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AN INTEGRATED FRAME-WORK
FOR EXPERIMENTAL INVESTIGATION
BY SIMULATION MODELS

By
*
Motaz KHORSHID .

This paper is addressed mainly to researcher who

wishs to conduct simulation experiments on models repre-

senting management and economic éystems; Our main ambi-
tion is to show him how can controled experiments be
achieved through discrete event simulation and to make
him aware of the important statistical aspects of this
technique. )

Once a particular model is build and its computer

program is prepared, the main task will be to manipulate

computer runs in a way to get the desired information
about the behavior of the simulated system, In the
present research, we develop an integrated, framework for
investigating simulation models and analyze the follo-
wing three main strategic and tactic problems;

i - How each of test runs is to be executed and
how to estimate simulation run length?

ii - How to design an experiment in order to explore
the underlying mechanism governing the behavior
of the simulated system?

iii - How to select an experimental plan in order to
find the optimum operating conditions of the
simulated system.

1. Introduction

The use of cohputer simulation technique to con-
duct artificial experiments on numerical ﬁodels of
complex systems, is an increasingly important tool in
many desciplines todéy. Computer simulation offers
many features that make it an attractive experimental

method for studying management and economic systems.

* JInstitute of Statistical Studies & Research, Cairo
University, Egypt.



Some examples of such features are,rthe ability to test
and evaluate new‘systems in advance, the ability to iden-
tify and control the source of variation in the experi-

ment, etc. [16,29].

These advantages have encouraged operations
researchers‘and statisticiens to improve its practice
through the use Qi diffgrent statistical techniques to
design and analyze simulation experiments [16,18,2l,
28,29,30,34]. The results of these studies demonstra-
te the need to consider two problems. First, the
special circumstances of simulation that lead to misi-~
nterpretation of results and then misunderstanding the
simulated systems, Second; the difficulty to achieve
the assumptions of the statistical theory, as’indepe-
ndence and homogeneity of variances. So either we
_manipulate_simulation runs to match these assumptions,
or we hope that the selected techniqueé are not affec-

ted by their violation,.

The pﬁrpose of this paper is to develop an
integrated framework for 1nvest1g§ting,_management
systems by simulation technique and to find satgsfa—
ctory solutions to problems that we might face when experi-

menting simulation models.

We suppose that simu}ation experiment is con-
ducted in order to achieve two objectives; i) Investi-

gating the relatiohship of simular response to input



specifications in order to determine the underlying mechanism
governing the gsimulated process; ii) Finding the levels
of input specifications at which simular response 18

optimized.

As any statistical investigations, we begin by
selecting a sampling plan which specify, how each of
test runs is td be executed, and how to determine
simulation run length. The second phase, is to

design an experiment that will yield the desired

information. Finally, a data analysis technique is

to be choosen in order to reach some conclusion

about the simulated system,

In section 2, the mathematical base of simu;a—
fion experiment is presented, the simular response
function is defined, and different experimental desi-
gns are formulated. A detailed discussion of the
steps needed for jnvestigating simulation models,

apears in the remaining sections.

2. The Mathematical Model

In many simulation models the process of interest
(1) © }'
appears as 8 stochastic process , {Yy(t) ,-=<t<=}.,
Considering discrete event digital simulations, we

assume that during an interval At the process shows

(1) We will consider only the stochastic simulation
models as most management or economic systems
inevitably appear random to sone degree in nature.

-



little, if any, change so that observing Y(t) at
periodic interval At result in no loss of information.

For convenience, let At be unity, then

(1) ‘ Yt SY(t)

so that the sequence {Yt3 t=0,1,2,...,%} corresponds
to the Process {Y(t)} at all integer values of the

index t.(l)

In order to study several processes of interest,
generated by different environmental conditions o? input
Bpecifications,, we would like to aquire a quantita-
iive characferiiation of each o? them, The mean of
the process serveslgenarally as‘the mathematical disg-
criptor. Let {Yt; ten} be a time series of length

n observed during the simulation run, the mean of the

process "u'" can be estimated by:
_ n
(2) Y =n I Y

where Y is called "simular response".

Sinée the stochastic features are spawned in
the simulation model by incorporating the random number
seed as an integral part of 1nput:specifications, the
response Y becomes a random variable, becﬁuse‘if is a

transformation not only of the environmental conditions

'Hﬁ.xz.”.,xp"ﬂnm also of the randomly selected seed "r".

