transformed by adding
to it the product of the element below it in the cellar row
and the element beside it in the pivot column.

IT.2 The sum check,

Let us suppose that the sum of the elements in each row of
The given matrix is equal to unity; This meanss if we give
the independent varisbles x the value 1, the dependent variasbles
J Will also have the value 1, This also holds after an exchange
Step so that the row sum must again be unity. The value 1 of the
Tow sums can be artificially produced by introducing a new
Variable:jibeside the x in the linear forms whose coefficient will
be so chosen that the row sum becomes unity. In the previous
example this appears as follows:
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yl £ 5 ‘5_ l ‘-8 yl - 065 205 —LI‘ 2

o =| 2 3 5 | =10 o = O 2 1] =2

Vzus 1 2 2 | =4 %, = (0.5 0.5 -1 2
""005 "’l 2

During an exchange step we treeat thejfbolumn as if it wexe
an gdditional x column. The sum check thus means that in the
new scheme the row sums should be equal to unity.

II.%3 The Gauss's Elimination liethod (Single-divigion Scheme) o

Let us have a system of linear equations as that of the
following egamples

o 5 % + L ol

1
O

2 X o+ 3 X, + 5x5

% + 2 X, 233

This can be written in the forms

L 5x1 + 5x2 + x3 + 4
o = 2% + 4%, + 5%z - 9
i Xy 2x2 + 2x3 =N

or in the table form
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Xi X, xg L
;le 3 5] 1 4
Jo= 2 4 5 =2
33~ 1! 2 2 Jr—ﬁ

It is required to find the values of x for which all y will be
equal to zero. Using the exchange process we can exchange the

X against the y and transform the last column, the column of the
constants, in the same manner as before. After an exchange step
we need not to write down in the new table either the y column or
the x row of the exchanged variables, because, the ¥y verisgble
will be set equal to zero while the x row is exactly the cellar
Tow under the previous table., Therefore, the sucessive exchange
Steps will yield the followings

xq X, XB 3L xl xs 1 x5 i !
7= |3 5 L [ 0.5 =4 [11.5 iil=
o= |2 & 5|9 i
ﬁu
X2=—O°5 ""l 105

The last table means that x5—5=09 or x5=5. All ebher
unknowns can be obtained by substitution in the cellar rows
backwards, namelys
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X5 ==0.5 X = x5 + 1;5 = =2

So for solving the given system we firs® construct an
auxiliary triangular system, and taen solve 1t. The process
of finding the coefficients of the traingular is called the
forward course, and the process of obtaining its solution, the
return course, or back solution.

The number of multiplications and divisions necessary for
finding the solution of a system of n equations by the Gauss's

method is equal to ( n? + 30 = 1).

Wi

II.4 Dominabting Disgonals-Concentrated Algorithms

In the following we shall discuss a practically important
case. Let ug suppose that in the given matrix the elements of
the leading diagonal strongly dominate the other elements of the
matrix, This assumption allows us to choose the pivot at the
left upper corner of the matrix. After an exchange step the
matrix elements will suffer from certain corrections which are
formed by the elements outside the leading diagonal and they
will therefore be small according to Gthe above assumption. .. -,
Phus, the diagonal remains dominating and the new pivot can
again be chosen at the left upper corner. This holds salso for
the next elimination steps.

As an example let us have the following systems

X x2 x5 34 1

27, - f1p =s EEE
8y 8 83 %y | O i
Bz, %2 %3 % | %5 /
2, W A3 B | O
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The tables of the next Gauss-Eliminations will have the forms:

S S by G

S %3 S |5 835 85| O3 X, Al
Ga Bz B |9 B3 G| Oy B | Oy

' A Vi Y /"

L=t elz s iWp L I oGy X3 Fy= ¥y

In order to save the writing space we press all above

table in one which contains only the pivot column and the corresp—
onding cellar rows of the successive stepss

s
oG e ST | =m
7 / 4 / e
ay | 8p [Xaz on Vo = X
: y 2 ; 74 K ' 3
21 01°%2 | % e s = A
|
| £ | Yy Lz ) =
%11 | e ; Sz | B hlﬁ; E

We shall show now that the elements of the last table c..
can be directly calculate without any need of intermediate steps.
Ve gtart with an element of the lower triangle (below the leading
diagonal).: The performance of the rules of the gagss elimination
yields for example:

/ — d
B St B M

or
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% / / 7 4

5 = 85+ G0l = (85 + 8,;03) + o8, Xz

The same holds for the elements of the diagonal =
V., 4 v 7 / / V4 7

€8s By = 8y t Bz Xz = (G + #Xo) + gz X3y

/ / Y. o nill
= ey oyt Xpy o8z Xy

Hence, the necessary colculations are summarized as follows:

1. MAn element of the new scheme which lies in the diagonal or
below it, is obtained as the scalar product of the elements
in its row on the left side and the elements in its column
above it and add to the result the corresponding element of
the original matrix.

