~ THE INSTITUTE OF
NATIONAL PLANNING

> Memo No. 876 ~ . - =
\:;‘::_;“ 3 _ SRR -
~ PROCESS CONPROL SERIES

PROCESS CONTROL SOFTWARE
By
ALWALID ELSHAFEI

OPERATIONS RESEARCH GROUP

. March 1969

INTRODUCTION.

Process environment diciabes the design of process computer software.
This enviromment: may involve chemical synthesis, metal rolling, steam

power production, or any process susceptible to computer control.

Functions of a process computer include such things as reading sensors,
csetting control devices, and logging operational data while operating
as a standard data processor. Design of the sofiware which directs the
computer's operation is dictated by the specific requirements of the

process involved.

The early expectation that process control computers would require
little software support (because they would be programmed once and for
all to do a specific job) was very quickly replaced by the realization
that not only was all of the sophistication of conventional software
required but, in addition, the real-time aspects of the process conirol
application also had to be supported by software. This realization has
led to a complete time-shared executive system with an extensive library
of subroutines for communication between the computer and process.During
process free—-time, these executives permii use of the computer for
off-line tasks under the control of a subroutine called the off-line
monitor to distinguisk it from the executive itself. The library of
subroutines represents, in a semse, a language for process control,
allowing programming of quite exiersive real-time centrol systems. Seve-

ral software designs requirements are common to all systems, they are:

1. Computer programs must react guickly to process evenis. Alarms and
corrective controls must be given with liiile delaye.

2. Programs must be scheduled so that computing time does not exceed
available real time.

3. Input and output devices must be allowed to operate at (or near)

their maximum speeds.

4, Actions which occur at definite times or within definite time periods
must be scheduled according to a real-time clocke.
Se Information must be gathered from the process as it becomes available

and transmitted to the process as it is needed,

Process control software may best be understood by considering the control
problem itself and the software and hardware needs it generaies.

A process computer system in a chemical plant gathers temperatures,
pressures, and flow rates from the process. A raw material composition
and marketing requirements change, programs calculate and send out changes
in plant operating conditions. When emergencies occur - such as extreme
temperatures or pressures — visual and audible alarms and corrective
actions are sent to the plant. Process information, recorded each hour,

helps determire long rangse operating sirategye.

In a metal rolling process, information is gathered beforehand from
laboratory analyses, physical measurements, and customer requirements.
As a rectangular slab of metal is converted to a flexible strip, its
position and temperature are recorded through sensors. Data are combined
by the program, and corrections in roll force, speed, and temperature
are calculated and sent to the mill, Alarms are generated when schedules

or design requirements cannot be met or when equipment fails.

When starting up or shutting down a steam power plant, the computer
system gathers turbine speed, motor position, temperatures, and pres-
sures. As turbine speed is increased, the program scans eccentricity
and vibration. If vibration exceeds an upper limit, turbine speed is
held constant or decreased, or the turbine may be shut off. Visual
alarms are sent to the operators to inform them of the emergency con-
dition. Once conditions are steady, the system monitors temperatures

and vibration and prints them each hour,

CONTROL LEVELS

Since the objective of the conirol systems is to successfully
operate the process despite the presence of many disturbances, it is
appropriate to partition the disturbances according to their relative
frequency and consider the control of the system in the presence of
each of these disturbances separately. The resulting control system

hierarchical in form, is shown in Fig. 1

The highest frequency disturbances which must be considered are
physical upsets which cause process variables to deviate from their
"roference values. For example, flows, temperatures, pressures, and
the like will not long stay constant without the continual intervention
of a control of some kind., Such control is usually fast and, if accom-
plished by a digital computer, termed direct digital control (DDC), and
is generally regulatory in nature. Often this first level of control
is accomplished by analog controllers with the digital computer sup-
plying only the higher levels of control (such a control system is
termed a supervisory control system). This is especially true in ex=-
isting plants which already have analog control and add the supervi—
sory control in order to increase production, cut costs, etc.

