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The purpose of this paper is twofold , (i) to propose

an integrated framework for studying management systems
by simulation and (ii) to evaluate the possibility of

using Simulation as an experimental optimization technique.

A job shop simulation model , which can be used to

test both materials handling and dispatching rules , was

developed in order to demonstrate the applicability of
*

the proposed procedures .

* This paper is published in the proceedings of the
international congress on applied System research

and cybernetics - perganon press - New york 1981.



1 = INTRODUCTION

The attractive features that computer simulation offers,
have encouraged operations researchers and statisticians to improve
its practice through the use of various statistical techniques to

analyse the obtained results [ﬁ1,12,13,16,17,18,19,23].

The commun conclusion of these studies indicate the need to
consider two main problems when investigating simulated systems,
First, the particular ¢ircumstances of simulation experiments that
may lead to misinterpretation of results(1 . Second, the difficulty
to achieve the assumptions of the statistical theory, as indepen-
dence, normality, and homogeneity of variances, So, either we hope
that the selected techniques are not influenced by assumptions vio-
lation, or we manipulate simulation runs to match them,

The purpose of this research is two fold. First, to propose
an integrated framework for studying complex systems by simulation.
Second, to evaluate the possibility of using simulation to find
the optimum solution., 1In order to demonstrate the applicability
of the proposed pProcedures, we developed a model that can be used
to test both materials handling and dispatching rules in a . job
shop production system,

As any statistical investigation, simulation user should
consider the following steps when developing an experimental
strategy:-

i) The choice of a sampling plan that specify how each test
run is to be exmuted and how to determine simulation run
length,

ii) The development of an experimental design that will yield
the desired information.

iii) The selection of a data analysis technique in order to
reach some conclusion absut the simulated system.

(1) A 1list of these circumstances can be found in Fishman (11)P.262



In section 2, we propose an integrated mathematical base for
studying management systems by simulation. The proposed optimi-
zation techniques, are presented in section 3, In section 4, we
explain briefly the simulation model that will be the setting of
the study. Finally, the design and analysis of two experiments are
discussed in section 5.

2 - MATHEMATICAL FORMULATION

In many simulation models, the process of interest apears
as a stochastic process(1).. .

{Y(t);-w=t=g} | (1)
Since our research concerne discrete event digital simulations,
we assume that during a small interval of time, the process shows
little, if any change so that observing Y(t) at periodic intervals
result in no 1oss of information. In a more detailed manner, the
sequence,

{Yt ’ tﬂ 1 2..0"’5} » . (2)
corresponds to the process {Y(t)} at all integer values of the .
index t.

The index t may be the time; for example Yt may define the
number of jobs in a production system at the instant t of simulation.
It may simply denote order, for example Yt may represent the
waiting time for the tth customer to receive service in a queueing
model.,

In order to study several processes of interest, generated py
different environmental conditions or input specifications, we
should aquire a quantitative characterization of each of them.

(1) we will conmsider only the stochastic simulation models as most
management systems inevitably appear random to some degree in
nature,
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The mean of the process;

u=e{r]

| (3)
serves generally as the mathematical descriptor, and by definition,
the variance(1): :

Var (Y,) =E [(Yt - u)ﬂ |

and the autocovariance functioq,
Rs = E {(Yt el u)(Yt+s-U)]; 8= 1’2’00‘0’ (5)

Then regardless of the experimental objective and the type of
.simulated model, we should define a pProcedure for estimating %u"

and for determining the accuracy of this estimator, i;e'to select
a sampling plan.

(4)

2.1 SAMPLING PLAN:

In simulation experiments sample size can be increased by prolo-

Simulation run, or by conducting separate runs,
there is two sampling plans,

the replicated runs. '

nging

Consequently,
the autocorrelated observations and

i) Autocorrelated observations:

Let {Yt,te n a time series of length n observed during the
simulation run, the mean u can’be estimated by:

-1 n

Y=ﬁ_%11’t . : (6)

where ¥ is called"simular response" .,

In order to determine the
its variance 12 ¢

accuracy of Y, we need to estimate

- -1 =1
Var (Y) = n [ Var (Yt)'+ 2 z:; (1-8/n) Rs] (7)

8=1

e

!