As an example for the elements above the diagonal take
@«

R ;
I~ e s ) (334"‘5‘52“(24) =g (Bzyt 3,51"‘14*%2’4@
39 505 535)
Y

4 G e/ /
X‘ = 22T 1 / 2 = L e 4

PETE T = - == (Co+ A ) = S5 (Cpt8zq Gy +8z5 Vo)

3 aly als "3 29 ¥D 7 zT8z) O 835 0

Hence, we have

2. An element above the diagopal of the new scheme is obtained
by performing the rule 1 at first, dividing the result by the
diagonal element beside it and the changing the sign.

For the computation of the new table we start by The first
column (which is exactly the first column of the given metrix)

and the first row. The latter is obtsined from the first row of

the original matrix divided by (-2 Then we calculate by

Do
i
nesns of the rules 1,2 respectively, in the same way we read the
lines of a book. The unknowns are obtained, as before, by
backward substitution in the cellar raws which are ready at hand

in the new table.
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I35 Decompogition of a Matrix into Factors.
e e R e L L A LA L )

A system of n linear equations in n unknowns can be
written in matrix form
AL = B,

A being the given matrix, non singular, x and F being columns
composed of the values of the unknowns and the constant terms,
respectively, and which we shall speak of as vectors.

The Gauss method, performed with a fixed order of leading
elements, consists in replacing the given system by an equivalent
triangular system by combining the equations linearly; this
Teduces to combining linearly the rows of A and F, In the course
of its application in using the single-divison scheme, we are
obliged to add to the elements of some rows elements proportional
to The elments of the preceding rows, i.e. to effect upon matrix
A certin elementary transformations. The result of several
transformations is equivalent to a premultiplication of the
matrix A by some triangular matrix of the form.

811 O - - 0
For . e = i o )
jvzgﬂ. n2 j‘nn.«-‘

As a result of these transformations we arrive at a system with
a triangular matrix

G "°<12 ‘"o(ln
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Thugy/ A = B, i.€ey & =y—rl B, and consequently the matrix
A ig factorable into the product of two trianguler matrices.
The concentrated scheume realizes this factorization. Indeed,

all O G o9 00 O

- | ai B rieRiss 0
I-—s 201 22

-
s

e @ e o L3 L] o o L] L. L]

8, & a
an1 ne an5 vl nn.

—

o theslagt: table of Gliskts.Hence; AumymitooBs Sincesthe
diagonal elements of B are equal to unity such a factorizatlion
is unique.

II.6 The Gauss-Cholesky (Square-~Root) liethods

We shall show now that in case the matrix of the systen
is positive-definite, finding the solution may be rendered
_#3till easier, since in this @ase the metrlx can be resolved into
“ the product of two triangular matrices of which one is the
transpose of the other.

Thus let A = ST S,
where £
O 322 e o 00 s.?._'{l
S = PO S TR 7 TR ST S M R
LO 0 Snnl

Let us determiné the elements of the natrix 8. In view of the
rule for the multiplicstion of meabrices , we have
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ad‘j - sli slj + Sgi 823- +.o.+sii Sijg l < J
g - 2 2 2 ST
O fuss B S £ S0y FasatBiq 8 ==
Hence we obtain the formulas for the determination of the sij:
S
ot i 14
S e NG o S =
1=l
Sy = a - Z 32 i:> 1
3l 5 Ll Li 2
2=1
; - i A il
13 & Z Hipe B
s - 24 S8 e |
3 i . dJ
1
Sij = 0, i > jo

Furthermore, the solution of the system reduces to the solution
of two triangular systems. Indeed, the equation

AX = F,
is equivalent to the two equations
E = F, 8X=_K,

The elements of the vector K are determined by recurrence

formulae analogous to the formulae for Sijg
iz iz ”-'l'- 5 E. o i e
% £t . P i E;:. 8py ¥
§ Bt 811 2 2 RN L
I

The final solution is found by thenformulae

. = EE 34 = ki JLJ%Zi Siﬂ';z
n.oT .8 ? e - T :
B g

11
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With the square-root method, one has to record only the

» gpproximately %* elements of the matrix S and the 2n components
of the vectors K and X. This method is now widely employed
where the solution of symmetric systems is called for; it can
be recommended as one of the most efficient methods.

—



ITI.7 The Inversion of a Matrixs

As has already been remarked in the introduction, the
problem of solving a non homogeneous linear system and that
of inverting a matrix are closely connected with each other.

Indeed, if for the (square) matrix A its inverse Afl is
known, then on multiplying the equation.

VG =)
cn the beft by A“lv we obtain
B P

Conversely, the determination of the elements of the inverse
matrix may be reduced to the solution of n systems of the form

4l
; aiko(kj =S;:,a (‘33190130,113 i = lgoao,n‘j )
1

wheréﬁgij is kronecker’s symbol (=1 for i = j; = o for i £ j)»
The last relations follow from the definition of the
inverse matrix (AA”l = I) and the rule for matrix multiplication.