The operator communication task in Fig. 1 1is concerned mainly with this

first level of control. One of the most important tasks at this level
is alarming in case any process variable exceeds prescribed safe
limits. This involves informing the process operator and then either
taking appropziate action or turning control over to the operator. The
computer is especially efficient in alarming and displayingoverloads

and is a tremendous assist to the human operatoers.

The second set of disturbances of importance are less frequent in
nature and are caused by the changing mode of operation of the process.
For example, a power system has drastically different lcad requirements

during day and night hours and the operation of the process differs

FOURTH LEVEL
Sell-Organization

THIRD LEVEL

Model Adaptationi

1

| |
SECOND LEVEL = SECOND LEVEL
Adaptive Conirol Optimiz, Comtrol
=)

FIG.1 DIFFERENT CONTROL LEVELS

1

" FIRST 'LEVEL
Direct Control

PROCESS

considerably at high and low loads. The second level conirol system
which compensates for these disturbances has two functions. First, as
the disturbance changes, it may be desirable to change the operating
points (reference values for process flows, presSures,etG-) in order
to make the operation as economically attractive as possible. Such

a control system supplies new reference points to the first level
analog controllers or digital controllers and is termed an optimizing
controller. Secondly, on the same level, the dynamics of the process
itself may change as the operating conditions of the process change,
requiring modification of the first level controllers if adequate
dynamic performance is to be retained. Adaptive control is implemen-—
ted on this level to update or adapt the parameters of the first level
direct digital controllers. This is most easily done if the first
level of control is DDC rather than analog control since the control-

ler parameters are then merely numbers stored in machine memory.

The third class of disturbance is even slower in frequency and
consists of.changes in the parameters of the process itself. This
may be due to seasonal changes, aging, corrosion, and many other

factorse.

If the optimizing control is to be effective, it must have an
accurate mathematical model and consequently the objective of the
third level ‘controller is to make use of process data to update or

adapt the parameters of the mathematical model of the process itself.

The highest level of control compensates for the lowest frequency
disturbance of all, changing process structure (in contrast to
changing process parameters}), This fourth level of control is seldom
automated but rather supplies appropriate information to management
and operators of the process so that they can make the proper decision
as to structural changes in the overall control system and process

(Fig. 1); This level might include emergency restart of the process,

emergency shut down, etic.

Observe that this breakdown of the problem results in hierarchical
control system in which each level of control effects directly the level
of control directly below it and in turn is controlled by the level
immediately above it, This structure is gitracilive noi oxly from.a
conceptual viewpoint, but also because each level can be designed
somewhat independantly of each other level, thereby permitting the
design of a complex conirol system by means of building blecks which
are easily changed and improved upon as the approppiaie technology
becomes available.

From a software point of view, this division of a large task into
many independent gubtasks 1is very desirable since the programming of
each subtask may be done independently and is then easily documented
and updated at later times, However, the various subtasks are not
necessarily performed at the same rate or even in the same sequence.
In fact, various tasks may be performed under emergency conditions
or upon demand of management or the process operator. Censequently,
the software must permii the programmer to efficiently control the
sequencing of these tasks and to change the sequence easily when
it is desired. Of particular interest is the observation that the
computational load is approximately the same for each level of
control. That is, going up in level decreases the frequency at which
the computation must be performed, but the complexity of computation
increases with the result that the load (product of computation time

and frequency) remains aboui constant.

The design requirements of the controclled process systems dictate

the following program design characieristics:

- Since both time and memory are limited, programs share both.
- Some programs voluntarily give up time and space to other programs

when it is necessary to wait feor input or other actions.

- Some programs involuntarily give time to other programs which operate
input/output devices, allowing the devices to operate at or near
rated speeds.

— A real-time clock is used to schedule actions which must occur at
definite times or time intervals, and to generate a tiie-of-day
display. There must be a provision for resetting the clock through
an externszl device.

- Core memory is fast but expensive, and bulk meiory (drumz or disc)
is slow but relatively cheap. Programss in the system arrange for

sharing the limited core memory between the programs in bulk sotirage.