(1)@Assum1ng-[¥;} a covariance stationary sequence [11,18]



Where Var(Y% ) and Rg are defined by (4),(5) and can be
estimated by the formulas [18] :-

a v . e -
Vap (Y )= (n-1) }i_(Y%-- Y)2 . (8)
‘ t=1
- ' -1 Ne=8 - -
Rs = (n - 3) l (Y:t - Y) (¥t+s - Y); (
. T =1 ' %)

S= 1,250y (n = 1)

ii) Replicated runs :-
We can generate independent observations in simulation expe-

riment by repeating the run using different random numbers., Let

k = number of runs

n'= number of observations per run

n = total number of observations (=n'k)

Yt jﬁAthe observation generated at time t of run J.
W

The mean of each run is defined by:

-1 n!

Yooy =0 ) 'Y£,3 3 3= 152,000k (10)
t§1
and then simular response is calculated bys
- -1 Kk .
rek 3 e o

Since the sequence { Yn',j 3 3= 1,2,.009K }consist of k
inddpendent observations, Var (Y) is given by:

Var (Y) = Var (Y, ,)/k (12)

and can be estimated by:
|

e ® - (1)
where S° = (k-1) Z:. (Yn' ;- Y )2
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2,2 SEMULAR RESPONSE FUNCTION:

When experimenter select a sampling plam, he can proceed to
the study of the response Y as a function of the environmental
conditions or the experimental factors (x1,x2,...,xp).

Factors are categorized as qualitative and quantitative, Examples
of qudiitative fagtors are policy specifications, such that
alternative dispatching.rules in job shop, or discrete environ-
mental conditions., Quantifative factors are examplified by input
Parameters that can usually be thought as continious variates.

Since the stochastic features are spowned in the simulation
model by incorporatigg the random number seed as an integrated
part of input specifications, the response Y becomes a random
variable because it is a transformation not only of the expe-
rimental factors:(xz,xa,...,xp), but also of the randomly
‘selected seed "k 0 1' This relation is defined by

Y = Cb (xT, x2,....xp; r) =¢()'6r) (14)

Although the random number seed " r " may be conceptually
defined as a real numbker between o and 1, it could not be’'clag-
sified as quantitative factors, bewause ¥ will pProbably not be
a continious function of it. Then it is unique among the other
quantitative factors and expression (14) can be written:

= o(x, XgseeesXy) + £ (1) | | (15)

where £ (r ) is a random effect dependent upon the random
number seed |

Farther, if we assume that E (r) is independent of experimental
factors and has zero expectation, the expected simular response
can be defined as:

€1) a detailed discussion of this point can be found in Mihram [}Q]



E(Y) = (X13%p50000x) = & () (16)

It is the nature of the unknown function P (X), termed

simular respénse function, that we try to investigate by the

simulation experiment,

In practical situations, any attempt to develop the exact
form of P (X) could not be justified from economical point of
view, In addition, for 'many experimental Purposes, it is un-
necessary to consider the form of the true function., A flexible
graduating function, will often be satisfactory to express the
relation ship between E {Y) and the P factors. Further more,
many experimental strategies, divide the whole operability region
of the factops Space, into a numbepr of smaller regions of im-
mediate interest, Withen these regions, the éxperimenter may
feel it is reasonable to represent qb(i) by a known functional
,form,ffor example a Polynomial, although he may know that such
representation would be Quite ingdequate over the whole operabi-
lity region.

