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This is a short—period coBrss on statistical methods

&l

3

designed for mathematicians and =iginecers whose work needs a

thorough knowledge of statistical mebthods.

Because ¢l considerations of time. It was necessary to
concentrate on the theory of probability and distributions,
leaving the applied gide To another course given by Dr. M. W.
ilahmoud .

By using :he'theory of sets, and the maitrix notation, it
is nhoped that the course would make a more sound apprcach to
the theory of probability, and give shorter proofs to a good
numbsr of theoriems, It is hoped also that this would help
in the field of applications.

e _

The course also includes an introduction to stochastic
processes and Random -~ Walk problems which should be useful
to those interested in applications in this field, among
engineers and research students in economics, biology and
other related fields.

I take this opportunity to tihank Mrs. Mary Naguib for

the geaerous help she gave in preparing this course, correcting

the proofs, and organizing the publication of this memorandum.
Ac Ae Anis

9/5/1965.
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1. SIS The possible outcomes ol an experiment are called
(random) events, which may be simple or compound, the {
latter being agbrebates of simple events. It 1s convenlent
%o represent szmple events as points in a space of appro-'

" priste dimension, called the observation space. Compound .
events sre then represented by sets of points. :

2., Notation: x ¢ A mesans 7 ig a member of the set A

{x3K(x)} the set of all x's having the °
property K(x) ‘
A=23B the sets L, B consist of the same

elements~ ie.ifx & A then x ¢ B .
: and conversely
AcB or Bo A A is a subset of By Iix € A then

X & B
Union ¢ AUB, {x:xé at least one of the sets A,B}
Intersection: AB {xix¢p and elso x ¢ B
Complement: A If 5 is the whole space, the comple=-

ment of A (with respeect to S) is

_ I={ztx¢seandx %AJ
Empty set: O denotes the set which has no members
Digjoint sets: A and B ere disjoint if AB=0 |

3, The following properties hold |
Commutstive laws A3 = BUA,  AB=BA
Associative laws : (AUB)UZ = All (BU3) = AUBUC
(AB) C = A(BC) = ABC |
Distributive laws s A(BUZ)= ABUAC, AU (BC) = (AUB)(AU”)
Idempotence : AlA=AA=A :
H

oo

Zero and ynit AUO A A0 = 0y AS A whenever S:)A
AB = & E B =

Y

4, Logicel dictionary. i
Using the representation of (1; we heve the following

1l

Complementation



_correspoendence

the set A ... the event A Complement A .,., Negation, ~
AUB ... disjunction,4 oz B not - 4 7
¥ ACB ... implication, AB ... conjunction,
: A implies B both A & B
AB = 0 ... A,B mutually
exclusive

(2) AXTOiS OF PROBABILITY (Kolmogorov )

Wle have a besic set E (corresponding to the observation
space) whose members are the simple events. '} is a set of
subsets of E. Then

: 1. F is a field of sets
; 2, I DE
3. To each set A of 3 is assigned a non-negative real number
P(A), the prob., of A,
4, P(B) = 1 : &
5. If AB=0, P(AUB) = P(4) +° P(B)
6k LE J-\._LD.AZT_)A5 eoe D“n coe and A1A2A3 owiole = 0L sbben)

i, F(Ay) =0

(where "complete additivity" 4if the Ai are disjoint,
P(AM AU ceoe) = P(4) + P(A) + eoo )

2. Basic probability laws.
(i) P(0)=9, ©F P(A) €1, (ii) E(R) =1 - P(A),
(i1) P(AUB) = F(L) + F(8) = P(AB)
(iv) F(ad 'BliC):E P(A) - P(AB) + F(ABC); (v) P(UAL) é—ZP('At)
(vi) If AcB, PCA) € FK(B).
3, Independence of experiments
An experiment Ar corresponds to a decomposition of the

i i ' i L - I{ o
observation space E into disjoint subsets 1—‘&_1,1\1\2’ Ar o |
let r = 1,2, .0. N, The decompositions are mutually indepcndent

LS
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BChyy Ao eer dpn) = Blp1) Flpo) oo Bl o)

for any T sTp9 ooo Tp

If Ajpooo A, are mutually independent, then any m of Them

(m<n) are also independent

4, Independence of events
The n events Al” A29 000 An are mutually independent if
the decompositions E = A, UK, (k=1p2;.00 n) are independent.
Hence the N & S conditions for the mutual independence of
the events A, Aypoo A are the following 2°- n - 1 relations

