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I. Introduction’

The development of many sectors of the economy is often
hampered by the insufficiency of the exisitng facilities of
physical distribution,”'Riddiné.of”snchea'problem is é&yeéﬁéd to

yield a returns to different sectors far more than the cost 1nvolv-
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ed in the additional facilities. To estimate future needs for each
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mode of freight transport (waterways, railroad, and motor carriers),
it is logical to start by predicting total needs of freight transport,

then break down the total to flnd_the size of demand on each mode.

This study concerns itself with the. first part, i.e. with .de-
veloping a proper model which could be used to predict total annual

needs of freight transport services. "~~~
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It is doubtful that analysis of time series of past commo-
dity shipments would by itself suffice to predict such future needs.

It does not account for external factors which affect the variable



being forecast. In a previous study.in which the author took part,l

it had been suggested that Gross National Product at constant prices
would be about the most relevant single'variable'affecéing freight
transport needs since most domestic product is physicaliy distributed

within the eéonomy.

However, direct application of regression analysis to estimate
the relationship between the two series (Demand for freight transport
as the dependent variable Y, and GDP at constant prices as the inde-

pendent variable X) would present some dificulties.

‘Oon the one hand, the disturbance terms of each series would not
be white noise (random) as required by the model. khtﬁer, they would

‘mbst likely be serially related.

On the other hand, the trend in both series would tend to

dominate the regression thus obsocuring the tiue regression relation

making itssidentification'and-estimation rather difficult.

1) This was in an unpublished study by the Institute of National
Planning, Cairo, 1973.



Often in practical studies, these problems are ignored and re-
gression analysis is applled to time series as are. Tﬁe results would
be unbiased estimates of the regre581on parameters but their estimated
variances would be b;ased. This in turn leads to unreiable tests and

inacurate interval estimates.

Therefore, for the cortece specificafion of the regreSSion model
which will be used for prediction purposes, it is important to rid each
series of any of these these difficulties whenever present before apply-
ing regression analysis to them. The suggested procedure, known as the

Box~Jenkins Approach, will be.applied in the following sequence:

a) Checking for the existence of a trend in each series,

in which case data should be detrended first.

b) Checking whether disturbances of each series is white noise,
if not, transform them into white noise through the specification and
application of the correct ARMA model. This is knows as the prewhiten-
ing stage. |

c) Applying regression analysis to the prevwhitened series of
X and Y. Modify until reaching the correct MARMA model.

d) Checking the model for adequacy. This stage is known as
diagnostic checking stage. |

€)' Using the estimated MARMA model for prediction.



II.

Detrending and Prewhitening

Prewhitening is applied to both the independent variable
X and the dependent variable Y. The purpose is to eliminate the
trend within each series leaving what could be called whité noise,

therefore allowing the application of regression analysis to

~ estimate the regression of the prewhitened y series on the prewhiten-

ed X series.

‘Starting with the X series, the general class of autore-
gressive moving average (ARMA) model expressing the way an X value
is related to its own past values and to current and past error

terms is:' ,
X = @ % _, + ¢2 X, + oo +q% % o

tu - Qu_ -6 u, e -0 B g (1)
Equation (1) should be applied to stationary time series to find
out the degree of the ARMA model, i.e. to determine p and q.

If the data are not stationary, they should be made so by

first removing the trend in them.

Therefore, the very first step is to find out whether the

X series is stationary. Since stationarity exists when the data



are horizontal or flutuate around a constant mean, autocorrelations. -
are used to detect the presence ofAstationarity.VAutocorrelation for time

lag (k) is equal to
n-k -
r, = (xt-x) (Xt+

-X)
k =1

k

Z (x;--x) 2 - ORI B
=1 t

If autocorrelation drops rapidly to zero, the data are stationary and

the ARMA model could be applied to them. Otherwise, if autocorrelations
drop slowly to zero and several of them are significantly different from
zero, it would be a sign of an existing trend within the series, i.e.

the data would be nonstationary. Table 1 shows the autocorrelations for

the X series for various time 1ags.1)

Table 1
Autocorrelations of Original X Series

Time lag . Autocorrelation : -

0.865
0.748
0.641
0.537
0.447
0.358
0.283
0.211
0.137
0] 0.063
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Data used are: .
GDP at 1954 prices million £ for 1953-1980/1981

Total volume of Freight transport in million ton/kelometer for 1953-1980/1981.



Since all autos up tb the fifth time lag are significantl), and the de-
* cline in them is rather slow, there exists a trend in the X series which

will be removed by differencing.

Taking first differences instead of the original X data. The

autos for various time lags are as shown in table 2.

Table 2
Autocorrelations of Differenced X Series

Time lag Autocorrelation

.39
.305
-.136
.037
.028
.318
.045
.106
-.104
.054
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The values of the table indicates that the new series of first

differences has much lower autos which decline exponentially.

To determine the proper order of the ARMA model we examine the

autos and partial autos for various time lags. Table 3 shows the partial

1) Standard error of the autocorrelation coefficient is equal to

1l
n-k



autos for the diffe:enced_series.

Table 3

Partial Autocorrelations of Differenced X Séries

Time lag Partial Autocqrrelation

.39
.227
~-.354
.30
.256
.54
-.258
.40
.336
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Notice that the first auto, the first and sixth partials are significantly
different from zero. . This suggests an AR of up to (6), and a MA of (1).
However, we will start with the simplest model, an ARMA (1,1) and proceed

with the remaining steps to find out whether such a model is adequate or

should be modified.

An ARMA (1,1) model is in the form:

- = - -0
(X = X _,) ¢1(xt-l X o) vu =¥ Y (2)

where ut is white noise such that

2 2 o
E(ut) =0, E ut-of, and E u ., o



Initial estimates of ¢1 and 91 should be obtained. These are
obtained using the autocorrelation coefficients.

Let us first use xt =X -X

and ¥ = X - X

Therefore, eq (2) becomes

X =y x4 U = é& Yy (3)

The variances and covariances of the mixed ARMA process would

then be
% =E () = E(, x_, +u -0 u )2 (a)
° t " 1 “t-1 t 1 t-1
2 2 2 2
=P, ¥ - 2¢1913 (X ) B i) +0° + 0] o (5)
2% 2. 2 a2 2
_431 ¥, 2¢1 910-' + g +olo’ (6)
i E( u ) = 2
since xt-l -1 o~
Therefore,
2 2 2
-4 = ¢ 6 - 2 qbl a) (7)
and, the variance xo is
Y. = +6%2¢ 9, 2 (8)
° 1 171 o’ ,

2
1- ¢1



Likewise, the covariance "1 is

o

By =E x ) x) =E E‘t-l (P Xe) * 8 =0 Uy ]
=p, ¥, -0 B . (9)
. 1+92-2¢ 0 2 2 ' 10
=@ 1 > 11 o -elo‘{_ o . (
1-¢
1
2 2 2
=P +Q6 -2¢:6,-a-¢pe, 2 (11)
) == ,
1-¢1
+p 8% -20%0, -0 +d 8 2
=P *HR 6, 19, "6 ' 5 ‘_ (12)
2 ] . . - :;
1-4>l
+ 2 _ 29 -0 2 ’ ' :
=¢1 Cplgl 11 1 o : (13)
1—¢1
(b, -0 - (9, -60,) S
= ¢, -6) -0 (@ -6 o2 (14)
2
1- @2
Thus,
“1" ($, -6 « cplel) c/z (15)
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tewise Kz is

Thus,

}{2 =E (*t-z,xt)

£ Et-Z (by %y * 9 -8 ¥,
EEt-Z (@ (P *xptu, -6
“Pi 5. - a1q!>1"g |

[}

¥, “¢ (P ¥ - 00" - Pi¥

in the same fashion

Kk =¢l b’k_l for k22
where k is the number of time lags.
Thus, the autocorrelation functions would be
. ¥, _ P -9) a-¢ o)
1 g .02 -
1 91 2»¢191
and
_ %2 ¢, ¥ -
) . Y. 171
Theref ¢ - o
erefore, 1=

):'l (16)
ut_2)+ u - lutéz] (17)

(18)

(19)

(20)

(21)

(22)

(23)
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Next, the autocorrelation estimates for various time lags are

used to obtain initial estimates for ¢'1r:and 91.

Starting with ¢'1 ’

¢1= -1.2—: ;-3£ = ,781
(481 .39

Substituting this value of ¢1 in eq. (21) we can solve the resulting

function, which is nonlinear, to get an initial estimate for 91

(.781 - 61) (L - .781 91)

.39 =
2
l1-p -2x .781 1
l .
or
~3908%2 +06. - .3=0
. 1 1 .
Thus,
e, = -1+ v 1- 4(.39)° |
1 - : - (24)
- 2 X.39
91 = 0.479 or 91 = 2.085
The first value @, = °479 meets the constraint for stationarity

1

(otherwise, with the other value of § 1 the series would be explosive).

The;.efore . the initial values of the parameters are

P, =.718 91-=- .479
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Final parameter estimates are obtained using Marquardt's
method for solving nonlinear equations. This method is often preferred
for its practical advantages over the other methods.l)

Using the initial estimates of 4;1 and 91 on the differenced

data X, we get its corresponding estimate

xt = ,781 xt_1 -.479 et_1

where et is the observed residual value for time t. Thus the mean

square error MSE is

. — e
msg = L2t 368622 . ..o (25)
26 26
”\
w = - .
here et‘ xt xt.

The calculations using initial parameter values are shown in

table 1 in the appendix.

Next,/ to determine the direction of changing the parameter
estimates, we intrfodiice a small change, say 1% of original value, once

added and ofib¢ gubtracted €& the initial value of ¢l while holding @ 1

Y

1) Other methods for solving nonlinear equations are; linearizatiénAof
the above nonlinear fénmétion around the initial ﬁaﬁﬁes of the'paréé ”
meters using Taylor seriés expansion (see 7, p. 482) , and steepest de-
scent method (see 2, p. 267).
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constant. The predicted values of xt using these values, called f-l. £ are
calculated. The difference between flt and Qt is also found. The result-

ing values of MSE will determine the appropriate direction of change in

P,

Interchangeably, ¢l is held ‘constant at its initial value and
91 is changed by a small increment in each direction. The predicted values
of Xe using these values, called f2t are also calculated. The difference

A
between f2t and X, could also be found. Again, the values of MSE will
determine the appropriate direction of change in the value of 1 Table.

4 shows alternative values of ¢1 and 91 and their corresponding values of

MSE.
Table 4
MSE for alternative Estimates
¢, and 8,
Parameter Estimates - MSE
$,=-181, 0 =.479 14178
¢1 =.789 , @, = .479 ' 13915
¢’1 =.773 , @, = .479 ;14450
P,-.781, 9, = .484 14262
¢ L= -781, @) = .44 . 1409

Notice that the value of MSE decreases whenever ¢1 is increased

or 91 is decreased and vice versa. Thus, the search for final parameter