As a result of the previous discussion, CP(i) may be ap-
proximated by:

E (?)zf(x’]pxz,goo,% ; 91,62,000’61) = f(f) g) (17)
Where £ 18 a known functional form indexed by some unknown

vector & °

The way with which we investigate the function ¢ (X, &), in
order to yield information about simulated system, depends on
the experimental obJjectives. Accordingly we distinguish two types
of experiments, Bxploratory and Optimization,

2.3 EXPLORATORY EXPERIMENTS



i) Screening designs

At the begining of investigation; sbecially with complicated
simulation models, the experimenter may face the problem of so
many factors. It may happen that not all the p factors are
important but only a few, say p' factors. 'Theretﬁne, he screen
for them, | , |

The statistical literature contains many designs, for example,
fractional factorial designs [h,8,17] , random disigns [2#] ’
group screening designs [21] , and super saturated designs [3]
The investigator has to select the design which fit his particular

‘experimental situation.

ii) Designs for estimating parameters

When experimenter has a prior knowledge about the simulated
system, either due to theoritical background or from previous
investigationso He may assume that a particular functional form
f(x-e) is a good approximation of the true response function
¢ (X), in such a way that bias due to inadequacy of f (x,e)

‘to represent q3(§7 can be neglected. So his goal will be to select
an experimental plan to estimate the unknown parameters 9 with
high accuracy. Two basic approaches were proposed to develop an
experimental design, either to use a simple factorial or fractional
factorial design [4,8,17] , or to select a design based on a
variance criterion as D - optimal designs [15] .

iii) Designs for exploring response surface

When knowledge about simulated system is limited, the obJect
is to approximate, withen a given region of factors spéce,
¢ (X) by some graduating function f (X,8) which most closely
represent the true simular response function.

Accordingly the following design requirements have to be

considered:



b) The design should consider not only sampling variation but
also bias error. '

¢) The design should allow a check to be made on the representa-
tional‘accuracy of the postulated model,

A particular attention will be devoted, in the next éection,
to the explanation and the applicability of this experiment,

a8 sampling plan which define an efficient Procedure for estimating
the variance of simular response Y o The estimated variance
measures the accuracy of results and then can be used to determine

the appropriate run length, Having accomplished this task, an

The choice of an experimental Strategy that will yield an
optimal Solution depends on the type of factors in the simulation
model. When all factors are Quantitative, an optimum seekiyg
routine can be uged in order to fing the combination of factor
levels that optimize the response Y o But the existance of some
qualitative factors, as policy specification or operating rules,
limit the search pProcedure to the choice between a number of
experimental alternatives,



3.1 The search for an optimum combination of factor levels;

When all factors are quantitatives, the investigator will wish
to find in the smallest number of simulation runs, the Point
(x?1,x°2,...,x°p), withen the factors space, at whichGP(SE) is a
minimum or a maximum,

Since simular response function is not known in advance and
is subjected to random vafiation, we think that the most reasonable
strategy will be to fit a sequential program of hvestigation
consisting of the following steps :-

i) Divide the whole region of interest into a number of small
subregions, so that we can explore adequately a small sub-
region with a moderate number of Simulation runs.

i1) Use the results obtained in one subregion to move to a
second in which simular response Y is better,

iii) Repeate the previous steps until the attainment of a near
stationary region where no improvement in the simular response
can be achieved.

iv) In this limited region, conduct a more detailed experiment
in order to determine the local nature of the function CP(E).

In the following sections we discuss breifly trie two main
elements of this sequential program, seeking a near stationary
region and exploring it,

3.1.1 Seeking a near stationary region

When the starting conditions of simulation are fairly remoted
from the stationary pojnt, an optimum seeking technique will be
needed to move rapidly through the factors space to a near
stationary region,

Brooks [6_] compared four optimum seeking methods, steepest
ascent, univariate, factorial, and random search. He concluded
that, when sequential investigation is possible, steepest ascent
seems to be superior to the others, except in case of large
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number of factors, where random search is more efticient(1)‘

Recently, Smith [25] showed that random search should not
necessarily be the search technique selected in practical situations
even in case of 8o many factors and he recommended the use of the
steepest ascent, ’