PCA‘Ql Areooo Arm ) = P(%l) 000 P’\, Al"m)o ms= 192900 np

il = I‘lc‘:r2<o o<rmsno

Notes the independence of events in pairs does not necessarily
imply their mutual independencs, ie we can have
P(AB) = P.(A).P(B),P(BC)= P(B).P(C), P(AC) = P(A).P(C),
but P(ABC) ¢ P(A). P(B) PLC).
In particular, A and B are independent if and .olny if
P(AB)=P(A). P(B)

5. Conditional probability
DEF, P(B.lA) = P(AB)/P(A)
where P(AB) P(A)-P(BJ/A) = P(B).P(A}JB)

]

Conditional probabilities behave like probabilities :ie
P(BLA)>=0, P(ElL) = 1, P(BUCIA) = P(BIA) + P(CJA)
provided BC = O
F(AfA) = 1
If and only if A and B are independent, P(4|B)= P(A),
P(B |A) = F(B).
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Rindrn variables, or varictos ¢ A random varigble is & singlk
valued rcal function X (u) defined for all u € E (where €
is thre cbservasion space) snd for Wh::.ch &u' X(u) & a} <y
for ell real a.
We often write X for X(u). @

(3) DISTRIBUTION FUNCTIONS

1. Univeriate case. Take E to be the real axisy, “J the aggre=
gate of all countable unions and intersection of subsets
of &3 then the non-negative completely additive set func-
tica P(A) may be defined by its values for the special
intervals (=sgx) .
P(-20,x) = P(¥4 x) = F(x) = the(cumalative)distrib.fn.,

where F(-go)= g F(400)=1l, F(x) is a bounded monot.: ' non=decr.

fn. since P(a¢X%b) = F(b) - F(a) 20 if b >a

At discontinuities we define F(x)= F(x+0)
Clearly P(X=x) = F(x) = F{x ~ 0)

la. Continuous types F(w) differentisble, I (x)- £Lx)
the prob.{density) fn. £(x)20, F(x)= j FC)at, =

Pr(Xéx) 2, 7 fe)
Pr(¥fdx) = Pr(x < X< w+dx)= £(x)dx Y

|

1b. biscrete type: F(x) a step=function, with
Juups of megnitudesp; &t X; (1=1525000)4pg=l
A .Pr(X:x. )= Plg the mba _g_nﬂo

o £(x)
F(x)=D_ D, | o e Alternative
1 Gac) = notation
where 1(x)= {¢:x%.< w.i Py = f(xl) \



2, Bivariate case.

where F(x,y)%0, ¥ =80 ,=00)= F ( =00,y)= ¥(X ,-09)=
F( =00,+00)= F (00,=00)=0
F (co,00) = 1 s

B, =F) ,~F5q+F 20 where Fisz(xigaﬁ ) and X5 ¥ F1sy, 7Y,

Px, € £ £ %50 J10Y2330= Fyp= Fyo= Fyyt Fyg
P

F is monotolilcnon.decreasing in each variable separately,
At discontinuities F(x,y) = F(x+o,y) = F(x,y+0)

= P . .
2a. Conginuous hypes O<F/Pxdy = LiX;y) =Frob. aenst. fum.
o X X

o

PEEdxYedy) = £ (x,7) ax dy, P(xyy) = f‘ J” o

2b Discrete types There 1s an enumerable set oI points
(xrggsj and positive nunbers P, 9‘g,:_pwq LBt b(xgy)_y DY

z 0 5 i o] “.7)

where r s(xy)= g'rgso X, &Ky Jg<J ¢ { lhen P(.&.,xrg =5 )= p g

3ollarginal distributionss Let (X,Y) have the d.f. F(X,y), as in

|
The marginal d.f. of X is F(x)=F(x,00)=P(X<x), (_P(Lx,y<w)

oY 2(y) =F(o0,y)=F(Y< 7)
Then Fl(x)9 Fa(y) are univariate dofo.®so

3a. Qontinuous types If F(x,y) is continuous, we defige the
marginal prob. £a. of X to be £(x)= F,°(x) = [ f(x,y)dy
of T £,(y)= Fy'(y) 7
3b. Discrete types If (X,;Y) has discrete pro.fn. Ppgo the
marginal prob. fn. of X is pl(r) = % Ppgi of ¥, pa(s).:ZrE
fl(xl‘)= ; f(XI_,.YS)
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PALSX | TL£Y) = PAEL Xy ,,f X <y)

= Fxoy) / 55(y) by §3 . -
We define P(X<x|Yay) ¢ be i P(XS xly<¥c yh)’
[
.a___E_, ;E,,(y) 4n the continuous case. The condit:.onal pIo Tobo
fm,n of iq given =y, is then defined to be flﬂ,a(x,ﬂy)g =

