Memo. No. 569

DIME = SHARING AND
INCREMENTAL COMEUTATION

May, 1965

LIONELIO A. LOMBARDI

Operations Reseacch Center

s

Summary
This paper contains
. Proposgnls for the design of bulk storags devices sult-
able for multiple-sccess computers (sections 3.1 amd 3.2).
The same kind of bulk storage would also 1) allow for
implementing effective extensions of memory by means of
Mpage turning" techniques (section 3.3) and 2) on-lire,

real-time management information systems roughly as

inexpensive as batch processing systems (section 5).

. Pxtensions of the above concept to & gereral point of
view in computer design (seétions 2 and 4) which stresses
considering interfaces between functional elements as
independent functional elements ("buses"). This point of
view might be of some use mainly in connection with the

design of future computer utilities.

e Tntroduction and outline

So far experimental multiple access computers have been built by
ndapting and patching commercially available pisces of equipment which
had been designed with botch processing in mind, Preliminary experience
with them is already able to indicate which type of building blocks of
computer can be utilized without major chenges and which ones need
redesign,

This report is aimed at submitting to computer designer and
product planners some design patters of some computer elements that
they might consider when facing the problem of designing computers
primarily suited for a multiple-access usage with real-time response.
However, in preparing this report, multiple access has not been the only
advance in computer technology thet we hed in mind. Multiple access
aims at giving direct, renl-time access to a central computer with a
large number of programs to users located at terminals easily accessible
to them, But here we consider also the natural step beyong this, namely
allowing independent zomputers to communicate with each other on a real
time basls in order to pool their respective power excesses, speclialized

performance and libr:ry programs. This concept of computer network is

certainly not new, Tts main interest perhaps consists of leading to the

development of computer utilities (as opposed to

computer centers), analogous to the electric power or telephone utilities,
A second interest consist of the fact that multi-location computer networks
are amenagble to swrvivabilitv measures against total breackdown which are

more difficult to impieupnt in Eompﬁter centers.

The reason why we are considering such two advances together is
that there is a considerable overlap in their peculiar requirements on
herdware design, The main element of these overlapping requirements,
which contrasts them with the ones of batch-processors, is the need of

a varisble, easily controllable and potentially very high rate of

communications between

. The computer and the user at the terminal

. The computer memory and the bulk storage

. Independent commmicating computers

In synth=sis, they require special design features in the interfaces
between modules, no matter whether those modules are central processing
units, terminals, memories or bulk storages.

Irt us consider a concrete problem which is hampering the development
of our multiple access facility at M, I, T., namely the one of the communi-
cations between core memory and bulk storage. In a time-shared computer
frequent swaps are yequired between them. However, available bulk storage
devices kave a single f{or few) interfaces (racks of heads, arms, combs, etc.)
which allow to retrieve or bring information from or into bulk storage.

This slows down the oreration considerably. If the quanta of time allotted
to each user are shorf: and thg number of users is large, the frequency of
required swaps increases to the point of becoming a eritical facter. Th¢
main problem is not the one of the rate of transmission, but rather the
one of the access time for gearches. More specifically, seerches can e
performed only serially by a gingle interface (in the case of the M. I. [.

facility, at a rate of the order of 10 per second a2t most). What is reali\;'_;

- 4 -

needed is an interface element which is in some way independent of the bulk |
infermation support itself, so thet further interface elements can be easily
sdded in order to share the heavy load of the searches. This is possible
only if the usage envisaged contemplates searches which are originated and
executed independently and simultancously as opposed to being cascadeds
This condition is fully met in the type of usage proposed in the examples
of sections 3.2, 3.1 and 5.

9o sections 3.1 and 3.2 of this paper will be devoted to discussing
how bulk storages and their interfaces should be designed in order to meet
the above goals. The same kind of storege also will allow to solve the

problem of page turning, as discussed in section 3.,3. Bub more important

of all, it will allow to overcome the main obstacle to the large scale
adoption of on-line real-time management information systems: for this
see section 5,

The above outline of a concrete problem and its solution leads to
the thinking of interfaces no longer as appendixes to other functional units,
but rather as actual, full fledged, independently designed, functional units
(modules, if one wants to call them so) of systems, Now, we ask, is it
profitable to extend this philosophy from bulk storage imterfaces to all
interfaces in a system? In most cases we do not at present have a pressing
need to do so. Bubt sﬁch need might arise when the time of thinking of :
computer utility networks in concrete terms will come. So we devote section
2 of this report to a rother general and idealized, but unified, preliminary
discussion of concepts along these lines, Such discdé‘s“:}on is based on the

following assumption: s “

y

These are two features common to the desipn of most eomputer
systems which we should consider changing if a leap forward 1is to be mad-.

The first, or chartered interface structure, is the reliance on a predetcr-

mined, frozen system of communications, or interfaces, between operaiional
elements, which can only accommodate functional elements up to a certain
prescribed number and in certain prescribed configuration types: this.
allows for the availability of reduced and inexpensive versions of potern-
tiaily large system (i.e,, it allows to start sma-ll), but does not provige

a good vehicle to grow either big or along unpredicted patternm. The sesond,
or hierarchization, is the necessity of some kind of cemtral supervisory
control (hardware and/or software) which assigns and monitors the tasks gf
the different elements: besides moking survivability of the system contingent
upon the constant flawlessness of the supervisor, such features limits the
growth of the system to the size or confisurations that the supervisor canut
handle, PRoth such features sre a left-over of the time when designers ware
focusing on the batch processing performance of accentrated (packaged)
computers, aimed 2t batch processing rother than on cor!g‘mters which should
primarily interact on a real-time bosis with their (buman or automatized)
“environment,

The concept that we propose as replecement of the first feature (u
the one of independent interface, here called bus, This discussion is foin-
forced by examples of design of accesses to bulk storages {section 3.1) ¢nd
terminal links (section 4). However, the second example is substantially
less specific and concrete then the first, due to the present lack of an

appropriate basis for experimentation.

The proposed replacemrnt to the second feature of batch processors
(hierarchization) consists of providing for all coordination decisions,
such as those pertaining to priority or storage allocation, to be made
locally, with reference 1limited to the part of the system which is direct:
eontiguous to the particular point where the decision is made, This is &
to say that central supervision is always a bad feature. Simply, superv:
is a metter of installation policy and not one of systaﬁ design., So sup -
visory featuresg, when desired, should be built as an overstructure of ¢rstems
as opposed to being intimately, and hence rigidly, imbedded in their basic

structure,

2, Three types of modules

Here we will present a rather idealized woy of looking at the modules
of an informrtion system. The purpose is to provide e freme of references
for the following sections.

We w111 consider three types of modules as being parts of a system,

nomely buses, transducers and memory areas.

2.1 Buses

The nﬁz‘msﬂ of a bug is to transfer informstion between one set of
modules to another set of modules.