Siﬁce the steepest ascent method is explained in detail in Box
~ and Wilson [5] and Davies [8], we just mention, here, some
remarks that should be considered, when applying the method to
simulation experiment(z).

i) Since we use the error variance to test the adequacy of the
fitted function and the significance of model parameters, an
accurate estimate. of the variance of Y is needed in order to
évoid any wrong conclusion.

ii) As the steepest ascent method is affected by the size of the
’ experimental error [5] s We may try to reduce it, by selecting
a minimum varianc® design (see section 2,3), by increasing
simulation run length, and if possible, by using a variance
reauction techniques.

iii) If possible; provision should be made to estimate some of
higher order coefficients that were not included in the postu=-
lated model. The study of these coefficients will provide soéome
indication of whether the assumption that these terms can be
ignored is a reasonable one or not.

3.1.2 Exploring the near stationary region

The experimenter may arrive at a near stationary region either
as the result of successive application of steepest ascent method,

'

€1) This is explained by the fact that, in random search algorithm,
the number of experimental trials is not a function of the .
number of factors,

(2) The method will be explained using an example model in section(f.



or because he has already found it at the begining of his inves-
tigation. In either cases, only immediate neighbourhood need be
explored to determine the local nature of response function CP(R)
and this may be done without excessively large number of experi-

mental points,

Although many authers have ignored the exploration of near sta-
tionary region, and are only satisfied by finding the approximated
optimum point, we think that it is an important step in case of
simulation for the following reasons:-

First, it should be remembered that because of random error
and possible lack of fit between fitted equation and the true
' response cp(i), it must not be implied immediatly that the true
surface has a maximum (or minimum) at the selected point. So in
practice further exploration and confirmatory runs should be per-
formed arround the stationary point of the fitted surface.

Second, the discovery of factors dependence of a particular
type may give us an idea about the cost of departure from the
optimum point, if it was impossible to reach it in practice, For
example, finding the direction of a stationary ridge means that
" we can know the different combinations of factor levels that
optimize the response Y. Then the choice between these alternatives
can be decided according to the cost of each combination or according

to an auxiliary response.,

Two exploratory techniques are proposed in the statistical
literature, Canonical analysis [5,3] and Ridge analysis [9] .
The authors matched the two techniques in a single computer
program in order to have more robust conclusions. This can be
done by using canonical analysis to reveal the factor dependence
withen the local stationary region, then using ridge analysis to
evaluate the locus of the absolute maximum or minimum when augmenting

the experimental region.



3.2 The choice between experimental alternatives

When simulation model contains qualitative factors, as mana-
gerial policies or operating rules, the search procedure will be
reduced to the optimum choice between a number of experimental
alternatives, More specifically, it is required to find the
combination of factor levels corresponding to the best simular
response Y, such that the probability of correct selection (CS)
is at least P s Biven that the difference A between the best and
the next best simular response is at least [X*. This may be
stated formally as

p (s A = (18)

The previous formulation of the problem permit the use of one
of the multiple ranking procedures [j2 17,22, 23‘] . Most of these
methods assume normality, independence and commun known or unknown
variances,

- In practical simulation models, the distribution of the respdnse
Y is not known, variances are not known and tend to differ, so
either we manipulate simulation runs to meet these assumptions of
we hope that the effect of their violation is negligible,

After consulting several multiple ranking procedures, the
authers choosed three of them that seem to be attractive for
simulation circumstances. The selected procedures are Bechhofer

and Blumenthal EZ],Paulson [22] » and Sasser et al[éB]

Bechhofer method is the only one extensivly tested for its
sensitivity to assumptions violation, it is quite robust and rela-
tively efficient [j?] o Unfortunately, it cannot capitalize on
favorable configumations of population means, Paulson's procedure
give us the possibility to eliminate inferior populations, so it
might be advantageous when comparing a large number of alternatives.