PROGRAMMING FOR DIFFERENT CONTROL LEVELS:

There is a significant difference in the programming requirements
of the first and higher levels of conirol. The simple algorithms of

first level control are applied to processes in which there are many

bt

144y

variablss, z1 which

n
~

e reguiztzd in a sinilar fashion, Consequently

¥

the coaputational load is very rzpeiliive in nature and eificient

n

prograuiing and core allocailon cre necessary. On the obher hand, the
higher levels of control are relatively cuuple ana nonrepetitive in
nature and it is more advantageous here to use an algorithmic lanzuage

in order to provide flexibiiiiy and goad documentatiozn,

L]

The extensive input-output facilities cf a process controcl computer

acil
may be needed by any one or all of the levels of control, since all make
use of process data during their eperation, Consequently,many decisions
must be left to the programmer to make for each particular installation.
For example, rate of scan of analog inputs, type of scan (seguential or
random), changes in scan rate, strategy in case of input or cutput error
detection, etc.., 2ll vary from application to application and in fact

from one level of conitrol to another witin a given application. Thus

any software systen necessarily must permit the programméf to communi-

cate easily with all of the hardware in the computer and cannot incorpo-

rate arbiirary decisions about these problems in a single executive.

Most of .the software systems currently available for process coairol
are designed to support ithe higher levels of control (the so-cailed
supervisory control levels) rather than the first level, and are in the

form of an executive system with real-time Fortran as the basic lancguacze,

Two factors permit such executives to be used with supervisory contrel
systems, Firsi, the spsed of machines has significanily increased so
that Fortran—level programs can compete in terms of speed with machine-
language programs in the earlier machines. Secondly, secondary stcrage

has become readily available, permitiing large executive systems and

efficient storage and saving of programs outside of core. The problem

of servicing the first level of control can be solved without sacrificing
the executive if a two-computer system is used: one computer doing
primarily first level control (DDC) and the second, under control of the
executive system, performing superivsory tasks as well as backup of the
DDC computer,

CONTRAN LANGUAGE:

One exception to the real-time Fortran approach to process control
languages is the CONTRAN system being developed by Honeywell. This
language is an outgrowth of the Consequent procedure language developed
by Fitzwater and Schweppe. Their language called TASK 64, is a modifica-
tion of ALGOL 60 to include task processing statements and consequent
procedures (procedures which are initiated when prescribgd conditions
are fulfilled). Such a language operates within an exécutive system as
does Fortran, but goes a step further than the subroutine library approach.
Control of sequence of various portions of the control program is obtained
by the specification of set of Boolean variables or switches for each
program so that the program will be executed when, and only if, these con-
ditions are fulfilled. Thus these conditions, rather than the order of
program statements or routines, determine the sequence of their operation.
Control of interrupts and communicationbetween the process and the com-
puter through input—output devices are obtained through subroutine calls

as in real-time Fortran,

- 10 =

CONTROL PROGRAMS :

Program sequence control (PSC) - controls the sequencing and initiates
the loading and execution of user-specified process core loads.
Master Interrupt Control (MIC) - automatically determines the type of

each_interrupt'és it is recognized and transfers control to the proper

interrupt servicing routine.

Interval Timer Control (ITC) - provides a programmed real-time clock,

a timer for TSC, nine programmed interval timers, and control for two

machine-interval timers.

Pime-Sharing Control (TSC) = Controls the timesharing of variable core

between process and nonprocess core loads.

Error Alert Control (EAC) - provides the following functions when-

ever an error occurs:

1) Optionally saves core for future reference,
2) Optionally branches to a user's program for further error analysis.
3) Prints an error messages

4) executes a specified recovery procedure.

Communications Control (COMC) =~ controls communication with the PSC

and the I/0 prograus.