(1) The index may be the time, for example Y may define
the number of jobs in a production system, It may
simply denote order; for‘e¥gmple Y, may represent
the waiting time for the t job to receive service.



This relation is defined as:

(3) Y = ¢(x1,x2,...,xp;r) = ¢(;.r)-

Then for each permissible specification of
environmental conditions ;, the set of all possible
responses, (which arise from the selection of different
random number seeds),might form a probability density

function for simular response ?.(1)

Cdnsequently, the aim of the experimenter will be
to estimate the moments of this distribution. Specifi-
cally, expected simular response "y" and variance of
simular response var(?), can help him in explaining

the particular nature of the simular density function.

Then, regardless of the experimental objectives,
we should define a procedure for estimating the mean
and the variance of simular response; i.e to select
a sampling plan. Once a method for their estimation
is selected, we can proceed to the study of Y as a

function of the P environmental conditions.

The environmental conditions or experimental
factors are categorized as qualitatives and quantita-
tives.(z) Although the random number seed "r" consists

of real numbers, it could not be classified as

(1) A detailed discussion of this point can be found in
Mihram [34] pp 261-267. :

(2) ExampleE of qualitative factors are policy specifi-
cation, or discrete environmental conditions. Quan-
titative factors are examplified Dby input parameters
that can usually be thought as continious variates.



quantitative factor because Y will probably not be
continious function of it. The random number seed 1is
then unique among quantitative factors, and relation

(3) can be written:

(4) Y = ¢(x1,x2,.,,,xp) + €(r)

where E(r) is a random effect dependent upon the random
number seed r. Further, if we assume that &(r) is
independent of the factors (xl,xz,...,xp) and that

E{e(r)}=0, the expected simular response can be defined:
. -— -+ -
(5) E(Y) = ¢(x1,x2,...,xp) = $(x).

>
It is the nature of the unknown function ¢(x),

termed simular response function, that we try to inves-

tigate by simulation experiment.

In practical simulation situations, any gttempt
to develop the exact form of ¢(;) could not be justified
from economical point of view. In add;tion,{for many
experimental purposes, it is unnecessary to comnsider
the form of the true function, a flexiable graduating
function, for example a polynomial, will often be
satisfactory to expfess the relationship between E(?)
and the "p"rfactors. Fﬁrther more? many experimental
strategies proceed by dividing the wﬁole bperability

region of factors space, iﬁﬁo'a number of smaller



regions of immediate interest. Withen these regions

of interest, the experimenter may feel it is reasoﬁahle
to represent the fesponse gunctibn by a known function-
al form, although he may know that such representation
would be quite inadequate over the whole operability‘

region.

As a result of the previous discussion, the

simular response function may be approximated by
— - -)-6
(6) E(Y) *= f(xl,xz,...,xp;el,ez,...,eg)Bf(X. )

where £ is a known functional form indexed by some
unknown vector 3.

+
The way by which we investigate the iunction,f(x,g),
in order to yield information about simulated systemnm,
depends on the experimental objectives. Accordingly
we destinguish between two types of experiments,

exploratory and optimization.

2.1. Exploratory Experiments

I1f the experimenter wish to study the relative
importance of the factors % as they affect the expected
simular response, he may select one of the following

experimental designs.(l)

(1) In most designs, the constraint of éxperimental
budget is considered either by fixing the number
of experimental points or by selecting the plan
that reduce this number as possible.



i) Screening designs

At the begining of investigation, specially with
complicated simulation models, the experimenter may face
the problgm of.so many factorﬁ. It‘may happen that not
all'the P factora‘are important but only a few, sﬁy

p' factors,Therefore we may screen for these factors.

ii) Designs for Estimating Parameters

Whén experimenter has a prior knowledge about thé
simulated system due to.theoritical backgrund or from
previous inveétigations. He maf assume that a pafti-
cular functional form f(;,é) is a good approximation
to the true response function ¢(;) in such a way that
bias due to inadequacy of f(;,g) to represent ¢(;) caﬁ
be neglected. In such case, his goal will be to select
an experimental plan to estimate the unknown parameters

8 so that the variances of the estimators are minimized,

iii) Designs for Exploring Response Surface.(l)

When knoﬁledge about simulated system is limited,
the object is .to approximate, withen a glven region of
the factors spacé; the function ¢(§) by some graduat;ng
functién f(;,g) whiéhvmost closely represent the true
simular response function. The criteria of closeness
is measufed by the variance érror caused by sampling

i

(1) These designs treat only the case of quantitativek
factors._ '




variation and bias error resulting from 1inadequacy of

->-6 ->
£f(x,6) to exactly represent ¢(x).

