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Chapter 8

BRANCH-AND-BOUND REVISITED: A SURVEY OF BASIC
CONCEPTS AND THEIR APPLICATIONS IN SCHEDULING* °

S. E. Elmaghraby and A. N, Elshafei#*
North Carolina State University

8.1 Preliminaries P
The term 'branch-and-bound" (B&B) has increasingly be-
come a household term among students and researchers in
the field of scheduling and sequencing. In this chap-
ter we shall take a fresh look at this approach and
assess its content, utility, and potential. In delin-
eating the subject matter of our discussion, perhaps

it is equally valid tq emphasize that which is not
among our aims. This chapter is not a comprehensive
survey of B&B concepts and applications. Several sur-
vey articles that have appeared in recent years serve
that function adequately, if not superbly; see, for
example, References [8.1, .4, .21, .36, .40]. Hor does
this paper aspire to be a comparative evaluation of the
very many B&B approaches that have been proposed in the
open literature to solve one scheduling problem or
another. For examples of such studies, the reader is
referred to the papers of Ashour [8.2], Ashour and
Quralshi [8.3], Davis [8.8], and Kan [8.34], among
others. .

What we do wish to present is an inventory of the
basic concepts underlying the "theory" of B&B; we wish
in fact to establish that such theory exists and to
illustrate these basic concepts by examples from the
field of scheduling and sequencing. In thils we are

*The preparatlon of this chapter was partially supported
by the Office of Naval Research under Contract NOOO14-
70-A-0120-0002, by the National.Science Foundation under
‘Grant P1lK1470-000, and by the Army Research Office-
Durham under Contract DA-ARO-D-31-124-72-G106, with
North Carolina State University.

**Now at the Institute of National Planning, Cairo,
Egypt
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motivated by two objectives. The first is to summa-
rize, in what we hope is a convenient place, the mul-
titude of concepts that have emerged over the past few
years. We hope that such a sumnary will provide a
handy reference and basic understanding to student and
researcher alike. The second is to help the profession
assess the current and future potential of this ap-
preach. 1In this respect, one may compare B&B as a
problem solving approacn, to sinulation which is
another, and by now a very popular problem-solving ap-
proach. One may then ask fundamental questions simi-
lar, but not necessarily identical, to those asked in
the study of simulation. For instance, in Monte Carlo
simulation one often raises the question of variance-
minimizing techniques. 1In B&B one may ask questions
relative to the rate of convergence to the optimum.

As much as possible we shall draw our examples from
the field of scheduling and sequencing. However, since
problems of scheduling (and sequencing) are almost
universally modeled as integer or mixed programming
problems (linear or nonlinear), we shall feel Eree to
illustrate some concepts with reference only to the -
integer (or mixed) program, without the need to motivatae
the model by the scenario of the scheduling problem.
Ordinarily, we shall be dealing with integer linear
problems (ILP) and, in particular, with 0,1 ILPs. As
is well known, an ILP can be translated into a 0,1 ILP
by the simple binary expansion of the variables. In a
couple of instances, we could not find exanples from
scheduling and, to the best of our knowladge, none
exist that use a particular concept. Then we took the
liberty to illustrate by examples from other fields of
application, such as location-allocatioa. We do not
feel particularly apologetic about taking such Liberty
since these problems are th-mselves modeled as integer
(linear or nonlinear) programs. Such models provide
the link to probleus in scheduling.

In the sequel we shall be talking about Hoarceial
solutions" and "completions.” The term "partial solu-
tion" is actually a misnomer, since it refers to some-
thing that provides no solution whatsoever to the
original problem. For instance, a schedule of a sub-
set of the jobs, or a series of cities visited by the
salesman in the traveling salesman problem (TSP), are
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referred to as partial solutions, yet they provide no
"solution" to the problems posed, which are: a com-
plete schedule of all jobs in the first case, and a
complete tour over all cities in the second case. The
reader will hopefully bear with this misuse of lan-
guage. By the cowpletion of a partial solution we mean
the specification of the values of the remaining vari-
ables so that their union wirh the partial solution
yields a point in the original solution space. A par-
tial solution is said to be fathomed if one of the two
following conditicas is satisfied.

(1) We determine that its best feasible completion
is better (yields a better objective value)
than the best feasible solution known to date
(assuming one is in hand).

(2) We determine that the partial solution has no
feasible completion better than the Zncumbent
(this includes infeasibility, which is trans-
lated into infinite penalty).

' The concept of fathoming is illusfrated in Example 8.3.

8.2 Fundamentals '

The approach of B&B is basically a heuristic tree
search in which the space of feasible solutions, which
may contain a very large (or deaumerable) number of
points, is systematically searched for the optimum.
According to Mitten and Warburton [8.42], "the search
proceeds iteratively by alternately applying two opera-
tions: subset formation and subset elimination. In
the former, new subsets of alternatives are formed, -
while in the latter some subsets of alternatives may

be eliminated from further consideration: The proce-
dure terminates when a collection recognized to contain
only optimal solutions is reached." The search has two
guiding principles: first, that every point in the
space is enumerated either explicitly or implicitly,
and, second, that the minimum number of points be
explicitly enumerated. (We view B&B as an approach for
implicit enumeration, though we concede that, mainly
due to historical coincidences, the label "implicit
enumeration" has been applied to approaches that need
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not employ the "bounding" feature of B&B.)

The implicit enumeration of feasible points is ac-
complishe@ through dominance (which may Or may not
employ bounding) and feasibility considerstions. Each
of these concepts will be discussed in greater detail
below, but first we give a laconic descriptiou of them
to afford the uninitiated reader a general grasp of
the subject. The basic idea in B&B is to divide the
feasible space, denoted by S , into subsets Sl’S?’

""Sk which may or may not be mutually disjoint.

Assuming that the optimum falls in subset S a bound

k ]
on its value is determined: an upper bound (u.b.) in
the case of maiimization, and a lower bound (Z.b.) in
the case of minimization or, better still, both an
upper and a lower bound in either casa. Based on such
bounds two actions may take place: (i) a particular
subspace Sk is selected for more iatensive search by

further partitioning into its subsets (this is the
branching, or "formation" function); (ii) some feasibie
points (subspaces) are declared "noncandidatas" for the
optimum, and thus are eliminated from further consider-
ations. This latter idea is one of "dominance" sioce
it is based on the determination that avy element of a
particular subset Si is better (or worse), im the

sense of the criterion function, than any =
another subset Sj . Then indeed we may de

points in Sj (or in Si') as noncandidates for the

optimum and eliminate them from further analysi
While dominance may be establishad on the bas
-the bounds evaluated on subsets Sk Sk e s

that dominance can be established independent of any
bounding considerations. In some circles (especizlly
in the scheduling literature) these are refsrred to a
"elimination" procedures. The Final result is the
same, namely, it establishes that certain subspaces
cannot contain the optimum because they are dominated
by other subsets. A similar idea lies behind the
feasibility considerations. They arise because in the
majority of cases one is forced tao hypothesize a rather
"rich™ original space;. S+ At Zeme stage of analysis,

i
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if it can be established that certain subsets of S
are in fact infeasible (in the sense of violating some
constraint of the problem), then indeed such subsets
can alsc be eliminated from further study.

Heuristics enter the tree search in all three basic
phases of the approach: in the definition of the
partitioning procedure, in the calculation of the
bounds, and in the philosophy of searching the tree.
But we wish to draw the reader's attention to the fol-
lowing important and rather crucial distinction: the
forzal structure of B&B admits the use of heuristics
(as does the simplex algorithm of linear programming) .
However, these are '"reliable heuristics" in the sensa
that if they run to completion, the optimum will be
achieved. Furthermore, if the procedure is terminated
before it has achieved the optimum, it yields a bound
on the error committed. (This is in sharp contrast to
"heuristic problem-solving procedures’ which lay no
clain to either optimality or to measuring the error
cozmitted at premature abortion.)

A zmore formal definition of the B&B procedure was
advanced by Mitten [8.39] in 1970 which was expanded’
upon in later work in 1973 by Mitten [8.40], and
Mitten and Warburton [8.42], Mitten defines the opera-
tions of "branching,” "bounding," and "branch-and-
bounding" in terms of set functions. The necassacy
properties of each functicn were givén in terms of
operator and operands, which map all the known coucepts
of 3B into topelogical domazins. He establishes the
relations between the B&B recursive function and the
set of optimal feasible solutions by postulating vari-
ous analytic and topological conditions such as conti-
nuily, completeness, and compactness. [n the cagse of
finite solution space, the convergence of the B&B
ursive function is easily seen. However, in denumer-
e or nondenumerable spaces, Mitten demonstrates that

the B&B recursive function is a contraction mapping

3 corplete metric space with appropriately defined

elsments, then fixed-point theorems could be invoked
to establish convergence.

To gain more insight into Mitten's comnstructicn, we
assume that it is desired to solve the problem: maxi-
mize £(x) for x = X . (For example, X may be the
integer feasible points in an ILP.) Typically, B&B

A
o
i

-1y P_: ::r}

m y-w
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proceeds by searching the space T 2 X for the set
5 *
g Al sX i f (X)e=0f%]l 1o optimal solutions, where

f* = sup £(x) and where A means "is defined to
xeX i
equal.” The search proceeds by examining subsets
0 € X, and collections of such subsets. Let § denote
the family of all possible collections of subsets that
could be encountered by a given B&B procedure. As
shorthand notation, let \J(s) denote a subset of X
comprised of the elements in U {0} ; that is
: gEs
U(s) A \{o} where s e§ .
ges

As mentioned above, alternative possibilities in B&B
are considered in sets rather than one at a time. Fur-
thermore, B&B examines successively smaller and smaller
subsets of X (the subset formatioun operation), always
elininating those subsets that can be shown not to con-
tain an optimal solution (the elimination operation).
It is assumed that once sets are '"small enough' in some
sense, then there is a procedure available for distin-
guishing the optimal solutions from the nonoptimal solu-
tions, the so-called fathoming procedure. Therefore,

let S  denote the set of fatheomable collections {s} ;
here s 1is a fathomable collection iff o € s satis-—

* v
fles 6 Cao or oNd =¢ . We assume that a proce-
dure is available for separating one from the other.

Thatris, s'e 'S . 1FF the following hold.

*
(a) s = $;U s, with g C g for every ¢ .8y

* :
and oMo =¢ for every o ¢ S,
(b) There is a means available for fForming the col-

lecticns s1 and 32 .

As a minimum requirement, we insist that any collection
of singleton sets (sets- containing one point of X

each) is Ffathomable, since such sets cannot be sub-
divided. One may now state the objectives as: find a -

* * *
collection s € S8 such that U(s ) C ¢ and
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* : *
U(s ) =¢ only if o =¢ . Mitten defines the B&B
procedure in terms of the set operations called branch-
ing, upper bounding, lower bounding, and, finally,

branch—and—bounding. Let SF (for formation) and SE

(for elimination) be two subfamilies of § . Branching

may be defined as a function F: SF - SE such that for

each s ¢ SF the following hold.

(a) F(s) = U {d(o)} , where d(o) 1is either a
ges
or a collection of proper subsets of ¢ whose
union is o

(b) F(s) =s iff s e §

In words, this latter conditicn (a) states that each o

in s either remains unchanged under F(s) or is

broken up into a collection of proper subsets. This

is illustrated in Figure 8.1, in which s = [01,02,03} H
. b " re "

2 3 but 9y has been "broken up

d(Uz) =g
into four (disjoint) subsets. Clearly, lJUlj = 0q b

d(u3) =g

Upper bounding is a real-valued function wu: LKSE) + R

with the following properties.

(a) u(o) > f(x) for all XxE0E u(sg)
(b) u(o) > u(ay) if 00(; ¢ ;05 50 eU(Sp)

{(e) u({xl) 2 fx) , xca

These latter conditions (a) and (b) Eollow from the com-
mon concepts of upper bounds and set inclusion. Condi-

tion (c) ensures that the upper bound on singleton sub-

sets is the "value" of that point under the mapping f .
Lower bounding is a real-valued function &: SE - R

such that the following hold for any s € SE .

(@) (s) < £
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Figure 8.1 - Partitioning and branching.

(b) 2(s) < L(F(s))
(ot 2(s) > f({x) for any x e s
(d) If s'C s is such that, for every =' s'

either: w(c') = -=» or w(e') < £(s) , ‘then

28y = uls) .

These latter conditions (a) and (b) follow from the com-
mon concepts of lower bound and set divisiscn inzo sub-
sets. Condition (c¢) ensures that the lowsr :ourd of a3
singleton subset is tight. Condition (d) guarancees
that infeasible sets (u(c') = -») or dominatad zets
(u(o') < 2(s)) cannot affect the value of the laowar

bound 2(s) .

In Mitten's view, the bounding operation is ar elim-
ination operation through infeasibility and dominance.
2tined for

He defines it as ‘a function E: SE + S ]

S b
s € E y
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E(s) = s - {oes: u(g) = = or u(o) < 2(s)}

The strict inequality in the above statement implies

- - - 3 *
strong bounding, since all optimal solutions in o

are retained. . If an inequality is substituted, the
resulting bounding operation is said to be weak since

; P
we then ensure that at least one element of ¢ will
be retained. Finally, the B&B recursive operation is a
function G: SF +'SF defined by G(s) = E(F(s)) . 1In

cther words, the successive formation and elimination
of subsets is the heart of the procedure, hopefully
leading to an optimum without the need to enumerate all
singleton subsets.

[f X contains finitely many points, it can be

n 'n-1 oy ;
shown that s = G(s ) , for some finite n > 1 , is

an element of the fathomable set S , so that the pro-
cedure will terminate in a finite number of iterations.
Iz the case X 1s not finite, Mitten shows that G
will not "cycle" provided that each collection in S

F
and Sp contains only finitely many sets. (Cycling
m2ans that there exists an m such that Gm(s) = 3
znd s € SF - 8 .) Note that even though a procedure

=av never cycle, it may not terminate in a finite num-
ter of steps. With this formal structure established,
Micten proceeds to illustrate his concepts by two
gxamples: ILP and sequential unimodal search. This
lztter illustration is interesting since it claims to
Sz the following.

(i) An example in which neither the procedure
nor the sets involved are finite.

(ii) The only currently know:n application of B&B
methods employing a branching rule that can be
demonstrated to be optimal (the Fibonacci
search).

This led Mitten to the following two conclusions.
First, that the existence of an optimal branching rule
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for the sequential unimodal search suggests some irter-
esting avenues of Investigation in other areas of
application. Second, that since attempts to extend

the sequential search method to higher dimensions

g?(n>l) have been notably unsuccessful, perhaps a

fresh .attack on the problem in 5? via B&B would pro-
vide a new perspective. We wish only to remark that
viewing sequential unimodal search as an application of
B&B may raise some eyebrows, since none of the concepts
usually associated with B&B are present in the standard
search pattern, including the optimal pattern. The
viewing is Justified, however, if one sticks to the
formal definition of B&B's search as cowposed of set
formation and set elimination, both of which are indeed
Present in sequential unimodal search.

8.3 Branching :
Branching proceeds by dividing the solution space into
subspaces, which are themselves divided into subspaces,
and so forth, until subsets containing exactly one
point each are reached. The graphic representation is
a tree, the search tree, whose numbering runs opposite
to the set content, Thus , SO is the empty set %

which represents in fact the whole space § before any
division has taken place. A terminal node of the tres,

S,1 » M large, contains a compiete solution X which
i

represents in fact a singleton set. Intermadiate nodes
of the search tree generally represent partial solu-
tions generically represented by Sk . Hereafter we

use the terws "branching" and “dividiag the solution
space' synonymously. The choice of the node from which
to branch is basically a decision related to the philos-
ophy of searching the tree, which is open to the use of
heuristics.

Basically, there are two extrepme philosophies with
innumevrable intermediate variations. On the one end of
the spectrum there are heuristics (for example, branch
from the node with the smallest lower bound) that favor
the nodes higher up the tree. In this case, the con-
Struction of the search tree will proceed "horizontally";
this is the so-called Jump~tracking (or "flooding")