Bulk Transfer Driver (BTD)

controls transfer between bulk storage and core
SEQUENCE CONTROL:

Statements which permit the programmer to control the order in which
tasks are performed interrupts serviced, and off-line jobs permitted.
Such control is important, since the various levels of control are
necessarily carried out in sequence rather than in parallel and the order
is critical. For example, a sequence of tasks might be to collect cer=

tain data, use a statistical identification routine to determine

-1l =

parameters of the process, and finally to use an adaptive routine to
change the controller parameters. An optimizing routine too large for
core can be executer in parts if the programmer has control over the
sequence of programs.

Program Sequence Control (PSC) is a control program that handles the

flow of control from the mainline core load to the next. PSC functions

are initiated by execution of PSC CALL statements in the user's

program. The specific functions of PSC are:

1- EBExecute the next sequential mainline core load. The new core load
overlays the one that contained the call.

2~ Save the mainline core load in progress (on disk) and load a
special core load for executlon.

3- Restoresthe core load that was saved in item 2 and continue ex-
ecution from where it left off(the statement following the CALL
SPECL).

k- Queue mainline core loads associated with interrupts whose
occurrence has been recorded.

5- Bxecute the highest priority mainline core load listed in the
core lcad queue.

6- Insert mainline core load entries into or delete them from the

core load queue.

For PSC to perform the above functions, a CALL statement must be
executed for each one. The specific CALL statements and their para-

meters are described below.

Commands giving this type of comtrol can be categorized in three
groups used to:

1- CALL the next mainline core load to be executed.

2- SAVE the present mainline core load (or disk) and CALL a special

mainline core load for execution.

e

3— RESERVE and CONTINUE execution of the saved mainline core load

consequently, those commands can be classified as follows:
1- CALL STATEMENTS, including:

- Normal Call - CALL CEAIN (NAME), specifying next program

to be executed.

- Special Call - CALL SPECL (NAME)

- Return Saved Mainline - CALL BACK

2- QUEUING STATEMENTS, including:

Insert Into Queue - CALL QUEUE, entering program in a

waiting queue.

Delete From Queue — CALL UNQUEUE, removing program from a

walting queue.
Execute Highest Priority Core Load - CALL VIAQ

Queue Core Load If Indicator Is ON - CALL QIFON
Clear Recorded Interrupts - CALL CLEAR '

3—- SHARING STATEMENTS, including:

Such

SHARE, indicating availability of free time in which
non-process programs may be executed under the conirol of

the off=line monitor.

statements may be freely inbedded within process prograis

written in FORTRAN. Through use of these commands within prograams,

the programmer can control the frequency and order in which the various

levels of
performed

performed

control are performed. Even when various levels are not
on a regular basis (for example, when a certain function is

only upon operator demand), these commands permit control

over the sequence. In response to an operator-initiated interrupt,

the interrupt subroutine can decode the request and call for the

-3 =

appropriate program to be entered in the queue and then executed when
it has the highest priority. Of equal importance is the ease by which

sequence is changed as the process control problem changes with time.

INTERRUPT CONTROL:

This includes the control of the routines which service interrupts
and the control of the interrupts theaselves. For example, during cer-
tain routines it may be advantageous to delay the serviving of inter-
rupts to minimize exchanges of prograams or tc prevent certain inter=
rupts entirely (as when a routine cannot be used recursively and may

be called from more than one level.

The program in charge of such control is the MASTER INTERRUPT
CONTROL program (MIC). It controls the servicing of interrupts, an
interrupt may occur at any time but it will not be recognized by MIC
unless the interrupt is on a level that is not marked and is of
higher priority than the present level of machine operation. The
user-assigned interrupts can be delayed from being recognized by
masking the level to which they are assigned. The servicing of process
and COUNT:subroutions: can also be delayed by recording their occurrence.
There are, basically, two types of interrupts:

EXTERNAL INTERRUPTS:
are those associated with the process and programmed interrupt
features. They are serviced, or recorded, by one of four types

of user — written routines:

1- Skeleton Interrupt Routine
2- Mainline Interrupt Routine
3- Interrupt Core Load

4~ Mainline Core Load