£y o{2ly) ax= plx <X gxsax | Y=y)

whence

A - - "ﬂ v o
x| L £(x v, S(Dny)-= OF (x )
7 Y P ) = fgd'})? o whexre ' T:E(’Sﬂg_’
e A e, B = & F(ed,y)
(4) INTEGRATION ~ = . & iyt i i i

: We write, j@{x)' ar(xR) to denote the Steiltjes integral |
of @(x) with respect to F(x)o :
In the comtianuous casey . .x) d.F(x.)m kx)f(x)dxg the
ordinazy Riem=nn { (£(x) = ¥9(x)

- In the diserebe case wﬁere Fx) s « stsp f’*imcz?;iozi' with
jumps £(x;) &b %, J@gxmm = S abx). Flx)
: the ‘Ro integral, or Bum, being taken over the appropriaw

rangae -
Note the.t if B(x) is the d.f. of the variate X, then

P(X € 4) = {arm

) EXPECTA‘I‘ION : :
1. I£ X has d.f. F(x)g the & Qectation of a.ny fu.netion of
W(X) of X is iy

(mtegral teken over all
@P(X) [ W(x) aF(x) | possible values of X)

Similerly :ﬁ‘or biveriate da.stra.butions,, using the natura.}.
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generalizatvion of § (4)

: ‘ {
_ E'V st-Y) =j7(xv.Y) dF('-KmY) "")j‘w(xay) £(X,y) dxdy

=% SH(xevs) Prg

Additivitys E(X+X)= I (z+y) AF(xy)

2e

5

= [ xar (x5) + [y aB(xoy)=Cx + €Y
We then have 8§ If XZ0, £X 20,

¢(aX+b) = a £X + Db ¢( )is therefore
S(X+Y) = TX +ZX linear opera=
tion

In particular

E(ZAiX,: ) = Z )I(fI;

Moments If X hasd.f.F(x) the %8 moment (about the origin)
ig . Pl gx* =Iz:r af(x)

the rth central moment is

e r' = E(I-y)r = f{x—j‘«‘)rdﬁ‘(x), where /! ;_.;f f_ |
Conditional moments are moments of the appropriate condi-=
tional distribution

Veriance The dispersionof a distribution may be measured
by the “standard deviation", whose square is the variance,
defined by (var X=) v(x):'i(x-ﬁ)z = %% - 2 where #* = £(X)

then we haves P(X)Zos in fact #¥(X)70 unless X = consto
y(aX+d) = a° ¥(X)

B Govariance-s 6(x,Y) = EEN«(TX)(E )= (x -ix) (- &x)=

@(Y,X) = cov(X,Y)
whence - by Sl
B(ax+b,cy+d)= acx,1)s 6(xs8)=0s
© @(x+U, Y+V)= @X,1)HE(U,Y)+ B W+ G (U, V)

Hence

V(aX+bY ); a??f(x )+2ab@(X ;Y )+b2V(Y)



If v(X)= 6’3'2n vi¥) = 2 we define the : \
correla‘c:.on coef:fn.cient as . o
PKY) = B&LY)
SnEss
whence
~1Lf(XY) <+ 1 § (eB+by ex+d) = PXx)
X,Y are uncorrelated if €X .¥) =
5. Independent variates. X, ¥ are gtcchastecally independent
if  F(xey) = Fy(x) Fy(y)e 2(X,5) = £3(x) £5(y)
F1o Fa are then necessarily the marginal df’s (up to a const.
multiplier) and £;,f, the marginal probability functions.
We fthen have: S(Xy) = £x £Y as a consequence of the
def. So that independence implies uncorrelation(but not
conversely).
6. MABKOFFS INEQUALITY o _ o
I£X 70, and §x=p is finite then for any ko,
Plxpkr] < l/ko
Proofs Let Y=o when X -:l:ﬁ} then Y ¢ X 80§5Y </
. _ Y-kﬁ"‘ 99 : 0
But £Y = 0. P(X<kp) + k) P(X p kp), where the theorem.
7. TGHEBYCHEFF'S INEQUALITY
For any variate X with £X=)and ®X= @-«%ﬁ 0,
P{ IX'FJ‘[?}]W“}L‘S.].E forany k?oo
kK
Proofs In Iularkoff‘s inequality replace X by (X=/* )/ e
Example showing that the = signs are attainable: consider -

the discrete X for wiich  B(xap)= 1=1/k%, B(Z=) + k@)= 1/2k°
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STANDAZD DISTRIBUTIONS

The variate is X, (or X, voo in multivariate cases)
2k,

The complete specification of the probability functions
listed below is
E in the range gquoted, this probability function
has the value quoted, outside .this range the
e probability function is zeXroO.