Fxamples of buses in conventional computers are: Buffer registers fo
core memory imput-output. Buffers of input-output units. Staticizers or
buffers of input-output terminals, Iogical (one-message-at-a-time) channels
in muitiplexed tranémission systems. Arms, combs, traps, racks of read-
write heads or junctions for input-output to ‘drum, disk, magnetic card., .
tape drun (c.g., FACIT Carousel or IBM 2321 Data Cell) or delay line storc-=e.

Bach bus may include

1) A bit which in on if and only if the bus is busy (busy bit).

' i1) A register {(gource register) devoted to carrying the address eif

the unit (and 1oybe the address within such unit) from which the
informtion to be transmitted comes,

111) A register (destination register) devoted to carrying the

address of the unit (and maybe the address within such unit) to
which the information to be traonsmitted should go.

iv) A register (continuation register) to carry the address or

indiecation of the address from which to resums execution of the

program module which has been interrupted in order to execute the trans-
mission. (in some cases, namely when either of the units between whi:h
informetion is transmitted is a memory aren, this item can.be repiaC€d
by a string of bits of such areas, which is addressable through 1) o
i1) above).

v. A signaling feature (interruptor) which triggers the resumption

of execution of the interrupted program.

vi. The equipment to actually carry out the transmission.

tusntitative paremeters which measure the performarce of a bus are

i) Tts source range, or size (in bits) of the part of the system

(contiguous modules) from which information can be tfansmittcd through
{t. Sources which sre storage areas should be measured by the sum of
their capocities in bits, S weces of other kinds (transducers or other
buses, as well as memory sreas which are considered indepemiently of
their capacity) should account for one blt each,

11) Tts destinntion range, analogous to the above, hut in the opposite

direction.
i11) Tts bit rate (measured in number of bits per second) which a bus
transmits.

iv) Tts messnge rate (measured in number of messages, each of one bif,

per second) which a bus can transmit. The message rate, which indicates
how many gcecesses per seﬁond a bus éan exeeute, is ruch more significamt
than the Wit rate for buses such as bulk random access storage accessing
tools. The message rate 1s a stochastic variatle which depends on ths
source and destinaotion of the messeges: 1t should be noted by its mean

value, ond perhaps variance (the code and parameters of a probability

distribution may be informative in some cases).

A particuler kind of bus is a priority scheduler, which assigms

availoble modules (of any of the three types) to a program module which
request some, The source range of such a bus is the number of modules
which can request its services. Tts destinstion range is the number of
modules that it can interrogate for availability. Tts bit rate is unin-
formative since such bus transmits only the address of & module per message.
Tts message rate is the number of assignments thet it can execute per $econd,
4 The design of priority schedulers cen vary extensively. The field
is quite well known due to half a century of research by engineers and
mathematicians analyzing telephone networks. What is common to all
priority schedulers is thet they chould assign a module of a particular
4 category whose busy signal is of f to one of the modules which reguested
it. So a pricrity scheduler should be able to

3) Tvaluate whether a module belongs to a given category

adas

§i) SGense its busy bit

g i41) Assign modules and initiate operation.

There should be a criterion for the assignment of modules, which
ghould tak: into account both the priority of the requestor arnd the
varisble load on the requested modules (e.g., a multiplier should
be assigned to a program module asking for the execution of a sum
only conditional upon 2ll adders being busy and the requester
having good priority level). All we can say in general 1s that

design simplicity rather than priority cptimality should be the

criterion in designing priority schedulers.

h |

2.2 Trangducers

The purpose of a transducer is to transform 1nfo;mation upon
request, ‘If such transformation depends only on the information which
is being supplied the transducer is usually called combi;'mtorial. PEs
the tronsformation depends only on the information which is being supplic!l
and om the contents of internal memories of the comsuter the transduee? is
called sequential., In general, such transformation may 8lso depend on
exogenous variables guch as real time gauges human intervention initiated
independently or upon request of the transducer, load to which the trats-
ducer is subject, or input of digital information from other sources.

Fxamples of transducers are: Adders, multipliers, dividers, ete.
Complete arithmetic units., Decoders and transcoders. Control units,
Tnput-output terminals. On-line terninals with human operators. Complcte
autonomous computers.

Txactly like a bus, a transducer may include a busy bit, a source
register, a destination register, a continuation register, an interruptox,
and the equipment to carry out the transformation. Again not all of thest
ports need always to be presant (in some cases some may be borrowed from .
contiguous buses). |

Among the quantitatiw parameters which measﬁe the performance of
a transducer we can again 1ist the source range and destination range,
defined as the number of (contiguous) buses (i.e., buses which can reath
it and bring information to or retrieve information from it); and also the
{nput message rate, input blt rate, output message rate and output bit .
rate, all obviously defined (not 01l of the latter four parameters wre

very informative for some types of transducers).

Ao

We already see & considerable overlap between buses and
transiucers. In fact the distinction is more a question of emphasis

than a dicotormy. One can easily discuss buses &s particular trans-

ducers. We have chosen 1O do otherwise solely in order to stress the

em—

modularity of the system of interfaces, which is composed of buaes.
Other quantitative parsmeters can only be given for particular trans-
ducers. Yor example, for an adder we can conslder a performance parameter

guch as its speed, or n¥k, where k is the number of couples of numbers, of
whit‘:h the largest has n bits, that it can add in a second (then the speed is
gignificant only to “the sxtent to which n¥k is independent of n). For a
mtiplier, we can define as its speed the number m¥n¥k, where k is the number
of miltiplications of & nurber of m bits times one of n bits thet it can execute
in a second (significant only to the oxtent to which m*n¥k is independent of

m and D). {

Tn general it is not reasonable to try to assign aggregate quantita_tiw
measurements of performance to complex, giversified transducers: this is :
possible only for simple ones. Fowever, from the standpoint of this discussion
we may teke one kind of aggregate measurement of performance, narely one

referring to transducers which perform analogous function (i.e., they are

ennlogous). Vore precisely, we con say thet if all transducers ag of a se‘b)

of analogous transducers have the same source and the same destination {i.ee,

the sets of their contiguous buses coincide), then, if P(zs) is any per foraanee

paramrter of aj,

P(a) = 1P(ey) (2.2.1)
The above sentence (a useful general consideration and attitude, ratder

-],2 -

than a theorem) means that for most irtents and purposes the performance
parameters of sots of analogous buses which can always replace each
other by having identical means of access can be curulated. In many

cases, this rmeans that they can cumilate without interface overheadg

their capecity of carrying loads, in the pense thst, for exarple, if a
adequate for the needs of a program module z, then three transducers
identical to g with sources and destination common %o g are adequate
for the needs of three independent time-shared program modules identical
to z. (Of course, we refer here only to performance of the transducers,
not of their interfaces: such time-sﬁaring would require threefold
message and bit rate, and thus increasing the nurber of buses. the point
here is to disentangle bottlenecks created by the performance of trans-
ducers from the snes generated by interfaces, which ghould be congidercd
separately).

Tt should be stressed that such curmlation affects external
performance only conditional upon the clause concerning the
common sources and destination being satisfied: for trivial
that this point might appear, the fact of having systematically

disregarded it at design stage is one of the main reagons for

———— - ———— et o b i gt

the unbalance and ripgidity of some information systems.

gl o Ve (5

a3 ; Memory areas

The purposes of memory areas are 1o store modules of operating
program, temporary data on a stand-by basis, eand extensive data basges.