2.2, Optimization Experiments

The purpose of this type of experiments is to
find the.combingtion of factor levels at which the simu-
lar response function ¢(;) is optimized. Researchers
of management science face frequently this experiment,
The maximization of profit or the_minimization of

cost is a common objective in management studies.

To copclude, any attempt to develop an experimental
method for investigating management systems by simula~
tion, necessitate the choice of a sampling plan which
defines an efficient procedure for estimating the
variance of simular response. The estimated variance
measures the accuracy of results and then can be used
to determine the appropriate run length. Having acco-
mplished this task, an experimental strategy may be
defined fér investigating the inter-dependence between

the simular response and the experimental factors.

The rest of this paper will be devoted to the
detailed discussion of the previous statistical aspects

of simulation experiment.



3. The Stochastic Sequencegggnerated by Simulation

At the begining of jnvestigation, the study of
the stochaétic sequence, {Yt,t=l,2,...}, generated by
simulation,is important for the understanding of the
process under study, and the reduction of the experi-
mental effort needed in the next steps. The following
three characteristics may provide the required infor-

mation.

Stationarity., A sequence is said to be strictly sta-

tionary if every series, {Ys'Ys+1"“’Ys+n}’ for
s=1,2,...,%; will have the same probability density
function., A ﬁide sense stationary sequence, which is

less restrective, will have the mean:
(7) E(Yt) = p <@
and the autocovariance function
(8) R = E[(Yt—u)(Yt+s—U)] ,  .8=0,1,2,...

The importance that the sequehce, generated by simula-
tion, be a stationary one is explained by the fact
that its autocovariance function Rs depends only on
one variable. Moreover, the spectral density function
can be represented as the fourier transformation of
the autocorrelation function [16]. These two facts
are of immense assfstance to facilitating the analy-

sis of the sequence.



The existence of a trend in the generated squence
wili cause non-stationarity. In case of simulation,
we can eliminate such trend, either by using an el;mi-
nation technique |}4], or simply by the clever choice
of simular response. I1f we cannot avoid non-station-
arity, replicating simulation runs will be recommended
in order to generate uncorrelated observations and
then to avoid the problems'aésociated with the es;ima-

tion of R .
8

Autocovariance Function. This function gives

the experimenter an initial guess about the independence
between events and then the degree of congest;on of

the simulated system. Since high congested systems
need longer run lengths to liberate results from the
imposed initial conditions, the choice of a startipg
policycl), and the determination df sample size

benefit from knowledge about autocovariance function.

This function is also used in estimating the precision

of simular response Y in case of autocorrelated obser-

vations.

Spectral density function. This function represents

another measure of dependence between observations in

the stochastic sequence. It is defined as:
(9) A = s RoL ; R cos ws; wef{o,T}
w 0 = s ] ! !

(1) See section 5.1.
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The estimate of Aw reveals the prominent periodicities
in the genérated time series. In simulation experiment
the periodic components may apear as a consequence of
building in the experiment rules thﬁt contribute an
element of regularity recurring behavior to>the>seque-
nce'of interest. The existence of periodicity is un
desired because 1t adds unnecessary Qariation to the
sequence and create statistical problem when estima-
ting Rs [16]. The formulas for estimating Rs’ Aw,'
can be found in references [16,34]. For their théo-'

ritical development see [22,36].

4, Termination rules in simulation

When conducting simulation experiments on models

representing real systems, two situations can be faced:

i) Simulation run can be prolonged‘ indifinitely,
In that case we can increase sample size either
by continuing the run or by replicating it. In
either cases a stopping rule is needed to end
simulation experiment, This situation is desig-

nated "non-terminating systems", Many simula-

tion models behave as non terminating systems,

for example, Jobshop, inventory or queueing

models.
ii)~- Simulation run ends with the occurance of a par-
ticular event. In that case the only way to

increase sample size is replicating simulation

runs. This situatiod is designated "terminating

systems" , It can take one of the following forms

[30]:



