ARAB REPUBLIC OF EGYPT

THE INSTITUTE OF NATIONAL PLANNING

Memo. No. 13€

Multi - Farametric Linear Programming

Ву

Dr. Abdel Kader Hamza

October, 1983

CONTENTS

- 1- Introduction
- 2- Multi parametric linear Programming
- 3- 4 Types of Parametric Programming Problem
- 4- Solution types of Parametric programming Problems.

Introduction:

It is expected that the programming techniques that will be useful to solve different problems in different fields from the classical techniques. Since the increaswill differe ed computer capability will enable to develop techniques which recognize the particular characteristics of the problem being Instead of using some standard techniques which make studied. assumptions about the problem that can not be met. Also A typic cal manufacturing organization, the various operating departments are for most part goal oriented. Since each department has specific tangible or intangible objectives that are to be often result. Such problems can be ptimized conffict may formulated as linear parametric programming. In general various ther multiparametric linear programmes may be possible. inear programms with multipile parameter either in abjective function ar in constraints or both are obviousely not limited to manufacturing Organiziations. Therefore similar motivation could have been given from other areas. It has the advantage of representing many real prablems. In anticipation of such approach, it would be quite advantageous to have solutions techniques for such problems. The purpase of our work is to develop auseful technique for solving the multiple parametric linear programming.

1- Multi-parametric linear programming

1-1 Mathematical formulation of linear programming problem:

A linear programming problem can be written as fallows:

Find the vector X that (maximize or minimize) the linear objective function

$$Z' = \underline{C}' X \tag{1}$$

under the constraints

$$\underline{A} \underline{X} \underline{b}$$
 (2)

and

where

$$\underline{A} = A (m,n)$$

$$\underline{b} = b (m, 1)$$

$$\underline{C} = C (m,1)$$

Equation (1) Form the optimality criterion and define the solution of the problem. i.e theoprimal result by the given constraints. System (2) gives the technical, economical and special constraints which bound the salution.

The solution is always seen as a relative solution.

The solution of economic problems by such methods is a relative solution, since it can not represent all economic factor in linear programming problem i.e it represents only one side of

A better result, then must be given this result, is obtoined from the parametris programming. The parametric optimiziation programming takes in consideration the main factors of the problem in formulating the model. These main factors are to be taken as parameters and defin the objective function with any change in the main factors. Form this we develop a useful technique for solving more parametric programming problem.

Another advantage of such parametric programming problem is that programme with more optimal criteria can be represented.

Mathematical for mulation of a parametric programming problem is to be done under the fallowing types.

- 1- Parametric objective functions coefficient
- 2- parametric boundes (constrints)
- 3- parametric costs coefficients.

- 1-2 In the follwing part If will deal with more-parameteric linear programming there will be four types of problems.
- 1- For the 1st type of those problems will be the optimurn-ing probem as follows

$$Z_1 = \underline{U}' \underline{C}' \underline{X} \quad Maxumum \underline{U}E.U$$
 (1)

under the constraints

$$\overline{X} \geqslant 0$$

with

$$\underline{U}' = (U_1, U_2, \dots U_n)$$

and

$$\underline{\mathbf{C}'} = \begin{bmatrix} \underline{\mathbf{C}'} \\ \underline{\mathbf{C}_2} \\ \vdots \\ \vdots \\ \underline{\mathbf{C}'} \\ \mathbf{d} \end{bmatrix}$$

The \underline{c}_1 , \underline{c}_2 , ..., \underline{c}_d must be at frinstfree wneights of the parameters \underline{u}_1 , \underline{u}_2 , ..., \underline{u}_d verfied

the aim is to see

1- For which paraweter branch is an extrem point

an optimal solution

- The properties of the parameter branch
- The properties of Z in this branch
- Which solution can be on optrmal solution the parmeters in this sense are free selected

$$(U = E^{a})$$
 or limited $(U < E^{d})$.

2- the second problem is

$$Z = \underline{C} \cdot \underline{X} \qquad maxumum \qquad (4)$$

and the constraints

$$\frac{A}{X} \lesssim \frac{B}{Y} \qquad \underline{V} \quad E \quad V \tag{5}$$

$$\frac{X}{Y} \geqslant \underline{0}$$

Where the vector \underline{b} is not given and $\underline{b} = \underline{b} \cdot 1 \quad V_1 + \underline{b}_2 \quad V_2 + \dots + \underline{b}_g \quad V_g$

with the parameters

then we have

$$\underline{b} = \underline{B} \underline{V}$$

wher

$$\underline{\mathbf{B}} = (\underline{\mathbf{b}}_1, \underline{\mathbf{b}}_2, \ldots, \underline{\mathbf{b}}_g)$$

3- Problem (1) and (2) can be combined together give problem (3) which can be formulated as

$$Z_3 = U'C'X$$
 maximum (7)

and

and

(U E U)

under the constraints

$$\underline{A} \times \leq \underline{B} \times \qquad (V \in V) \tag{8}$$

$$X \geqslant 0$$

4) The fourth problam

If the Matrix A is not before given, and there is two kinds of Matrices A^{-1} and A^{-2} to be calculated then the problem is as

$$Z_{ii} = \underline{C}^{\dagger}\underline{X}$$
 max (10)

Under the conditions

$$(\underline{A}^{1} \quad W_{1} + \underline{A}^{2} \quad W_{2}) \quad \underline{X} \leq \underline{b},$$

$$(\underline{W} = \left(\begin{array}{c} W_{1} \\ W_{2} \end{array}\right) \quad E \quad W)$$

$$\underline{X} \geq \underline{0}$$

$$(11)$$

For problem (1) the mor - parameteric Programming problem is

the dual of this problem will be

$$Z'$$
, = \underline{b}' \underline{Y} mivinum
 \underline{A}' $\underline{Y} \geqslant \underline{C}$ \underline{M} (\underline{U} \underline{E} \underline{U})
 $\underline{Y} \geqslant 0$

where

$$\underline{C'} = \underline{C'} (1,n)$$

$$\underline{U'} \underline{C'} = (\underline{U'}\underline{C'}) (1,n)$$

as an intial table for the problem

A- the intial table for the problem is

		<u>x</u> '	
L	<u>Y</u>	<u>A</u>	<u>b</u>
		<u>c</u> '	<u>o</u> (a,1)

the 1st table is

		<u>X</u> 1'	<u>X</u> ₂ '		
	Y 1 Y 2	A ₁₁ A ₂₁	A ₁₂	<u>b</u> 1 <u>b</u> 2	(13)
Ī	<u>u'</u>	<u>c</u> ;	<u>C</u> 2	<u>0</u>	

with which $\frac{A}{11} = \frac{A}{11}$ (r,r) and

$$\underline{c}^{1} = \begin{pmatrix} \underline{c}_{1}^{1} \\ \underline{c}_{2}^{1} \\ \\ \underline{c}_{d}^{1} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \\ c_{d1} & \dots & \dots & c_{dn} \end{pmatrix} = \underline{c}(\underline{d}, \underline{n})$$

it is also

$$\underline{C_1'} = \begin{pmatrix} c_1, J_1 & c_1, J_2 & \dots & c_1, J_r \\ c_a, J_1 & c_d, J_2 & \dots & c_d, J_r \end{pmatrix} = \underline{c_1} \quad (d,r)$$

and

$$\underline{C_{2}'} = \begin{pmatrix} c_{1}, J_{r+1} & c_{1}, J_{r+2} & \cdots & c_{1}, J_{n} \\ c_{d}, J_{r+1} & c_{d}, J_{r+2} & \cdots & c_{d}, J_{n} \end{pmatrix} = \underline{c_{2}'} (d, n-r)$$

following table From table (13) through the privot element $\frac{\Delta}{4}$ we get the

			···
- <u>C</u> 14-1	<u>C'2-CiA-1</u> A12	1-4,12-	<u>, </u>
t^{d} $st^{A}tt^{A}ts^{A}s^{d}$	st <u>A</u> tt <u>A</u> ts <u>A</u> -ssA	tt ^A 12 ^{A-}	<u>7</u> 5
r <u>d</u> rr	21 ₄ 11 <u>4</u>	<u>r - A</u>	\overline{x}
	, X	<u> </u>	

From table (14) is the optimal Solution of the primal problem

sp (1)

$$\begin{pmatrix}
t^{d} & t^{-A} \\
& Q & \\$$

the Solution of the dual problem is

$$\underline{\chi}^{+} = (\underline{u}, \underline{c}, \underline{A}_{11}^{-1}, \underline{o}^{\dagger})$$
 (16)

with the following constraints

$$(71) \qquad \qquad \frac{1}{2} \stackrel{1}{\sim} \frac{1}{1} \stackrel{1}{\sim} \frac{1} \stackrel{1}{\sim} \frac{1}{1} \stackrel{1}{\sim} \frac{1}{1} \stackrel{1}{\sim} \frac{1}{1} \stackrel{1}{\sim} \frac{1}{1$$

(18)

$$- \frac{1}{0} c_2^1 - \frac{1}{4} c_3^{-1} < 0$$

$$\frac{1}{0} \cdot C_2 - \frac{1}{2} \cdot \frac{A^{-1}}{4} \cdot \frac{A_{12}}{4} \leq 0$$
(20)

the inequalties (19) and (20) are

$$\underline{A}_{11}^{-1} \quad \underline{C}_{1} \quad \underline{U}_{1} \geqslant \underline{0} \text{ and}$$

$$(-\underline{C}_{2} + \underline{A}_{12} \quad \underline{A}_{11}^{-1} \quad \underline{C}_{1}) \quad \underline{U} \geqslant \underline{0}$$

the optimal value of the abjectine

function of problem (1) is

$$z^+ = \underline{U} \quad \underline{c}_1 \quad \underline{A}_{11}^{-1} \quad \underline{b}_1.$$

Initial Table for solving problem (2):

The problem is given as

$$z_2 = c^1 \quad x \qquad \qquad \text{maximum ! (21)}$$

under the constraints

$$\frac{A}{X} \lesssim \frac{B}{V} \qquad V \in V, \quad B = B(m, g)$$

$$\frac{V}{X} > 0$$

the dual of this problem is as follows

$$z_2 = \underline{V} \cdot \underline{B} \cdot \underline{Y} \qquad \text{minimum } ! \qquad (22)$$

under the constraints

$$\frac{\mathbf{A}'}{\mathbf{Y}} \geqslant \underline{\mathbf{C}}$$

as in problem (1) the intital table is as follows:

-	x ₁	x ₂	v
Y1	A11	A12	<u>B</u> 1
¥2	<u>A</u> 21	A22	B2
	cī,	C2	0 (1, g)

with the Matrix A_{11} as a pivot element then table 23 will be in the following form.

	¥1	х2	
X1 Y2	-A-1 -A21 A-1	<u>A</u> 11 <u>A</u> 12 <u>A</u> 22 - <u>A</u> 21 <u>A</u> 11 <u>A</u> 12	A_{11}^{-1} B_{1}^{-1} B_{2}^{-1} A_{11}^{-1} B_{1}^{-1}
	-c1 A ₁₁	$C^2 - C^1 = A_{11}^{-1} = A_{12}$	C1 _A_11 _B1

the optimal solution of primal problem 21 is

and the optimal solution of the dual

$$y = (C1 A_{11}^{-1}, 0)$$

the objective functions of both problem will be

$$z^{+} = C1 \quad A_{11}^{-1} \quad B1 \quad V1$$

for the optimal solution of 24 it is necessary that

$$\underline{A}_{11}^{-1} \qquad \underline{B}_{1} \quad \underline{V} > 0 \tag{26}$$

$$(\underline{B2} - \underline{A21} \quad \underline{A_{11}}^{-1} \quad \underline{B1}) \quad \underline{V} > 0$$
 (27)