Txamples of memory areas are segments of core, microfilm or any
kind of reaf-only memory, tracks or sectors of tracks in disks or drums,
bites of delay lines, physical blocks of magnetic tape, tape strips on
Data Cells, or magnetic cards.

Again, memory arcas should in some cases be provided with a busy
bit and source and destination registers. Continuation registers and
interruptors are needed only in particular cases, namely when merory
areas are to play a control role.

Tn addition, a memory register should be provided with a progran
fegis‘ter which, when the memory srea is busy, carries the identifier of
the program module or user which is using it: program registers are use-
ful mainly for memory protection. They can be shared by close sets of
rerory areas in sOme cases,.

Significant parameters of a memory area are its capacity in bits,
1ts gource and destination ranges (i.e., number of contiguous buses) and
the bit rate at which information can be written into or read from it,

The assignment of merory areas to modules of programs ghould be

handled by merory essigners. A memory assigner should keep a standing

1¥8t of available (free) vemoi'y'areas and a 1list of the program modules
to which busy memory areas belong. Tt should assign them much the same
way as a priofity scheduler assigns transducers, switch requests by
converting relative addresses, and protect from attempts of accessing

memory areas by foreign progran modules by mistake,

S

The important point here 1s that merory assigners are themselves

geparate modules, rather than appendixes of memory ereas. It is convenient

to consider them as buses, because this allows unified discussion of the

operational range in terms of the above d~fined source and destination

range of buses and memory ereas (this is the reason why we also like %o

view priority achedulers as buses, while others right prefer to gonsider

them as transducers, due to the fact that they ectually transforn

information).

When we measure an entity, we generally measure bottlenecks,
averages, and interfaces. In the case of an information system,
the measurement of the work of buses can be informative in determining
the picture of the data flow. So we might want %o have meters, or
modules which measure the work of buses and keep approptiate
accounting. To be consistent with the above distinctions, such
meters should be viewed as merory arcas, although they don't look
that way. (4 meter can also be viewed designed as a small memory
area where cumlated data are stored, which communicates through |
ad hoe buses with an ad hoc gauging transducer).

Tn the case of an information utility, meters used for billing
and Teporting should be placed both contiguous to the buses which
tranemit information between the customer and the facility used
and contigmus- to the priority schedulers and memory aselgners within

the facility.

- 15 =

2.4 Survivebllity and supe pion

Survivability of an information system should be based on.tho
fact thot priority schedulers and memory assigners should keep staniing
information (either exogenous or originated by internal automatic
verification) of all modules falling within their scope which are
temporarily or permanently out of order or permanently assigned to
high priority functions. S0 survivability can be graduated in terms of
partial overlap between the gscope of priority schedulers =nd mcrmory
assigners.,

Needless to say, also the assignment of priority schedulers and
rerory assigners to program modules should be handled by autonomous
modules whenever there is overlap, |

Survivability is one of the reasons (not the only one) for
considering designing complex information systems which can work without
a central supervisor, This is not to say they cannct accommodate a
supervigor, but rather that the desirability a‘nd features of a supervisor
is a matter of policy and not one of system design, so that decisions on
this issue should be made by the computer user, not by the supplier, The
latter should only be able to allow any system to accept supervision, if
so degired. .

Supervision should be based on collection of information
from the periphery, meking decisions centrally and dispatching
them to the periphery. Information for decisions should be
collected by meters as specified above amd should be routed

to wherever it is needed by ~lements of the netwoek (buses,

-y

Bl

chains of buses, ete,). Supervisory decisions, 1ike all deeisions,
are made by perts of the network, which differ from the remainder
of the netwoek not primarily for the way thoy ere designed, but
rather for the particular way they ere connocted. Then, decisions
based on such information should be routed to the periphery in the
sere way. In many cases it scems that a good wey of executing
decisions is by controlling the behaviour of memory assigrers and
priority schedules (although we bhave no experdiepce =t this stage

to substantiate this stetement).

el L gt

2 Problems of gband-by information

Ve will dfscuss now how a random access (disk, drum, delay line
or systems of magnetic cerds or tape stpins) storage able to meet the
requirements of multiple access computers should be designed and how
two well identified problemsl which hamper the dcvelopment of ‘eurrently

working system can be easily solved.

3.1 Stand-by starage

A disk, drum, delay line, megnetic cerd or Data Cell Drive is a
system of memory arcas. The arms, combs, junctions, traps or hcads which
transfer information to and- from it are buses. So, in principle, it is of
some importance not to tie a priori these two different kinds oi; modules
together.

Tf the stand-by storage relies on mechanically moving é:rms, traps,
combs, or racks of heads, thon cach of such arms or corbs, along with the
lopical items discussged in 2.1, is a separate bus, and their assignment
<hould be handled by priority schedulers. The disk stack, drum, tape
strip or card system should be designed to accommodate a variable and
potentially very large number of arms, combs, racks or iraps,

More promisingz is the case of stand-by storages without moving
parts, where each track is under at lecast one steady reading or read-
write unit. (Incidentally, this is always the case for delay line
storage). Then such units should be viewed as parts of the memory arcas,
while the access buses are strictly clectronic, More precisely, buses
consist only of their logical parts (busy bit, source, destination and

i e et s e s A S e e M 3an Y . Phe message

=18 =

rate cen be rogulated by the spirming speed of the disks or drum or
by the frequency of the delay line, by the number of reading wmits
per track or line or by the number of buses. The advantage of solutions
without moving parts are low cost per access bus and wide boundaries
within which the number and type of buses can be chosen and expanded.
Such a stand-by storage requires asyncrouous tipe—shared
operation among progran modules (belonging to the same or different
programs). Coordination should be handled by providing program mdules
with the ecapacity of effectuating some elementary operations that we
will sce exemplified in gection 4 and J. such operations can be simple
and decentralized under the assurption that hardware modules are
provided with the prescribed logical items (busy bits, source, desti-
nation and continuat:fc:n registerc, interruptors). 8o effective random
access storage should be designed by keeping well in mind at least thig
aspect of the functional relationship between hardware and software.
gome cormercially available stand-by storages (disks or drums

especially) have multiple arms or combs which are organized in a way

set of arms or combs constitutes a unique bus. Such systems have
1 been dsvaloped for a purposc different from the one that we hawe in
in mind, namely the one of maximizing access specd. Iowever, in
general, their message rate is rigid, so that they do not provide

a good basis for multi-access or multi-computer systems. In fact,
the message rete in this kind of stand-by memories can be incteased

only by multiplying the number of corplete disk or drum storages

that they always loock simultancously for the same memory erea., ©Such s

=710

units. Put this may involve scattering data in a memory space
wider than necessary. In addition, the limited range of each
bus with respect to the total memory available (there is no
overlap of scope what so ever) causes bottlenecks whenever two
memory arcas on the same unit need to be searched. On top of
that, software supports for such approaches are quite involved
and generally not provided (indeed they cannot even be designed
efficiently unless provision for them has been made at the level
of hardware planning). 8o this short cut, which, incidentally,
is also constrasts with the efficient usage or.remayable disk

packs, is to be discarded.

R T T

a2 Bulk storage for multipic-access, time-sghared computers,

Experience with miltiple access, tirme shared computers shows that
the main bottleneck in such systems is the swapping of programs in and out
of core merory. In a typical stand by merory systen (drum or disk) designed
to accommodate only one accessing bus, the following typical situation arises:
when an execution guantum of the program module Ay has been performed, the
accessing bus gets charged with the function of moving Al to stand-by storage
and replace it with another program mdule A3, which ig in stand-by storage.
Tn the meantime, the computer proceeds to execute a quantum of another
program A,. The exccubtion of the latter quantum is generally over much
before the above swap is accomplished, At this time A, should be swapped
out and replaced, which is impossible because the unique bus is busy: so
the computer must wait, If the rumber programs in simultancous execution
is large (e.g., 100 or so) then, even if there are two or four stand-by
storage units each with one bus, the computer is idle most of the time,
The criticality of this bottleneck can be reduced only by increasing the
length of the execution quanta (thus decreasing the immediacy of man-corputer
interaction and barring out some possibilities of real time control) or by
increasing the core remory size in order to keep many programs in core at
the same time (which is most expensive) or by severly limiting (e.g., t¢ a
small multiple of ten at most in the case of an IBM 7094) the number of
similtaneous programs, which contradicts the very purpose-of =ultinle
access computation facilities.

On the contrary, by using a stand-by storage as described in 3.1,

the problem would be casily solved simply by installing a number of

&

ess buses such thet the sun of their message Tate a

rate match the anticipated svep frequency amd the Telated memory &

output, respectiwelys :

13

WL

e AL

3,3 __ Page turning

The problem of 3,2 is formally similsr and functionally jdentical

to the one of ona=level storages, (towards whose solution design of the

Ferranti ATIAS computer is a step forward bub not yet a satisfactory
answer). Upon simplification, this new problem can be described as follows:
the computer has only limited {expensive) core or film storage space, which,
however, is largely extended by drums or disks. The problem is to have the
hardware-supervisor system designed in a way to allow both programmer and
compiler to think in terms of having a homogeneous (one lewvel) core storage

of the (large) size of the disks or drums, and letting the supervisor take

care, at execution time, of always placing into the real (small) core
storage the particular section (page) of the program which is being instanta-
neously utilized, and reroving it after utilization (page turning).

Again, if one uses a conventional stand-by storage limited ta n buses
(n small, and p=l in case of the simplest version of ATIAS!) these will be
immediately tied up for swaps relative to page Al, by «vosbp, regpectively,
At the end of the execution of page A+ the computer must wait until a bus
is free. Unlike the problem of 3.2, this one does not allow a shorteut patch
solution such as lengthening the execution quanta, because the execution time
for a page is generally outside the control of either the programmer or the
computer, and is in most cases by many orders of magnitude shorter than the
time required by a bulk storage access.

Here again there would be no problen if the sﬁand-by storage were de-
gigned independently of its interfaces as outlined in section 3.1, beunause
in this case the message rate could be inexpensively matched to the antleci-

nated pape turning freguency.

» t\
9

R

C VA Parametrization of random access storage.

There foll&ws now a preliminery study for the parametrization and
measure of data processing capacity of random access data systems designed
as outlined in gection 3.1,

Given & drum or disk storage drive i of capacity V(i) bits, let A1)
be the sum of the average access time plus the time necessary for transmitting

an average length record, i.e.,

A1) 5 = 1 mean number of bits per record
message rate bit rate

4(1) is important in artificial intelligence where decisions are
logically cascaded (serial), but by and large of lesser relevance in geneTal
data processing.

Iet N(1) be the maximum number of independent accessing buses which
can be installed, and let C(1) be the cost of cach of them, Then the measure

of the top performancé (or power) of the storage systenm is

P(i):i= %%

while the masur'e_ of its dollar peyoff is

R(i)::= 1
A(3)c(@)

Thege are the important factors, not only A(1).
One must be careful in considering the case of a system with a sct i of
several disk storage drives, whose total capecity is
v(ii) = (1)

' One should not a priori believe that

P(S1) = P(I) (3.4.1)

= 9T 55

Formula (3.4.1) is approximately correct only for applications where
the principal file to be searched has a volume much greater than V(i). In
any other case, to make 1t true, that is, to make all tises of all drives
work in parallel, one should scatter the records of the file among all the
i forming 4.1, which has the drawbacks discusse‘d in section 3,1, For small
files a better formula is ;

p(o i) =vH) | (3.4.2)

Tn conclusion, random access devices suitable for time-gharing and
random access processes in general should have the following features:

a) Removable disk packs or drums.

b) Allowing for an arbitrary mumber of independemtly operating

accessing buses.

'¢) High velues of R(i) for a wide range of P(1).

- 255 -

be Terminal links for miltiple access computers

In order to make a multiple access computer serve effectively as
automated extension of tke human intellect for creative work or decision
making in research, education, engineering dosigning or management, the
comuter ghould be made easily, con‘binuomly.and indepeindently accessible
to a large and unboundedly expandible nurber of people yithout decreasing
its performnce/cost ra¥io. Some términals may be ‘sirunple, incxpensive t.y'pe-
writers; others ~dvanced real=time handwrifing récognizprs_. To be able to
distribute terminals adeqliately, one mst be willing %o pay the prj,ce consist~
ing of the fact that most of them will be used inf'roquently gnd on a rqther

unpredictable time schedule. The only my to make this price epproacha‘ble on

a large scale. pI‘Oductlon basis is to untle ag far as possible from the. termi-

nals all funcfbionai'umfs which can concelvably be shared by several of them,

nanely their buffers and Jinks to the computer networke

4 torminal consists of two buses: an npu‘b bus (keyboard, &/D

converter, 1ight pencil, pencil tracker, etc.) and an output bus (typing

part of a typewriter, p/A converter, CRT tube, incremental plotter, etc.).
These are the only modules that should be permanen,t_‘l_.y tied to 2 terminal
station, and thus the only ones for which scant usage is to be contemplated.
The typical operation is as follows: when an input bus i, is activated
a priority scheduler pys contiguous to i, as well as do other input buses,
should assign to i, an available link bus .'_il out of the set _Lli of all link
buges contiguous to 1.. (The bus il will typically be & wuffor register)e
Though its interruptor ,i-l_-_i will request the assignment by an available

1
priority scheduler of a transducer to perform the next step of processing.

SR [

i
For example, if i, is a keyboard, _ 1 will carry an addressed string
consisting of the quantum of information Just keyed in, together with the

identifier of the terminal to which i, belongs; then the requested transducer

1
will be a decoder or control unit (out of a contiguous set) which will deter-
mine what to do with the addresscd string (which may carry a signal, an
instruction, or data), perhaps asking other transducers for help by means of
a priority scheduler or appropriate software bus (supervisor). The
next steps might be typically a request to a priority schedulers for buses
and requests to another priority scheduler for an arithmetic transducer or/and
ta a memory assigner for memory areas.

In case 1, is a pencil tracker, ¥ -‘1:1 will carry a 1-bit signal, and it

1
will ask an available priority scheduler to assign to it an available trang-

ducer (specifically, an 4/D converter or special purpose computer) out of a
contiguous also to 21, able to transmit the tracking signals. Then the decoded
tracking signals will be further processed as in the previous case, where 1y

was a keyboard,

Similarly for the output bus o.: to perform output, if o requires

i 1

buffering (as in the case of visual displays), the neighboring part of the
network will summon through a memory assigner a memory area (buffer) out of
a set., In any case there will be a réquest for a link bus é.ol contiguous to
93, which in the case of buffered output will transmit a single signal to .
promote the request by o5 of a bus contiguous to both the buffer and o)
(alternatively, such request can be issued by the tuffer). In case of non-
buffered output, ‘:_ol will be used to directly transmit an increment of
output to o1°

Besides allowing the maximum utilization of expensive terminal

.

B A

processing and storage equipment possible under the eircumstances, the
main advantages of this approach is that it does not require any kind of
goneral, operationally expensive supervision which would limit expansion
and freeze the design pattern against unanticipated evolution. Instead,
with this approach all decisions are made locally (at interface level),
Fowever, not having a supervisor, increments of information flowing
through the modules of the network are in a sense loose, If there were a
supervisor, this would always keep track of what happens where, Not having
one, it is necessary to associate to increments of information identifying
references to their nature (i.c., instruction, signal, datum), thelr origing
and/or destination. Thus, by end large, informetion should circulate in the
form of addressed strings above introduced by an example. The basic concept
of addressed string can be used and extended in many ways to suit specific
needs, so it would ineppropriate to establish guidelines at this stage due
to the lack of a concrete testing ground, We will just mention the fact that
some trensducers should be enabled to perform the task of changing, augmenting

or abolishing parts of an addressed string other than the quantitative

contents (i,e., the part of it which would be the only necessary in a super-
vised, hierarchized computer netwoek)., They should also operate on the
addresses or other parts: thus, routing decision and message switching can
be made by transducers, perhaps with the aid of other contiguous modules,

Tt would be a mistake to view the addressed strings as redundant
packages of information, and to think that their use is a price that
one should pay in order to dispose of supervised computers, It lodks

like, but it is not true, that a supervised computer can proceed with

the bare quantitative contents of the information increments. In fact

-

et A—— . At TA

wiag s

at any instant of the operation of a supervised computer, the
information other than the quantitative contents (routing, descriptive
information, etc.) relative to all information increments present
anywhere in the computer, is actually availsble to the supervisor,
So the difference between a supervised computer and the one that we
are investigating is that the former disassociates, but does not
reduce the size of, addressable strings, and often keeps all informa-
tion but the quantitative contents in awkward places and disorganized
configuration, thus requiring and tying up expensive herdware and slow
software. Instead, the point of view taken here contemplates storing
11 information which is needed in a uniform, systematic end inexﬁen-—
sive fashion by using tho addressed string configuration. In a systen
designed from this stanipoint, expensive pieces of hardwere devoted to
processing information other than quantitative contents are surmoned
(on a time sharing basis) only when and for the exact length of time
that they are needed. So, against appearances, addressed strings are
a competitive advantage, rather than a disadvantage, of this new
point of view vs, the one of supervised systems,

Besides the quantitative contents, actual, relative or symbolic

addressers, and descriptive information, often addressed strings

should carry the identifier of the program module or user from which

they have been directly or indirectly originated. This feature allows
for a hardy way of allowing memory schedulers to provide for effective
protection of busy memory areas from mistaking invasion attempts by Ty

unrelated, similtaneous program modules. They could do this by

! - &

comparing, before erasing information, such identifier of the

.ﬁd&resaéd string which is requesting erasure wi'hh the -cé_»ntents

b < -

~ of the program register (see 2.3) of the memory area affeched.

30

D On-line Real-time Management Information Systems

During the last three years or so it has become frequent in the
trade literature to predict the advent and discuss the advantages of on-
line, real-time information systems. Such quite evident advantages to
management would be in terms of selective supply of information for decisicn
directly upon request, instantaneous evaluation of the implications of
proposed policies, immediate execution of decisions, reactiwe reporting on
the consequences of such decisions and maintainance of the data base conti-
nuously posted with new transactions. Their advent was predicted exclusively
on the basis of the desirability of such advantages and on the expansion of
computer usage that they imply.

Fowever there is an obstacle to the actual taking place of their
advent on a large scale basis, Iet us discuss such obstacles.

In such literature writers were maintaining that on-line real~time
gystem with a reaction time of the order of seconds (as opposed to hours
or days of batch processing systems) are inherently expensive, Ard they
could easily document such statements on the basis of available experinaptal
systems, :

But let us analyze why they are expensive. Typically, the arrival
of an exogenous message (transaction or request of information) into an
on-line real-time system causes a hierarchized and often farming out chain
of request for records of the data base, The data base is typically on diss
or drums, {in the futuie, perhaps, on delay lines)., If such disks or drums
have only one accessing bus each, retrieval of such records has to be ;eriaL
Using today's commercial equipment, the retrieval of data base records for

a single transaction requires typically a time of the order of one second

= 3 =
or more, while the related internal processing, which is carried out at elec-
tronic speed, generally takes no more than a few milliseconds, even in cage
that it is quite subtle, So most of the time the computer is idle waiting for
the drum or disk‘ access buses tlo retrieve information. There is clearly no
point, while waiting, in entering a new transaction, because this one would
do nothing but add to the current load of the accessing bus its own requests
of data base records. On the other hand, adding power to the computer will
increase the cost without enhancing performance: the bottleneck is not in the
internal power, but in the message rate of the accese buses of drums of disks.
Increasing the number of disk or drum units Qould be a poor approach, ‘na
discussed in section 3, (This last remedy has been compared to the following
one: Assume that Boston has too few taxicabs, so that people are delayad when
they want to go to the airport: then, as a remedy, let us build a second
airport).

Besides cost considerations, this situation also imposes a limiy of
performance of the order of one exogenous message per second to on-line real-
time systems, This implies that a common; valuable, integrated data basy
cannot be used too actiwely for supporting decisions made at differens po(ntg
and different level of an organization,

Tt is clear from the preceeding discussion 'bhad.:, however, high cogs
and low performance ceiling are not inherent in on-~line, real-time systeps,
but rather depend on the fact that the random access data base supports
currently available on the market, which have been designed primerily with
batch processing in mind, turn out to be not suitable for on line real tim
usage, More precisely, manufacturers today supply packages consisting of &

disk or drum with one or a small number of access buses. Instead, vhat lg

i

needed is independence between the disk or drum and its access buses, This
relatively simple system advance is perfectly within reach of present engi-
neering design, Its implementation would probably make on-line, real-time
menagement systems available at the cost and power of conventional bateh
processing systemse

From the standpoint of the user's system designer, the data base
support should be measured as follows: The total capacity in bits of the
aggregate A of all drums or disks should mateh the maxdmun predicted slze of
the data base., Independently from this, the interface ghould be sized ad
follows: let £ be the peak frequency of exogenous messages (traneactions or
requests for information) that the system should cope with, Ist 1 be the
mean nunber of accesses to the data base implied by a transaction and @ the
message rate of each accessing bus (supposed two-way for Vsinplicity). Then

the total number M of necessary buses is
M = %—- (5.1)

Notice that M does mot depend on the size of the date base. In desiening
the interface, one should try to minimize the cost for given M*m by chossing
m apptOpriPtely. |

Formula (5.1) is true if and only if every accessing bus can reach al
of A, If the range 5# each accessing bus is comparatively large end there 1
extensive overlap of range between buses, then (5.1) is still approxinately
correct for all intents and purposes of desiem. .

A problem arises when A is divided into sections for which the prosa-
bility of an exogenous message causing an access varies, In this case buses

mast be allocated in a way such that their ranges overlap more densely wiere

the probability of access is higher. More precisely, let p(a) be the

- 33 =

probability of a transaction requesting an access to the memory area a, and
p(a) the mean of pla) over A, Iet further‘ (a) and Tiq , (2) be the range of
8 (i.e., the number of access busés contiguous to &), and P (a) its mean
over A, Then an ideal distribution of aceessing buses would have to satisfy
&.(a) _ pla)

for every a in A. Clearly, due to the inherently discrete nature of modular

(5.2)

system s in concrete systems (5.2) can only be approximated.

let us briefly describe the typical operation of an on-line, real-time

management information gystem. Tach incoming exogenous ressage Iy is assigned

an internal (e.g., core) memory area 2y by a memory assigner. Then it is
processed until it is determined which kny records of the data base are relevant

to its further processing, At this point l(“l available accessing buses,

2;1, _-q;l, e -b-kr- are put in charge of accessing such records and memory areas
gil, 521'1’ S E;g are assigned and saved for receiving them. The busy bits

of such memory areas are put into the busy state, In the meantime the next
transaction r, is entered on processed like L, and so on for I, 4, te. As

soon as one accessing bus, say p_ij hag performed and its access, it interrupts
operé‘tiOn (as soon as possible) and transfers a record into _a;j. Then y’{i is
made available for further transfers, while the processing of ry is resumed
(notice that the data base record newly entered might summon further data base
records). The processing of any r; might involve several outputs into t}e
environment, summoning of transducer (e.g., adders) ard augmenting, reducing
or modifying the data base. This last operation is performed by putting to
the Mnot busy" state its busy bit and/or posting all of its contiguous rerory

assigners accordingly.

-34_

j In the design there is a lot of alternativwe as to where to place busy
bits and continuation registers., For example, busy bits of internal
memory areas can be replaced by internal memory of all the memory

'assi,gners contiguous to them, Continuation registers of Aisk or 3rum

‘access buses can be replaced by those of the internal memory areas

: from/to which they transfer, and so on,
The total number g of internal memory areas for given f is spproximated Yy the
formula
q="— (5.3)

whenever internal processing can be overlapped to input-output of data bage
records. Otherwise, if internal processing requires a mean of 1/i seconds prr
transaction, then

£*(n-1)

= -I_E_'-i-—— (504) ;

By comparing (5.1) with (5.4), for large n and i we can draw the followin{

Balancing rule: In an on-line, real-time system drawing from an extensiye datsg

base the mumber of internal memory areas_devoted to temporary data storage

equals the number of accessing buges of the random access storage,

The cumilative size ¥, (in bits) of the necessary internal memory ts givé_

5 N0 B (5.5)

where g is the mean size (in bits) of the records (transactions, requests ¢

data base items) weighted with respect to their relatiwe frequencies of Ocﬁﬁrence.
Finally, if the active programs which should be permanently in memry

require a total of p bits, the total memory size should be

Lo B

P

LIST as a language for an incremental computer.
k- » S e —————— :

Is CGaneral

The following two characteristics are commonly fourd in information
system for the command and control of complex, diversified military systems,
for the supply of information input for quantitative analysis and managerial
decision making, and for the complementation of computer =nd seientist ‘n
creative thinking ("symoesis") fiot, | |

1) the input and output information flows from and to a large,
continuous, on-going, evolutionary data base; :

2) the algorithms of the process undergo permanent evolution alrng
lines which cannot be predicted in advance.

Most present day information systems are designed along ideas proposey
by Turing and von Neumann, The intent of those authors was to automate the
execution of procedures, once the procedures were corrrplétely-determineiv Their
basic contributions were the concepts of "executable instructions®, "programt
and "stéred program computer". Information s‘ys‘tems based on this converiional
philosophy of computation handle effectiwely only an information proce:: which
1) is "self-contained”, in the sense that its data have a completely p2deter-
mined strucfure, and 2) can be reduced to an algorithm in "final" fomn, after
which no chanées can be accommpdated but those for which provision wa: mady in
advance, (Consequently, thé current role of automatic information sysem in
defense, business and research is mainly confined to simple routine “wctons
such as data reduction, accounting, and lengthy arithmetic computatins. uch
systems cannot act as evolutionary extensions of human minds in complx, Ch-n"'ing

environments.
Iist-processing computer languages £ ’7} have introduced a flexiile an

dynamically-changeable computer merory organization. While this fealus yorits

S

the menipulation of new classes of data, it does not solve the basle cormmuni-
cation problems of an evolutionary system. Fach progran must still "know"
the form of its data; and before any processing takes place, a-cogg;ete data
set containing a predetermined amount of data must be supplied.
Multiple-access, time-shared, interactive computers ¢8: cannot comple=
tely make up for the inadequacies of conventional and list-processing systems,
With time-sharing, changes in systems being developed can be made only by
interrupting working progi-ams, altering them, and then resuming computation;
no evolutionary characteristics are inherent in the underlying system of a
miltiple-access, time-shared computer. Thueg, as preliminary usage confirms,
multiple-access, time-shared computer. Thus, as preliminary usage confirms,
multiple-access time sharing of conventional computers is useful mainly in
facilitating debugging of programs. While such physical means fo! close man-
computer interaction are necessery for progress in information systems, they
are not sufficient alone to produce any substantial expansion in the type of
continuous, evolutionary, automatic computer service with which this paper

is concerned,

2. The problem

A new basic philesophy is under dewlopment for desigming automatic
information systems to deal with informatlon processes taking place in a
changing, evolutionary environment. fl,b',é:i . This new approach requires
departing from the ideas of Turing and von Neumann, Now the problem is not
Nexecuting determined precciwrus”, bLub wmbhew Mictesstiing proceb®es”, Open-
gndedness, which was virtually absent from the Turing-vom Neumrn machine con-
cept, must e in the very foundations of the new philosophy. .