Name Probability function Range
Binomial (§ ) Px Ak xg 0£LpL ly g=l=p, Oglyp2g0e0yl
Poisson ﬂ Ve /'x!. >0, 09ly2pceo

L (=) Cha)
Itﬁgrseome nmx) //(n x) a Ei‘;a) o .192, ceoyld

oca< k, o<h £k,

Nege.binomial kfxnl) pk % oL
k""’l q 9 k> 09 0L p‘lp
q=l=p
Multinomial _nl 5 Sl o 4
xl‘!leoo.xkl l k 0.&,29.«;.&
_ 04py < 1 for each xy
Zpi al
2% =
Rectangular 1 (=Fy + J)
Triapgular l- [xIi (=l,+1)
Exponential e & x 36
Double exponential % e I =l all real values

B(pyq)

4



Standard normal /e /ViahE e

e 2
Bivariate normal 1 L mlﬁ&\ﬁ...._v v. ? 29 29
2T ens oS TR
67 70
m|MVo
2
Yi<1

G = o) )

: [] l...u..
Standard multinormal (2 ﬁv:ﬁn ‘M_lm ok EV X , @all real

values.
V pos.def,

-

for eacir -
Notes on the Standard distributions

1. Binomial =x= number of successes in n indep. trials, where

probability of a success, at any trial, is p = cons®.
m_u...nbmq VZ=1ap q, \._wnbwc.ﬁﬂlvv.
F(x)= I, (n-x,%x+l), (incomplete beta function ratio)

If X binomial (n,p) and Y binomial (m,p), indep.; X+Y binomial
(n+m,p) ;

o
2. Poisson (a) x = no. of occurrences of a given event in time ¥,
where probability of a single occurrency during md u\/Md +Q(§t)s
probability of>1 occurrences during §t = Omh.dv. and no.
of occurrences during non-overlapping time intervals are indep.
of each other.
Then x is Poisson, with parameter M = », G
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(b) @ (x) = linit of binomial prob. fn.whenn 3580/

P—>0; 1P © A

IE X‘l“ X, are inaepe Poisson variates with parameters

fl’f'a-" then X, + X, is Poisson (Mg +/42)

f X;}‘, VX = M3 Mx) =1~ I}L (z+l), (incomplete
gamnma fn ratio)

3, Hypergeometric X = DO. of A's in a sample of m, taken

k item of which a were

without replacement from a seb of

.A's
Ex= 2 , Ex(r) RN ¢ IR C O TERE N
r

4, Nezative binomial (a) k + X = no. of binomial trials

(of prob.p)required to achieve k successes EX‘ = kq/p,

JX = kg/ jp2
] ] v ]
If we put ¢ = 1/py P = q/p, 80 that ¢ = p = 1, the
o . - ! ' =k
pr. fn. becomes coef.of p ° 1n expansion of ( @ =D )

]
and in this tGeraminology we auve Ti=k DEAEE =ikp i e
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(b, '’x may also be regarded uas a Poisson variate with
varying Poisson parameter. In fact if P(x,u) = m e /x!
while P(a) = o<>‘ mr-1 e e s A myo (a gamma dis-
tribution) then P(x) = h+x f#(s,+fj (1+¢)™ which is of
one standard neg.binomial forw with p= & /(/+x) , g = 1/(1+X ).

5. ultinomial Xy = DO. of occurrences of eveant Ai (d=2132yasel)

in k indep. trials, where at cach trial p(A )= p; = const.,

% =npgy VZ =np; (1-py)s B(X5,Xy) = = n p; by

If xl,x, 1ese X‘k are indep. Poisson variates with parameters
/"l yeoa _Hk s then the conditional joint probability function
of the X, , given > X; =X, i1s multinomials

P(x) poexy | T X3=X) = %1 ‘IT(!..L')xi e (s Ztt)
mx, !

Pransformation of variate (Univariate case)

l. Given a variate X,d.f, #F(@), pr.fn. £f(m), and a single valusd
function @ () to find the distribution G(y), g(y) of
Y= 0 )
Let Sx be the set of all values of x which are mapped into
a specified set S_ of values of y, under the|tr fo:m}x_lation

4 :
=0 (). e
then p(T€5,) =p(X € 8y \@/
(eg Y=X°. take Sy = (O35)s Then S = (—Jﬁ'ﬁfi%‘

Gy)=plo< YY) =p(-Jy< X £ +Jy )
= FJy) - K=-J3) )
2. opecial case where the transformation is continuous,l-l.

G(y) = F( 9_1 (¥)) if f(x) is monotonic increasing
e lasiRE 0 ) it g decreasing

:i‘ .



