THE INSTITUTE OF
NATIONAL PLANNING

Memo No (1642)
Genetie Algorithms and Programming

Introducing the concept and Domain
Of Applications

Prepared by

Prof.Dr.M.ELKAFRAWY
Prof.of Operations Rescarch,
~ Institute of National Planning
&
- Prof.Dr.i.A.ISMAII
Dean of the Faculty of
Computers& informatics,
MISR International Univ.

Yade dds

v I‘I L L N T S R e s M At Iy oy e i W st O R e A

Genetic Algorithms and Programming

‘Introducing the Concept and Domain

of Applications
By
Prof.Dr M.ELKAFRAWY & Prof .Dr.L.A.ISMAII
Prof.of Operations Research, Deanof the faculty of
Institute of National Planning computers & informatics,

MISR International Uniyv.

IR T R S A T T Rt e S B e e P T T 1T

CONTENTS

D L T TPy

1. Introduction 2
2. Genetic algorithms and related items 3
3. .Solving System of Linear Equations Using Genetic|15
Algorithms.
4. Solving an Unconstrained Minimization Problem Using
Genetic Algorithms. 22
S. Game Theory Using Genetic Algorithms 27
6. Image Registration by Genetic Algorithms 35
7. Solving Non-Linear Systems Using Genetic Algorithms 44
8. GENETIC PROGRAMMING OVERVIEW S3
ol padlall - | 56
References |58
Appendix |59

When there co nothing to do
When yosu are bored to the bone
When you are misoing youn friends
When you are fecling alone
Tt’s time to otart otudying Mathematics.

1. Introduction

On these notes we introduce the most important modern methods that
are in use today. These notes comprise some applications to the genetic
algorithms together with the written programs for each of these
applications. :

There are of course much more topics for applying the genetic
algorithms than the ones explained here. Nevertheless, once, we get hold
of the main concepts presented here we would be capable of applying
the GA ideas to more and more applications.

The topics dealt with in these notes are :-

1- Genetic algorithms and related topics (1.2).

2- Solving game theory optimization problems using genetic algorithms.

3- Solving systems of linear equations using genetic algorithms.

4-Solving unconstrained minimization problems using genetic
algorithms.

5- Image registration using genetic algorithms.

We then move to the next important topic which are genetic
programming.

One give a general description of the method.

Programming and applications of this technique are solvable
using GA methods,

2. Genetic algorithms and related items

2.1 Introduction : Genetic algorithms is a technique based on
simulating nature. On the other hand, nature runs according to the
biological rule, survival for the fittest found out by Darwen. To mimic
and simulate on a computer, we follow the same rule of the survival for
the fittest. This is done by specifying a fitness function, representing
each argument of the function by a chromosome represented by a string
of bits having a specified length.

To find which string is superior to the other, a number of
operations is done on the strings to arrive at the best string that gives
the best or the optimum fitness function.

Those operations are explained as follows:
(1)Reproduction Process:

The best off springs are chosen from the given net of strings
each with the best values for the fitness function.

(2) The cross-over process:
Assuming that we have two chromosomes under consideration

a, a, . a, a4 as a6 cssoe alG
And
bl bZ b3 b4 bs b6 bl 6

and it is required to do the mating between them. To do that, we
do the following :

(i) Decide on the point at which the cut and interchange is to be
done.

(ii) Replace the bits to the right of that point in string 1, by there to
the right of the same point in string 2.

So that the two new strings will look as shown bellow:

(ili) Mutation :

After a large number of iterations, we can apply the mutation
process not to all strings under consideration but to some specified
percentage and not to whole string but to some specified percentage of
this string.

This mutation is explained by the following example.

Having a string of the following form :

Lo |1 [1 1[0 1]1]0 [1] 1]

If we are doing 10% mutation to this string , we flip only one of its
bits from 0 to 1 or from 1 to 0. then

(oo 1t [1 o1 [t[o] 1 [1]

Is a 10% mutation

Now, the question that may jump to your mind, what has this to
do with data mining.

Genetic algorithms and data mining:

It is required to use a genetic algorithm to reach a base to
discover some relationships between data items. For example, given a
database, the aim is to determine the four items, that are most often
bought together. For example if one buys spaghetti, he also buys
minced, tomato and salt. Therefore, the data base and the genetic
algorithm tells us what the related items are.

2.2 Synthetic Data Sets and Data Set Generation

Since the focus of this article is on the development and
verification of a genetic algorithm-based data mining search approach,
an actual database with ¢ real” data was not used nor was it required to
demonstrate the usefulness of the genetic algorithm. Instead,
“ Synthetic” data were generated to demonstrate the application of the
genetic algorithm. As described earlier, a synthetically generated data
set consists of X transactions. Each transaction consists of a transaction
number (Trans-Num), the number of items purchased in the trans-
action (N), and a list of N items, where each item is specified by a
number (i.e.0=Pretzels, 1=Aspirin, 2=Beer, 3=Bread, etc.). Also, N can
be any of 100 different items. The format of a transaction and an
example of a transaction containing fifteen items are shown below:

Transaction Format : Trans - Num N ltem, ltem, Item,
Example Transaction : 01512310195542412283202087926

Synthetic data sets were generated using a C Program that
allowed the user, through command line input, to specify data
characteristics. Allowing the user control over data set characteristics
facilitated verification of the genetic algorithm search results, since
known relationships were embedded within the data sets. Then, the
relationships that were discovered by the genetic search were confirmed
against the expected results.

The synthetic data generator program required the user to
provide at least one option to specify the number of transactions to
generate. Other options allowed the user to specify individual items and
the probability with which each of the specified items appeared within
the synthetically generated data set.

2.3 GENETIC ALGORITHM SPECIFICS

The coding scheme, fitness function, and each of the three genetic
operators (reproduction, crossover, and mutation) can be implemented
in a variety of ways depending on the problem to which a genetic
algorithm is being applied. Various implementation alternatives of these
for the data mining problem examined in this article are discussed
below.

2.4 Parameter Coding

A main difference between genetic algorithms and more
traditional optimization and search algorithms is that genetic
algorithms work with a coding of the parameter set and not the
parameters themselves. Thus, before any type of genetic search can be
performed, a coding scheme must be determined to represent the
parameters in the problem at hand. In the data mining problem
addressed by this article, the parameters of interest are simply four,
potentially related, item numbers. Therefore, a coding scheme for four
item numbers.
was determined considering the following factors:

* A multi-parameter coding, consisting of four sub-strings, is
required to code each of the four items into a single string.

* Each sub-string needs to represent one of a hundred(0 through
99) possible items _

* There are 100 choose 4 (3,921,225) possible combinations of
items that need to be represented.

Given these factors, several coding schemes were considered. First,
a scheme using a base-10 coded sub-string was examined. This coding
allows 100 items to be represented, and no codings correspond to non-
existent items (all possible sub-string codings would represent valid item
numbers, 0 through 99). This coding results in an 8-digit string where
each digit (d,)is between 0 and 9, as follows:

dldO dldl) dldo dldl)
item 1 item 2 item 3 item 4

A coding of this sort, however, limits the number of schemata
that are available for the genetic algorithm to exploit. Therefore, since
we want to maximize the number of schemata, a binary coding, as
shown below was considered.

bebsb,bsb,bby | bebsbibibybiby | bbb bibybib, | bbsb,bybybib,
item 1 item 2 item 3 item 4

Here, each digit (b,)is a 1 or 0. One problem with this coding is
that, in order to represent 100 items, a sub-string must consist of seven
bits ((2’ =128).This means that 28°(128-100=28values in each sub-
string), or 614,656 strings could be manipulated by the genetic
algorithm which don’t correspond to actual solutions. :

Another possibility, when considering the fact that there are
3,921,225 combinations of items that need to be represented, was to co;de
the items as a 22-bit binary string. This corresponds to 2*,0r4,194,304

possible solution representations, reducing the number of non-solution
strings to 273,079(4,194,304 - 3,921,225). Using this approach, however,
requires a mapping from a “ combination number” to the actual four
items represented by that combination since the item numbers are not
specifically embedded within the string. If this combination-mapping
approach was used, it would be difficult for the genetic algorithm to
exploit similarities between strings since two combination numbers
would not necessarily have anything in common, even if the items
represented by the combination numbers were similar. Therefore, this
coding approach was deemed unacceptable.

Given these possibilities, and considering the implementation of
the crossover operator which is discussed in the section (2.6),
“Reproduction, Crossover, and Mutation Operators,” the decimal
coding appeared to be the best alternative and was therefore
implemented for the data mining problem.

2.5 Fitness function

If a string of four items is coded as just described, the fitness for
such a string can be determined based on the frequency with which the
set of four items appear within the transactions contained in the
database under investigation. In addition, if a fractional number of the
items in the item list appear within a transaction, the fitness value will
also reflect that fraction. For example, if the item list for which a fitness
value is to be determined is as follows :

| ot | 22 | e | o7 |

And if the database, for the purpose of this discussion, contains
only two transactions, as follows :

transaction1:34 22 55 01 68 99 02 07 42 24
transaction2 : 76 01 86 99 02 07 42 24

Then transaction 1 contains all four items (01,22,68,and 07)and
transaction 2 contains only two of the four items (01 and 07). If
I(1,)represents the fraction of items that are contained within a single
transaction ¢, then /(s,) would equal 1.0 and /(s,) would equal 0.5 (2/4).
If all the /(s,)s are summed over all transactions, and this sum is
divided by the total number of transaction, N, then a relationship
(referred to as the base fitness) between the item set and the frequency
with which the items appear within the database can be obtained. Thus,
the base fitness value for the item combination of 01, 22, 68, and 07
for the example database of two transactions would be:

U@, +1(t,))/ N = (1.0+0.5)/2=0.75

This yields a base fitness function that can be represented as follows:

Assume:

N = total number of transactions in the database file (sdg. db)
f = transaction number

1(1)) = fraction of items that are contained in (r,)

M = sum of all /(s,)over all transactions

Then M is :

N
M=3, 1)
and the fitness, referred to as F1, for a given string of items is :
Fl=base fitness (item string) = %

Furthermore, in an effort to avoid possible convergence, and to
promote competition between strings throughout a simulation, a scaled
fitness, 72, was implemented and tested. /2 is expressed as,

F2=a'Fl+b

where F2 is the scaled fitness, F1 is the raw fitness, and a and b
are determined based on the maximum and average raw fitness values.
In the case of the data mining problem, the maximum possible fitness (if
every transaction in the data base contained all four items of
interest)was 1.0 and the average raw fitness was found to be around
0.4.

In a third alternative, the fitness function was based on the
following additional assumptions : Since the goal is to determine the
four items that are most often purchased together, the fitness function
should yield a higher value if more of the items in the item set are
contained together within the database transactions. For example, if one
item set yielded a base fitness value of 0.25 (implying that, on average,
one of the four items in the item set were contained in each of the
database transactions)and a second item set yielded a base fitness value
of 0.75 (implying that, on average, three of the four items in the item set
were contained in each of the database transactions), it may be
desirable to give more than a simple linear emphasis to the second item
set value since it is closer to the goal of four. Thus, a third fitness,
referred to as F3, is expressed as
-— MI
"N

F3

where x was chosen to be 3.

While this type of fitness expression gives more emphasis to item
sets that are closer to the four item goal, it must be realized that a single
occurrence of four items purchased together within a large database
will not yield a higher fitness than three of the items purchased together

9

many times. Since we are seeking trends within a large set of database
transactions, it was felt to be more important to recognize major trends
(such as three items purchased together many times) which might lead
to a trend of four items purchased together.

The results of simulations run with each of the fitness expressions
just described (F1,F2, and F3) are discussed in section, “ Fitness
Function Simulation Results.” Those results show that fitness function
F3 provided very good performance, better than both F1 and F2.

2.6 Reproduction, Crossover, and Mutation Operators

The reproduction, crossover, and mutation operators that were
implemented to support the eight-digit decimal coding are discussed
next.

Reproduction Operator

A basic roulette wheel reproduction operator was implemented
for this data mining application. In this type of reproduction, each
string in the population is given a roulette wheel slot sized in proportion
to its fitness. Then, by “ spinning” the wheel N times (the population
size), N new offspring’s are created for the next generation. By having a
weighted, or “biased” roulette wheel, it is more probable that higher fit
strings receive more copies in subsequent generations.

Crossover Operator

Crossover is used to improve the population fitness by
introducing new strings into the population. Thus, the crossover
operator for this problem had to introduce new item combination
strings into the population. Due to the fact that the sub-strings (item
numbers) within a coded string must be preserved, possible cross sites
exist at the item boundaries within a string, as shown by points A, B,
and C below :

a string | dd, | dd, | dd, | dd,]
t T t
A B C
In determining a crossover operator for this application, it was
important to consider the fact that duplicate item numbers cannot exist

10

within a string since this would represent an invalid combination of
items. For example, if the following two strings were crossed using
simple crossover and a cross site as noted by A,

stringl 04 21 06 15
string2 03 93 24 04
1«
A
Strings I'and 2'would result, as shown :
stringl’ 04 21 24 04
string2’ 03 93 06 15

Note that the resulting string 1I' only contains three different item
numbers (04, 21, and 24) instead of four.

Given this consideration, it was obvious that a simple single point
crossover operator would not be adequate. Crossover operators such as
partially matched crossover, or PMX][7], and ordered crossover [7]
ensure that duplicates do not occur in children strings. However, these
crossover operators require that each parent string contain the same
characters. The situation in the data mining problem, however, is
slightly different in that every item in the first string may, or may not,
be in the second string. Considering this fact, two different crossover
operators were developed for examination : aligned single-point
crossover (ASPX) and unmatched crossover with single child offspring
(UXSCO), each of which is described below. The results of simulations
run with each of these crossover operators are discussed in the section,
“ Crossover Operator Simulation Results.” Those results show that the
ASPX crossover operator provided very good performance, better than
the UXSCO operator.

Aligned Single-Point Crossover (ASPX)

Recall that the main goal of our crossover operator is that it
produces children strings which do not contain duplicate item numbers.
This goal can be achieved with aligned single point crossover as follows :
Two parent strings, such as those shown below, are chosen at random
from the current population.

11