The basis of the new approach is an "ineremental computer® yhich,

. =37-

{nstead of executing frozen commends, evaluates expressions under the control
of the available information context. Such evaluation mainly consists of repla-
cing blanks (or unknowns) with data, and performing arithmetic or relational
reductions. The key requirements for the incremental computer ares

1) The extent to which an expression 1s evaluated is controlled by the
currently availeble information context. The result of the evaluation is & new
expression, open to accormodate new inerements of pertinent information by simply
evaluating it again within a new information context.

2) plgorithms, data and the operation of the computer ltself are all
represented by "expressions" of the same kind, ‘Since the form of implementation
of an expression which descrites an evaluation procedure is irrelevant, decision
of hardware vs. software can be made case by case. |

3) The comon lanpuage used in designing machines, writing programs,
and encoding data is directly understandable by untrained humans.

While the Turing-von Neumann computer is computation-oriented, the
ihcremental“cc?rrputer ig interface—oriented. Tts main function i{s 10 catalyze
’Ghe open-ended growth of information structures along unpredictable guidslines.

Itg main operation is an incremental data assimilation from a variaskle °nviron-

ment composed of information from humans and/or other processars. &Etil\l, the
incremental compu'tér is a universal Turing machine, and can perform irithmetic
comutations quite efficiently).

Current research on the incremental computer is almed at degiening it
with enough ingenuity to make the new principles as fruitful as tk ones of
Turing and von Neumann (see ‘:'ltl and [51). Some of the main study EI'_das- are:

the design of the language; the class of external rectrsive functiont 214 a

mechanism called a discharge stack :2} for their fast evaluatiom the depign of

...‘7).8...

a suitable memory and memory adiressing scheme (the latter problem is being
attacked by means of higher order aseociation lists); saving on transfers
of information in memory and the use of cyclic lists; avoidance or repetition
of identical strings within different expressions through the use of short-
hards, and related problems of maintenance of free storage.

The following will ﬁresent a quite elementary, restricted and

perhaps inefficient version of the incremental computer based on LIEP.

" LISP is the currently available computer janguage which most closely

satisfies the requirements of an incremental computer system. The purpose
of this presentation is to demonstrate some of the concepts of intremental
data assimilation to scientists who are familier with LISP., Featuwes of a
preliminary LISP implementation can be used as a guide in the deve]iu;mnt

of the ultimate language for the incremental computera

S Aspects of the proposed solution

Various structures have been proposed for the language of the
incremental comuter, mainly stressing closeness to natural lanfiage (for
preliminary studies see ?3“ and ;‘_A";)e Here, however, we will corsider the
case in which this language is patterned on 1ISP. In this case a iimplified
version of the ineremental computer will be represented by an exteéndion of
the normal LISP "RVAIQUOTE" nperstor. This operstor, itself programed in
IISP, will evaluate LISP expressions in a manner consistent Wl b the yrinciples
of the incremental computer which are presented below. The ISE mpmgenta_
tion§ and programs for implementing these principles will b¢ dis®ssed in
section /4 of this papere The LISP meta-language will be ueed f"i" al,

exarples in the following sections.

~ 39- .

i) Omittsd argum>nts:
Suppos® func is dnfinad to be a function of m arguments. Consider
ths problam of evaluating '
func g"xl;xz; cesd X (ngm) (1)
Ragular LISP would be unable to ’assign 3 valus to (1). Howevar, faur the
incramental computar {1) has a value which is itsalf a function of {men)
arguments. This latter function is obtaiﬁed from (1) by replaciné the
appropriate n arguments in the definition of func by the spacified valuds
Xys X1 eeey Xpe
For axample, consider the function
list 3 = ?\f___?;x;y;z‘_;;cons ;_'x;cons'{.y;cons{z;NILE} ij
1f A and (B,C) are someshow spacified to corraspond to ths first and third
arguments in the list 3 dafinition, than the incramantal computar shwid find
the valus of 1ist 31A;(B,C)] to be
. Ifuljcons Ajcons [u; ,(IB,C))]] 1
ii) Indefinite argumentst
In regular LISP a fumction can be maaningfully 2valuated énly if 2ach
suppli=d argumnt is of the sam2 kind -- such as S-axpression, fungflenal
argument, or numbar == as its corresponding variabla in the definttion of the
function.® In contrast, the incremental computer psrmits any arwnei:t of a
function to be itself a function of further, undzstermined argm?n‘ts; (1f
thase latter arguments wexe kmowr, #hen the innar function coyld be ewmlyated
bafore the main function, as LISP normally doss.) The value of a funclen

with such indefinite arguments should be a naw function, all of whose

unspacified arguments are at the top level.

o (1 PRt

For exampl?, consider again the function list 3 defined abova. In the

incramental computer,

-

1ist 3 ID;>1fu}jconsiZsul Bearful i}
should svaluate to

3"f?;éﬁzcons;D;constons;E;rz;consf’car{§1;N!L}}?"1

iii) Thrashold conditions

Considar for ~xample th» function sum = T@};y};x + yi. We say that the

threshold condition for esvaluating a sum isthat both arguments of sum be

suppliad and that thay both bs numerical atoms. In general, a threshold
condition is a mecessary and sufficient condition for complaiifge in some
sense, the avaluation of a fumotiurie In regular LISP, it is considayed a
programming error to roquest the ovaluation of an expression involving a
function whosn threshold condition cannot b» satisfied. In the incrémental
computar, on the othar hand, expressions may ba evaluated even théugh they
involve indefinite or omitted arguments (as in (1) and (ii) above) In these
cas2s the avaluation is not complete in the sense that the valuss zre themsalves
functions which will require additional evaluation whenever the apropriate
missing data are suppl ieds

.Occasionally the threshold condition for a function do2s not aquirs
the presznca of all the argumants. For 2xamples, tha threshold condijon
associated with th» logical funcrion and is, "either all argum2nis ;§ presant
and ars truth-valuzd atoms, or at least one argumint is present aad 3 {s the
truthvalusd atom reprasenting falsity.'

The incramental computer must know the threshold conditlors foriarrying
out its various lavels of evaluation. One of the most challenging raghgms in

o e L P) o 1l 0 1 B T s incremental computer is that o! detepining

41—

Th~ illustrative program dagcribad in the naxt gaction employs anly

the most obvious thrashold conditions.

4, Ibe program

L-t us considar some of the probiems of rapras#ntation and organizatien
which must ba faced in the course of implementing a LISP version of the
incremental computer.

i) Omitted argum2ntss

-
1

Since LISP functions arz dafined by means of the lambda-notation [91 3
the rols of an argument of 2 function is dwtqrﬁinad sol~ly by its ralative
position in tha list of argumerts. If an argumnt is omittnd, the omission
must not changs the order numbar of any of the suppli~d argum2nts. This can
be accomplished only 1f sach omitted argument is replaced by some kind of
markar to occupy its position. Theraforz in this LISP farmalism fér the
incremental computar aach function must always be supplied th2 same ﬁﬁmbqr
of arguments as appear in its definitiom; however, some of these aryuments mal
b~ the special atomic symbol "NIL#® which indicat2s that the corr=sponding
argument is not available for the current 2valuation.