The determination of the n2 elements of the inverse matrix
we shall perform by the exchange method. ILet A be the coeffici-
ent matrix of n linear forms of n varisbles X:

Y = A Xo

This means that the dependent variables Y are expresed in terms
of the independent variasbles X. Multiplying the last matrix
equation on the left by 2 we gets

X gl v
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In other words if we can express the X in term of the Y, the new
matrTix of the coefficients is actually the inverse function. The
last step can easily  be obtained using the exchange method.
This is illustrated in the following example:

xq X5 Xz oy 3 %3
SR vy = |05 25 =
yo = |2 & 5 To = B2 it
¥z = | 2 2 %, = 0.2 0.5 -1
=065 -1 -5 8
T Tz ke ol e Y T
r
X, =| 2 =D 8lx =] 2 =21 8 |x =| 2 8 -21
yo=| 2 2 i1lxz=]| 0 -2 1 |x =]~ -5 15
Xy = -1 3 =5 X, = =1 13 =5 | Ko =il Q) i -2
0 -2

In the last table we have rearranged the rows among
themselves and also the column, so that the different variables
of the same sort appear in order. The last table gives the
inverse matrix.

It should be noted that by each exchange step the new
pivot must pever lie in a previous pivot row or pivot column.
That is to say that the pivot candidates for any exchange step
are those elements of the last table which remain after sweaping
away all elements of previous pivot rows and columns.
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IT.8 Application of the Inversion to the Solution of Systems of
Linear Eguations.

As an example let us have the following three linear equations
in the three unknowns Xy X5, 15 :

k- X + 2 >+ X o= il
2 x + §:x2 + 5 Xz = 9
Xl + 2 32 + 2 K5 = 5

The matrix of the coefficients is chosen to be that of the
previous linear forms T1s Tos yj. Our equations here demand
that I1o Tos T3 should take the numerical values -4, 9, 3. If
we substitute these values in the inverse forms, given in the
last table of the previous paragraph, we directly gets

Xl = l 9 };2 - ""2 9 X§ = 3

for the solution of the above linear system of equations.

Often we are met with the problem of solving several systems
of equations having the same matrix of the coefficients but diff-
er only in the constants of the right-hand sides. In this case
one inversion of the matrix is sufficient to obtain the inverse
linear forms and then direct substitution of the successive
right-hand sides will yield the solution of the different systen
respectively.
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Exceptional cases: Tet us consider the four-pow matrixs

Ty B A B el oY
zl =i~ 3 5 1 2 x5 =| =3 =5 1L =2
yo =1 2 =t 2 7 Jo = =7 - =10 2 L
y3 = & 1 -1 -3 35 = 7 19 -] =1
Iy = 13 7 ) 20 Iy = 14 =38 9 2

=7 -5 -2 7% A5 =3

£, = |-17 43| 7 =2
) Xy = 7. 19 iE=5 1
4,
e T
¥z = 0 O 2 ],
i 0 o 3 2

3

At this peint a further exchange is not any more possible
and the process of inversion stops. This is because all candi-
dates for the next pivot - which must Be in a y-row and a x~-column-
are sll zeros. The exchange is only possible if the pivot element
is different from zerc. From this situation we deduce the
followings:
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l. The remaining y-~rows give the relations

ys = 2;Y1"”y2
T 3‘31“3'25"29

i.e. the given linear forms are dependent on each other. For
example, the thi.d foirm can be obtained by multiplying the first
one by 2 and subtracting the second. Therefore, the exchange
algorithm permitts to discover such dependence.

2. The x-rows will give:

Xy == L7 X - 43 Xy + 7 Jy - 2 Yo

i

X, / %y # 19 > 3 ¥y *+ Jo-
This can be considered as a partial inversion

Corollsries:

In an exchange algorithm it jis fapbidden to choose a pivot
which is zero, and hence it is. dangerous for the accuracy of
numerical calculation to choose a pivot which is small. This is
a mere application of the; general principle. If an algorithm
fails for certain exceptional value of the quantities palying
part in it, then it will be inaccurate when the values of these
quantities lie in the vicinity of these exceptional values.

Thersfore, we have the following result: In order to
avold numerical instability during exchange processes, one
should choose among all candidabtes for the pivot that one
having the greatest absolute value.



II.9. The Gauss-Jordan's Method for the Solution of Systems of
. Linear Eguationss '

Consider the following m systems of linsar equations
which have the same mabtrix of ccefflicients:

A X + Bi = 0 j.. = 1929 o 00 9 mo

They differ only in the comstanl vestors Bi o The present
method ensbleg s to solve all systems simulaneously. MoZeover,
it gives us the f£insl %ool which makes the subsequent solution
of an additicmnsl sysbem (wibth the same mabtrix) ready at hand,
after a slight manipulation with ths corresponding constant
column. We shslil ezpilain the weathod in ths followings

1, We write the given systems im a schematis form
b2 2y s o SRS 1 EL cooo M
- i
mumghm“-um,,_mrm-m_“_&MMWWum_mm“wﬁ_ru..w
Paslbage Bp  tocs Hy By Byo eeeo Byl =0
= | 8na - 8. b. b B = 0
B s e e R ) L e 2m
e X wme P L T e - —— — [ S o
3’12 a 11 8_;2‘ 6000 'ﬁ,;(_l_ 1':1,._- ' b:._,f,.. 2 000 bim = 0
e e o e s — —

83
o
: {—:;’
5
il
o

In | %ni £ e i nn nl s

|

AW W T L AR L S e Y e AW SRLATE S SR v At e e L.
Whare the coliuwamn of the matrix (b, .. Tepresent the
guccessive columns of The constants of the corresponding
systems.



—prs

2. Applying the exchange method we bring the-xi on the left
side and the y upwards. In the first step we exchange X5
we seek in its column the largest element in sbsolubte value .
and choose it as the first pivot ;1 Saye. The elements of
the matrix B undergo the same transformations as those of
the metrix A. Now, after the first exchange the scheme
appears as Zcllows:

-

yi xa e 0o 00 Xn I II o000 o M
yl = 8.11 :3.12 RG] aln bll b12 0000 blm j
Yo = Bt ncCade . 8oy Bonec=Popcns-1 - beg
& Wil e
Xy = ,aiﬂ 8o co0e  Bgo bl‘ b12 o ol bim
o000 o o o o o o -] o -] -3 o (-3 o o -] o o (-] o o 3 L] A
90T AsluasocPags 200 Bum L e T

Since the I3 will be set at last zerc, therefore, it not
necessary Lo calculate the new elements of the pivot columng
we write instead the old pivot column and mark out the pivos
element (this will be used later). This step (No.2) will be
repeated wholely for exchanging Xp9 Xzs oo 5 X each by its
furn.~ It should be noted that after each exchange the numbers
of candidates for the next pivot (in the next column) will be
reduced by one, so that for exchanging X, we shall find only
one candidate for the last pivot. It is also to be noted that
after each exchange all pivot columns will be ceppied as they »
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.are in the new scheme:, separated by vertical lines and the pivotb
element itself will be marked ocuto After the last exchange has
been exeeutedj the new b cclumns will represent the successive
solutions of Ghe corresponding systems. The last scheme will
contain in place of the matrix A the pivot columms of the
successive exchange steps. This may have the form (n=3):

ey L (@) (L) (2) (3)
i T s {Eggi 213 by bg bfy %1
3 42 "-";2 l\_a?;EI by bf’g b, ﬁ';
@ s n 5 518

™ Tf we need now to solve a new System having the same matrix of
‘coefficients but with the new constamts (b, Doy 5), we add
these as a last column (mo. (0)). The first gxchange has been
done witk the pivot 831 and the elements of the pivot column
are all what we need for the calculation of the new elements
b;, BE, bgc Whence

; a b i £ b Ve b
_b/ = by = __I;'nl'...-_-sa- 3 Bre =ulyed = 2.;‘_. 5 b, = 2o _,2 .
i 1 2 2 7] a
% B, 31

Vs e ;
The second exchange with the pivot 810 will yleld
v v ' : y
bl g b2’ b3 while the third exchangs with the pivod 8oz

(last pivob) delivers the seolubions
% JI; 4
(xl s Eoo X;J = (1‘39 9 bz)

.



-

Exsmples: Solve the twe
511 + 2x2 + 4x3 =1 e
Gxi - 3x2 + le; -1 = 0
le1 e 4x2 + 20x5 -] = ()J
In schematic feorx wc haves
X X X; i I
Jo=|6 3 10 {f=1 | 1
y3=E 4 20 f}-1 | 2
Tz AT Xz X i
S T o B
o= | 3 0,8 245 110.87510,75
y=| 6 | 0.6 ’@ 0.1250.25
X = [10 \|-0-4 | -3 |-0.25|-0.5

29-

systems of equgtions:

Wk
ixi + 232 + 4x5 =0.
(¥ 6x; + 3x, +10x; + 1 =0(II)
lD.’Xl L 4X2 +20X5 + 2 =0
y§ X x5 i 1638
3 o.g] =2 e 78 —a,
I S0 R R R | )
15} —out - =2 Meaigali e,
V5 yl yg 1k II-,‘
3 2.5 T e
S T J 0.25| 0.5
T S G

Therefore, the solution of the first system (I) is:

{xlg xag X;) __=F "{:“‘.19 1059 8025:‘

and that of the second system (II) iss

(Xlg X2g X5) E (_”29 25, 005::0

Now, if we want to

solve & new system subsequently we write

down the new constant column in zn adjoining column %c the last



=30~

W'A matrix and then transform it sccerding to the successive
exchanges. Let the new constants be (-1,0,1) thens

¥ €9 ST ). @° @ @

‘ I |
x,=| 3 | [o.8)| 2.5 || -2 || -2.3 | 1625 | 3.5
x;=| 6 | 0.6|fo.5]1 o |l -0.6 [0.375 | 0.75
x, = |[10)] -0.4 | -3 1 4 0.1 |=B:75 -3

0

o
a

In other words, the solution i
(xis X9 XB) = ( = 3, 3.5, 0.75)

P o It should be noted that the constanks of the lzst system
gre chosen in a mammer thst each constant is the sum of two
corresponding constants in the previous systems (I) & (II). The
solution of the last system will then he The sum of the two
solutions.

In many cases, we are met with systems of equations whose
coefficients and constants are zll integers (eas in the last
example). In such cases it is advisable tc work out the problem
with integer numbers. The possibility te obtain fractional
numbers during processing such systems is only due to the division
over the pivot element. If we reftsrd this division to the end
of the next exchange step, all inbtermediste results can be made
integer. For, if we have
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Yo = |81 2p 83 divis : 1

exchanging X and y
yield

without dividing over the pivot a3 will

3
Y3 Xo Xz

it e S R e e

J2 = | %on Gy sEo5iRshas @ys dnh 83 8z = 8y 835 |divis:
: a
le=gr = 5 31
7 = 5] 232 =

We want to prove now that exchanging X, and y, (say) will yield
in the third column elements other than those in the pivot row
which change the sign only) which are divisible by 831 (the
previous pivot). For example, take the element of the second
row and third column, ifts new value will be:

|

357 { (325 azy = 81 a833)(ay, 831 = 811 33p) - (a3 azy] = 217 @zz).

o AeE a - a a 51
22 53] 2l EE:J

1]

%31 L

integer.

axq (integer) + 851 8z3 817 8z5 - 8z (integer) - 311 2833

'h‘
21 %34
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- Also the last element of the third column will give

L - %
. [- 855 Cagp 251 - a1 252) * 252 (%03 %51 ~ 11 %3 )]
= 1integer

Hence, for integer problems we have the following rules for an
exchange steps

1., Choice of the pivot as before.
2.  Pivob column.remains.unchangedo
3, Pivot row changes the sign.

4. Other elementss apply rectangle rule and divide by the
prévious pivot (the so called divisor or divis besides.
the corresponding scheme) o

o

Applying this method to the last example we haves

=

4 =1 0

eq

E—J
AN
o

Yo 6 3 10 =1 L divis ¢ 1

y5 (@) & 20| -] 2

I 3 @ =20 =7 | e}

i g8 =20 ‘mia- =o | S da it

=
O




.353.".

6 |—4 ] 2 divis s 8

5
6
@-4-24—2-4

o 3 yl yg

% | 3 26|l =6 -8
6 e divis 3 4

6
X3 FlOi =it -2l 4 8

To get the solutions the last ¢olumne should be divided by the
last divis, i.e.y, by = 45 these are the same as before.

II1.10 The Inversion of Matrix by the Method of Gauss-Jordans

As said before, the determination ¢f the inverse matrix

A =(q&k) of the matrix Az(aik) so that A AL = I, leads to the
solution of n systems of linear equations eafh having n equations
of n unknowns. All these systems have the ssme matrix of coeffic-
ients so that we can make the best use of the Gauss-Jardan's
method to obtain simultaueously the required solutions.
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Since Afl fulfills the above mabtrix equabion, therefore,

all . &9 8 8.1;1 X-il o e e 0 D(ln :L ¢ e & 0 O

anl L L annl \D(nl Knn' O & ° 0o 0 1

The unknowns are thefxik (Egkr=120 coaaom), doe. n° unknowns.
These do not appear altogether in one system but each n of them
in one system, e.g., the system of equations fon”<1119<é1'-°°£x&1
ise

B.ll ><]_l i 8.12 0(21 * wicwe + alnb(]__‘l = ;. = O

as1 041 T Bppdey t*oceee F 8on0dy =5

L] L ] - L 3 o a a o (-] o ° Ll o L] o o o [ ] o o n L3 (-] k
I

anl Dé_l an2°<21 4+ ceoes a:tm"(-n_l = 0

In the Gauss-—dprdan method the solution of this system appear

in the column of the constants in the last scheme. Hence, we
obtain the elements of the first column of A", Mhis can also

be repeated for all other columns of A_la the successive

constant columns will then bes (0, =1, Oy eee 5 ©O)y oos 3{0,0,000y~1)
The matrix of the coefficients is all the ssme for zll n systems
of equations. Therefore, the method of Gauss--Jordan can directly
be applied to obtain all solutions at the same time -~ Hence, if
we £ill the B matrix, in the Gauss-dJordsn scheme, by (-I) and
then execute this method till the end, we shall ge®t in the place
of (-I) the required inverse matrix (the rows should be rearran-
ged, if necessar, according to the order of xi,.o.,xn).

™



As an example, let us have the matrix

@55

xl x2 X3

Bl s 1 bk o o‘
2 4 L B i el
1 2 | s e e
I =2 X3

Lot caqflivgasl g ceryg

2 Pl as]liie Sasissbig

| ik it 5 d: 0 =3

y y

18 2 x5

=5 21|l 4 =5 0
2 @ ~13|| =2 20

Jl 1 @ 0 ot
I, aoulpee Uz

@ =5 onlh - Latal sty
e Tl =1p TR

|2 L @ 0 -1 2

divis ¢ 1

divis : 3

divis s 2

divis g -1
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Dividing the last matrix by the last divis we get ¢

2 A
it = S - 13
0 il -2

II.1l. Correction of the solution by iteration.

Let us have the following systems
AX+ B = 0

From the very beginning we cam not guarsntee thab all inter-
mediate results will be integers. Therefore, it is expectable
that these results will contain fractions which need not to
terminate, i.e. Hhe number of decimal places representing this
fraction need not to be finite. Since the computers represent
numbers by a fixed finite number of digits, such fractions will
be cut off at a certain decimal place and the last figure to the
right is rounded off. This may result in an accunulation of the
rounding error in an algorithm so that the results will not be
accurate to all available decimal figures. To compensate this,
the principle of correctors is introduced. It enables us to
improve the results by adding to it certain correctors which
are computed iteratively.