The evaluation of a function, some of whos» arguments are N s, is
approximately as followss Fach supplied argument (i¢2e) sach argugent which
is not NIL¥) is evaluated, the valua substituted into the appropriale places
in the dafinition of the function, and th= correspond ing variabla ddlated fro
the 1ist of bound variables in the dafinition of the function. What r2mains
is just the dafinition of 2 function of the omitted wuariables.

ii) Indefinite argum=ntss

L R

An indefinite argument, as discussed ip saction 3 above, is an argument
which is itself a function of new unknown argumants. Th2 presant program
assumas that any argument which is a list whos= first slemmnt is the atom
NLAMEDA" is an indafinite argument. This convention do2s not cause any
difficulty in the use of functional arguments, since they would be prefixed,
as S-exprassionss by the symbol "EUNCT ION™. However,'there is an ambiguity
betwesn indafinite arguments and functional arguments in th» mata-language.
Also, it is illegal to have an actual supplied argument bz a list starting
with a "LAMBDA". A mora sophisticated varsion of this program should have
somz unique way to identify indefinits arguments (perhaps by consing a NIL*
in front of them)s

The treatment of indefinjte arguments is straightforward if ofe remembnrs
that a main function and an Indefinite argument are both'\eexpresslo;g, each
consisting of a list of variables and a form containing those varlablés. Th~
process of avaluating a.function in of an ind2finite argument arg involvas,
then, idantifying the variable v in the variable-list of fn whic¢h carrasponds
to arg; replacing v by the string of variables in the variable=-list 4 arg; anc
substituting ths sntire form in arg for each occurrance of v in the farm in fn.
Tha treatment of a conditional function containing an ind=finite aﬂmm@nt is
similar although somewhat more complicated.

iii) Conflicts of variables: >

Th» sam> bound variables usad in differ2nt w=axprassions which sppaar
one within anothar "conflict™ in the sense that they mak2 the meaning & the
overall expression ambiguous. Th> usa of indefinite arguments fraqueatly
laads to such conflicts. This problem is avoided in the present Systen by

replacing avary bound variable, as soon as it is 2ncountered, by § braid

A A

new atomic symbol gensrated by the LISP function gensym.
iv) Threshold conditions:

Cartain program simplifications can bs made automatically by the
incremantal computsr, if corrasponding thrashold conditions ar= satisfied,
I, particular, if every argument of a function is ths symbol NIL¥*, then the
 function of those arguments is raplaced by the function its=1f.

Th» incremantal computer is raprrsanted by the LISP function gvalguote le
This function is similar to ths» normal evalguote opzrator excspt that avalquote
1 first chocks to see if any incramental data processing, of the kinds discussed
above, 1s callad for. If so, avalguotz 1 p2rforms tha appropriate partial®™

-

avaluations. If the given input is a normal LISP function of sprcifidd
arguments, on the other hand, the effects of 2valguotz 1 and avalquote arz
identical.

A listing of the complete dack for a test Tun, which includ:s the
dafinitions of gggigggjg_l and all its subsidiary functions is avrilabla at

the MIT computation centre.

5., Conclusions

W~ can now mak2 the following obsarvations conc2rning the iz of
LISP as tha language for the jncremental computer:
i) Although #?rhaps too inzfficient to be 2 final solution, L3P‘ls still
a very us=ful language with which to illustrata th2 f;aturﬂs of inaw concept
of algorithm raprasentation. It is asprcially =asy to us2 LISP tid=sign an
intarpretar for a languag? similar to, but different in significanways from,
LISP its-lf.
ii) Th» program described in this pap?r is quite limited with reg§ to

its implamentation of both LISP and the incromantal computer. If a ®2

1 B

o el

complate axperimantal systam woers casirad, tha prasent system could easily

ba extended in any of savaral directions. For =xampls, in LISP, allowance
could be made for the use of functions defined by machine-langunge subroutines,
and the use of special forms; in the incram>ntal co;put?r, threshald copditions
could b2 inserted to allow partial evaluation and simplificati on ot .conditional
AXpressions.

iii) Replacing all bound variables by new symbols is too brutal a solytion

to ths ™conflict"™ problem; the resulting exprassions becom? quite ynreadable.
Bound variablas fraquently have mnemonic significanc?, and therefora shougd

not be changad unl2ss absolutely necassary. A more sophisticated provram:
would identify those symbols which actually caused a conflict, and thfﬁ

p@rﬁaps replace each offrnding symbol with on» whosa sp2lling 1is differsnt

but similar. .

iv) When a function of an indafinite argument is »valuated, i form in’

the argument is substitutsd for sach occurrence of a variable H the form

in the function dafinition. Similarly, whon a function has omicted argumants,
those arguments which ware not omitted are sach avaluated and ahstituted for

each occurrence of variables in the form in th# function d-firitiofy, In tha

interast of saving computer space, W= must be surs that what it substituted
is a refarence to an expression, not a copy of the eXpressiob' In ths
interast of readibility, perhaps the print-outs should simiﬁrlytpntgln
rafarancas to rapeated sub-expressions, ©.ge in the form ofj%fﬂprfssigns,

rather than fully axpandnd 2xprossions-

BIBLICGR AP HY

L.A. Iombardi end B, Raphsel: Man-computer Information systems,
leeture notes of a two week course ICIA Physical Sclences
Fxtension, July 20-30, 1964. : {

I.A, Iombardi: Zwei Beitrage zur Morphologie and Syntax deklarativer
systemsprachen, Akten der 1962 Jahresbtagung der Gesellschaft fur
angewandte Mathematik Fechanik (GAMM), Bonn (1962); Zelbschr, angew,

. Mechs (42) Sonderheft, T27-T29. ‘.

: On the Control of the Data Flow by Means of Recursive Functions,
T blic Ia n Data Processing!!, International
Computation Genter, Roma, Gordon and Breach, 1962, 173-186.

: On Table Operating Algorithms, Proc, 2nd IFIP Congress, Minchen
{1962), section .

¢+ Prospettive per il calcolo autoratico, Scientia (in ftal:lan and
French) Series IV (57) 2 and 3 (1963). ; \

s+ Tncremental data assimilation in man-computer systems, Proe.1st
ss of ociazione Ttaliana Caleolo Automatice (AICA), Bologna,
May 20-22, 1963 (in press). i :

D.G. Bobrow and B, Raphael, A Comparigon &f Listeprocessing Computer
Ianguages, Corm. ACM, expected publicatien April or May, 1964.

M, I. T. Computation Center, The Gomp ngihﬁ Tm-g‘haringé %!gg; A
Programmer's Guide, M. I. T, Press, Cambridge, Mass., 1963,

A. Church, The Caleuli of Iambda-Conversion, Princeton University Press,
Princeton, New Jersey, 1941, ;

L. Fein: The computer-related science (symnoeties) at a University in

the year 1975, Ameriean Selentist {49) (1961), 149-168; DATAMATION (7)
9 (1961), 34-41. = g oo -‘a——ﬁ-—-