In the case of a system of linear equations le® Xﬁl) be the
first result of solving this system by the method of Gauss-dJordan
Since X(l) is not the exact solution, substitution of X(l) in the
given system will nobt Pulfill it,bub certain residues R‘M) will
appear, i.e.

Aax) o, 3 - 8,
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Suppose that the exact solution is

X = X(l) +§ X(l‘),
Whereﬁ;X(l) represents the vector of correctors.
Hence, substitubting this in the originsl system

& X+ B = 0

we get

a@® SSx1)y 4+ B = o

A X(]‘} + A?X‘il} + B

]
(@]

or

S 4 g . o

In other words, after obtaining X(lj"fcr'thE“first approxima-
tion of the solution, we substitute it in the oﬁiginal system and
calculate the residues Ril)o With Rﬂl) as new constants we
compute the solution &f the last system (which has the same’ 7 _.
- matrix as the original system) for the correctorsﬁixcl), Addihg f

these correctors to X(l) we obtain a better solution X 2 o

This procedure can be repeated several times to obtain new
ﬁ; (1) 55 (2) (4
correctorso X “, X gcﬂx “g 0o and sc on,

This method is very efficient and enables +o improve the
results to any degree of accuracy we want so long the whole
iteration process is convergent.

As a numerical example we solve the following systems



1 )

x= |[137) 0.72993 | O 0072993 @
gt *2 i yo= (=100 |0.007 ~1.7299
y= |B7  ~100 ~1 -

£(1)

0049

il

Xl: !137) Oe 72993 180 039 @
o B
xp= [-100 0,007 247,13
For the first solution we gets
180,39
247,13
The system for the first sorrectors will have form
R4t Yo (o) (1) (2)
'%‘xlcl) 0.72993 | =0.57 0,0041606 =7 47054
<= |-100 ‘000073 0.49 | 0.07394 | -10.562

The solution Xgl) will be

g (1) : :
Xy =7 . 7054

%X(l) = % (2)
25

=10,562 y



The better solubion X&) ig

180093 oy 707054 172.68
X(a) = X(l) +%X(l) = =
247.13 - 10,562 256.57

Repeating the whole process again we get.

17501
3 - 3@ S
R e 2
The residues in this case are:

""Oo Oll
2(2)
-0,022

and so0 on.

IT.12, The Method of Iterations:

We shall pass now to a description of itergtive methods of
solving systems of linear equations. These method give the sol-
uticn of the system in the form of the limit of a sequence of
certain vectors, the construction of whichiseffected by a uniform
process called the process of iteration.

Let the system of linear equations be given in the following

forms:
X A= Aot X,

where A is the matrix of the coefficients, F the vector of the

-~

constants : _
7~ Let us construct the indicated sequence of vectors as follows:
in the capacity of an initial approximation let us take a certain
vector X° o chosen, generally speaking, quite arbitrarily. Next
let us construct the vectors



¥ _ 4 xl® |
(2)

b 2 = AX + F
<L

o o (+] c (-] o :'q< o

x(k) = AX{k =~ w
If the sequence Xgo}n Xcl}g 3006l g X(k)s ooo has the limit X,
this limit will be the solution of the system, for on passing
to the limit in the equaticn X(k) = X(kgl) +F ag k —>oo,
we obtain X = A X + F, which proves our statement.
11,13, Gauss-Seidel’s lMethods

Let a systems of linear equations be given in the form
X=AX + P,
where A is the given matrix, F the given vector and X the sought
vector with somponents (¥, o.. , X Jo
s i
The iterative method of seidel iz reminiscent of the ordinary
iterative process, with this difference, that is computing the
kth approximation to the somponenms X:y one takes into considera#
tion the kth approximations, already computed, to the compenents
Xyg ooo By ne Explicitly, the computation of the successive
approximations is performed by the formulas
i=1 el
{k) > k) (k=1)
£ i R o B BTN Bl . XX L
1 ‘%;1 13 J =1 13 T il
n
(k3 o
(instead of by yjkj = gzqg 2 xgk 1) with the method of
= =k i

iteration).

i
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In a number of cases it turns out bhat the Seidel process
converges faster than the ordinary process of iteration. HNever-
theless, it does not always prove to have the advantage over the
ordinary iterative process.

Sometimes the Seidsl process converges more slowly than
the process of iteration. It is even possible that the Seidel
method may diverge while the method of iferation converges.
The regions of convergence of these two processes are different,
overlapping only partially.

Il.14, The Inversion of Matrix by Partitioning

The handling of matrices of high orders requires, as a
rule, a large number of operations. It is therefore often
convenient to reduce a compubation involving matrices of high
orders to computations upon matrices of lower orders. Such a
reduction c¢an be effected by partitioning the given matrices:
éach matrix may be conceived as composed of several matrices of
lower orders, and Hhis subdivision may be carried through in
many wagysfor examples

(211 | %12 =13 2 R e L | W)
‘_,-pil Cegpe T RO, e Ve Lo ]

2214 %22 Far = BHer T2 e eeaan
| ot \
! |

%51 %2 %33 S | \f’ﬁ:; PeGoRE earere B4 |

83 3o | B3z 2y

e N -:---n-ﬁﬂ- - e soel WS- 2

S afon } 453 S

]

t
j-"730 %50 WRE SRl

~ b
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46
12) We form the matrix
0.69785 -0,15482
(D-CALB) =
-0,15482 0.53%222
and find its inverse
1.53183 0.44560
F e (D igkleprases
0.44560 2.00855
3) We compute the matrices
- ~1.01148 ~0,26142
M = -NCA =
=1 .37834 =0, 44745
= P - ~1.01148 ~1.37834
=0,.26142 =0 44745
s s o 2.50757 ~0,12305
K=A"=A"BM =
""0 o 12505 l ° 53221

The sougth inverse matrix will thus be:

2.50757 -0.12305  -1.01148 =-1.37834
~0.12305 1.33221  -0,26142 =0.44745
s~1 | -1.01148 ~0,26142 1.53183  0.44560

-1.378354 -0 44745 =0.44560 2.,00855
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Where cij - Ail Blj + A.ia .Bza- + cee T Aik Bka- (i,j:l,lon,k)

The last formulae show that operations with matrices parti-
tioned in the manner indicated are to be performed just as if
in place of eafh submatrix there were a number.

As said before, 1t is sometimes expedient to partition
a matrix before inversion. Let us examine the formulae
for inverting a matrix of the ath order partitioned into

four cells by the scheme

where A and D are square matrices of orders P and g3 p + ¢ = n.

Let us seek the inverse matrix also in the form of a cellu-
lar matrix:

K and N being again square matrices of orders P & q.

In conformity with the rule for multiplying partioned matrices,

the following matrix equations must holds

ACEL e pnE R =
AL + BN
GEK .+ ~D M
CL <+ DN =

L]

i
H @ o H
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2

Multiplying the third equation on the left by B D~ and

subtracting it from the first, we obtain

& o = BB 10 £)o K ey

whence
X = (Ao pmee @y,

Furthermore, from the third equation we find that
¥ow = D Gk

In like manner we find from the second and fourth equations
that

N (DmCA&lB}dl

and
e oy U S

- Of course these formulas have been derived on the assumption
that all the indicated matrix inversions are realizable,

The inversion of a matrix of order n thiis reduces to the
inversion of four matrices, of which two are of the order p
and two of order q, and to several mabrix multiplications.

The formulae developed above cen be altered so that for
the computation of the matrices k,L,M and N only two matrices,
of orders p and g, meed be inverted. For, as can readily be
verified,

N =(pC i tme BN A

L o kRSN ; R T



and, analogously,

K = (A- B0 L)l , - Bz KB -

1}
i

M=-DlCEK , Rebr-pler,

The last formulae show that the method of particitioning
is convenient by employed when any diagonal cell is easily
inverted.

Let us take as@n: example the inversion of the matrix

1.00  0.42 | @.5h 0,66
0.42  1.00 0.32  0.44
0.54  0.32 1.00 0.22
0.66  O.44 0.22 1.00

The computation will be performed as follows:

1) We compute the matrix AL
1.21418 = 0,50996
A_Ql = ‘
~0.50996 1021418(/
and form the products
0,49247 0.57698 0.49247 0.11316
oy P lenEl =
@i 5ile 0.19767 0,57698 0.1976%7/,

0.30215 0. 57482

-1

G A B =

0.37482 0.46778 i
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~1{2) We form the matrix

0.69785
D-CALtE =
-0,15482
and find its inverse
1.53183
B e (DL gy
0.44560
3) We compute the matrices
= ~1.01148
M = -~-NCA =
-1 37834
— Tl P ~1,01148
-0,20142
and
250757
E= KT - 1" BN =
«(,12305

The soungth inverse matrix will thus be:

2.50757 -0.12305  ~1.01148
-0.12305 1.23221 7 S0,26142
s~ - | -1.01148 —O.26IND 1.53183

-1.37834 =0 44745 =0.44560

-0,15482

0.53222

0.44560

2.00855

“"0 026142

-0 44745

=1.37854

=0 44745

-0,123505

1. 55221

-1.37834%
—0 44745
0.44560
2.00855
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CHAPTER IIXI

THE PROPER HUMBERS ANB PROPER VECTORS OF A MATRIX.

ITI.1 The characteristic Polynomial Proper Numbers.

The equation

] a1 -3 a1 oo By
%21 R SRR AR
o W e E ety - 5, - e ° =
Ent %n2 e ahn"}‘ ‘»l

-

is called the chara¢teristic , or secular, equation of tThe
matrix A = (aij); The left member of t]_:lis"equation, which

may be written in the abbreviated formép{dj={A- N I| , bears

the name characteristic polynomial (or gharasteridblic "fma(’:t;_dﬂﬁ
of the matrix. The Toots of the characteristic equaﬁon are
called the proper numbe®s (or characteristic roots, latent
roots, proper values, eigenvalues) of the matrix A.

III.2. The proper vectors of a Matrix.

By a proper vector characteristic_vector, latent vector
or eigenvector) of a matrix A is meant any non-zéro vector
X such that-

A X o >\X,

Where\is any complex number.
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- IITI. 3 Determination of The proper Numbers and Proper vectors
of a Mabtrix. 7

As has already been defined, the proper numbers of a matrix
are the zeros of the characteristic polynomiale(M,i.e., the
roots of the equations

P () = |4 =)Mo = €™ [)n-—pl 5\“'1-....» p;\= 0. The

directgomputationof'the coefficients py is extractemely awkward ¢
and requires a huge number of operations.

The determination of the components of a proper vector
requires the solution of a system of n homogemeous equations
in n unknownss in order to compube all the vector of a matrix,
one must solve, generally speaking n systems of the form

(_Aw')\i i Pl o)

where Xi = (Xli, o3 9 oes s Xni) is the ith proper vector
of the matrix A.

As in the preceding chapter, we shall distinguish two groups
of methods: exact and iteratiwe. The exact methods, when applied
to the first problem, will gives more or less convenient schemes
fpr determining the coefficients p;o The proper numbers will
then be obtained as the solutions of an algebraic equation of the
:117-E degree.

The iterative methods make pessible the direct determination
of the proper numbers of the matrix, without resorting to the
characteristic polynomial. The comvergence of the iterative
process is determined by the magnitude of the ratio of the
moduli of different, neighboring proper numbers, and may be
very glow. A proper vector is computed simulatneously with the
proper number to which it belongs. As in the solution of linear
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systems, the chief merit of the iterative processes consists in
the simplicity and uniformity of the operations to be performed.

In gll of the following sections we shall assume the elements
of the matrix to be real.

IIL.4, An Exact Method,

Consider g matrix A, whose proper numbers and vectors are to
be determined. Construct the matriz ( NI - A), the inverse of
which ()\I—A)_l is called the resolvent of A, Hence, we have

EATL = LT — )=t =T

We shall show the steps of

=1 3
A -— q‘ 6 ‘”1 9
4 4 1

We determine the resolvent of A by

(in compact form):

NI

@ 1 = = fain s,
4 ()ss) 1 5 s | 0
~4 4 (N-1) TR e

-1 L i Q 0
>?~7,\+10 (A =5) =4 =)+l O
(-4+8) (K234 o -yu

calculation in an examples

/ A-1 1l =5t
A) = A P i
K ~4 4 A=1

the method of Gauss-—Jordan

divis:zl

diviss(A=1)
divis

(3= 7N 10)

Resclvent = (th--*-A)—l

(= M+5)
().%:2)-33
(4 = 8)

(N=5)
(=N +5)
( )‘\2+\A +10)

¥ - 8% + 170 -10 = ())



=50~

As already has been defined, if)\ is a proper number of A,
then, |\ \I-A| = O and hence | (N1 - 07| will ve infinite. In
other words the proper numbers are +he zeros of the common
denominator of the resolvent, i.e. the zeros of the last divisor.
Therefore, the last divisor is nothing else but the characteristic

polynomial of A. The zeros ares

Xl = g ):2 S Es A5 = 1 (proper numbers) .

In order to determine the corresponding proper vectors we
determine the partial fractions of the resolvent:

Resolvent = 2 Fsy Y P LX)
i=1 A= Ai G EN)
Since the %i are simple, therefore,
PC Ng)
Fi = = e
& ()
. ( s B R | Duocic-1. a il
=] =l 15 1 0 1 -1
Regolvent = A +
e it = R L N R L
_ B .0 N
g s L 1 0
A AR R

The matrices F; are called Frobenius covariants. They have the
following propertiess

a)ZFi = I
B) 1o
c) FiFj:.:O Por. 19 £ 3
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We shall prove noew that the column vectors of the Frobenius
convariants are the proper vectors of A. If*{)\) denotes the
characteristic polynomial of A, then, we have ‘

s
CAEREL L e i

Multiply both sides oy 4.<p ()

ks OO et S R A b (W)

Denote by B ( » ) tha natriz g () ) Ly T A)”‘i

4
el Bfi}‘;;n?’ = Ap(Ay) k)

In general, ws have
(M - a)-2 (N - a)E
Ml = XOre o

SO &4 (N =)™ = NP(ACRI )™ - PA) I

L4 =

v O o - —eon 1
T
A ? f\ XI..}' F'

R g}‘w =>1 = (xl)

Faw
ﬁ=}; @? i\xiﬁ o

/
Ifch ( hy) # 0, thea we getb
A Fl B )\-:J F.

e o



Lot

. other words the columns of the matrix Fl are proper vectors.
the same manner we prove the columns of the other Fi are
0 proper vectors.

" 5, Determination of Proper Numbers and Proper Vectors by

Iterations .
Let A be the given matrix and Xo be any vector. We construct
et of vectos Xo, Xl’ Xeg ecao €LC, S0 that

7 Xk+l = A Xk

se will have a definite limit (and that the proper vector
corresponding to the largest proper number‘xl in absolute value)
the following twe conditions are staisfieds:

.) The proper number’kl‘of largest absolute wvalue is distinct
rom the others, :Loe.,\k )\.1\>\‘\2\> a'n o o cumlElics

) The starting vector Xﬁ should not be perpendicular to V?

s proper vechor of the transposed matrix which corresponds to the
ne proper number )10 :

In this case we have for the proper vector

k2 vy {TQEK

and for the corresponding proper number:

S s s S
Ko g
A = lim I_Xk-s-ll
1 g —poe | X |
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