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1. Introduction

In {1] we have discussed the numerical solution for
the real roots @f equations. The bisecting method and the false
position method as shown before are very simple, complete gene-
ral and always convergent. General method of iteration and other
methods with its CODVergeﬁce were explained.

This chapter deals wi.lL chose wethods which are appli-
cable to finding the roots, real as well as complex, for the
polynomials, such as the iteration, Lin-Bairstow and Dendelin -
Graeffe methods., For computation, every method was followed
with = flow-charts.

The transition from numerical analysis to programming
can generally be facilitated by a flow-chart. The flow=-chart
is a graphic representation of the procedures and shows how :
the alternatives fit together. When numerical analysis is com—
plete and the transition from mathematical language to machine
language begins, the flow-chart can be an excellent device for
establishing continuity .
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2., Determination of the liwits for the roohks of & polynomial

2,1 ILimits for real rocts by Maclaurin's tasorenm

The real roots of the equation

aoxp+alxp"l+a.o+gn = 0 (1)

vhere ao>o s Batisfy the inequality

x < 1+ i? JA (a)i
ao ‘

where m is the suffix of the first negative coefficlent in the
series 8,987 38500039 and A is the largest 0f the moduli of
the negative coefficiente, '

This method allows one to debtermine also a lower 1imib
for the roots. For this,it is necessary tc mske Lhe substitu-
tion x==y and to multiply the equation by (=1)? in oxder Ghat
the first coefficient remains positive; after this we can make
use once again of formula (2).

It )aﬂl is considerably smaller than A, formuls (2)
gives a widely over estimated limit, In this cease the polyno-
mial may be broken dewna intc the sum of seversl polynomlals,
the first coefficients of which are positive, anad the upper
limit for each of these msy be determined. The greatest of
these upper limits determines the upper limit of the roocts of
the imitial polynomiale, In a lucky breaking down ¢f the poly=-
nomial, the limits axre determined a good deal more zccurately
than b& the first methoed. The decomposition iz usualily & good
one if approximately the same values are obtainred for all the
upper limitse
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Example (1)
The roots of the equation
2x74x! +l9x5-24x2+11- ) (3)

satisfy the inequality

o le 2 2 =1+ 12 =~2.7 .

Put x = -y in (3) we get
9 7+y +l935+24y =31 = 0
y <1+ 1L 2.3
5 ,
frem which x >'n295° Thus the roots of the equation
lie in the interval

= 245X < 2.7 .

Example (2) : To determine an upper limit for the roots of
the equation @

xO+12% -8x0+2x> ~ 5680x+112 =

According to formula (2)'we'get 3

b=l+ /5680 2 7605, Thus x< 76,5 o

Dividing the polynomial into two added components:
P, (x) = 0.1x" - 8x°

P, (x) = 0.9 +12x'+2x" - 5680x+112.

We find upper limits for thelr rootss

2
b, =l+ 8 ~ 10 b=l+ 680 —~ 10.
e i e

whence :x< 10,



nents

v [y e

-

Dividing the same polynomial into three added compo-—

P (x) = 0,27 - 8%

P(x)

i

0,857 & 2x° - 1680z+112,

P5(x) = 12%% — 4000 x,

we find

b, = 1+ 8

5 ) ?j'-p == 705 9
e AR

ba = l'b‘ .L6‘8_;‘h_: = 108 9

(&)
N
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2,2 Limits for complex roots by Westerfield and Parodl

Consider the polyrnomial

Y 7_-0_]_ N
x?+a1xl toootd, (%)
with real and complex coefficlents o

o)
y g s JE
We shall denote by g, the quantities™
» _ )
3..3:_ 9 B o= .1492300053-1 (5)
arranged io order of decreasing magnitude
8
W%y oo h (6)
It has been showsd by Westerfield that all roots

(real and complex) of the pelynomlalfsatisfy the conditionss

|= < 4y T8 (7

$) The real positive value ¢f the root is taken.
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and
|x} & q;+0.6180 q,+0.2215 g,+0.0883 g, +

+0.0375 q5+o.oi85 q+0.0074 a +0.0081 qg (8)
In the case of the coefficient a; of the polynomial

(4) being much larger than the other coefficients, we can apply
a simple and effective estimate found by M.Parodi:

Let \al‘ 72 \/;_

where

S = ‘a2\+\a3]+...+\gn\ (9)
and

<=~> i (10)

The polynomial i(4) has one, and only one, root
within the circle

’x+al| < ”S ¢1l)

BExample ¢ Find the limits for the roots of the polynomial
x* - 48x2+797x° - 5350x+12297 = o
Ly ]a8] =4 , Smerl ~ 282
5q'|_:5§5_5]z.17.5 : 4\[|12§é_ﬂg 10.5
Thus q;=48, q,=28.2, 9,175 cl 1051
According to formula (7) we find :
| x| & Pee2 "
If we apply formula (8) we get the following value

for the limits:
| x| <48+17.4+3.9+0.9= 70.2

By Maclaurin's method,we find from (2) that x < 49;
however this gave a limit cnly for real positive roots; while
the value 70.2 is a limit for the moduli of all roots (real
‘and complex).
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51 Calculation of the larger roots

Let
© =kl 2] - (8

SETE [xllis eppreciably larger than the moduli of all the
other roots, then it is possible to ignore the numbers X5

xz', ceee 3 X

al~
= E; ~ X (A5)

Thus the largest roots approximately satisfies the equation‘.
aox + al =0 (A‘Ll- )

IT the moduli of the first two roots are appreciably larger
thaa the moduli of the remaining roots, we get from the first
two of Vieta's formulae
e
8 ik zs
(A,

2
a

omxl 2.5

Thus the two larger roots of the given polynomial approximately
satisfy the equation

a, = + a; X + a, = 0 (4g)

Analogously, if the moduli of three roots are appreciably
larger than the moduli of the remaining ones, these roots
are approximately detérmined by the equation :

a, © + ay = + a X + 8y = 0] (A7)

The truth of this statement follows from the relation s
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a, E; B *3 j’
)
"é'; ME X, t X Xy t X X \? (Aa)

o o X

H
J”kf

&

J 3
obtained from (Al) and being Viets formulae for egquation (A?)v

3¢2 Calculation of the smaller roots

If we substitute into (A3) a new argument y = % and
apply the results we have got for large roots, and then
change back from y to the argument X = 2 we get the followlng

g
results .

Iflxnlis sppredicably smaller than the moduli of the other
roots of the given polynomia%ﬁﬂxldmay be approximately determi-
ned by the equation

T (2g)

If the moduli of X1 and X, are appreciably smaller than
the moduli of the remaining roots, the three roots are
epproximately determined by the eﬁuation 8

a3 2 + GNP x? t B, 1 Xt = 0 (Ag}

Analpgous theorems hold also for any number of roots with
larger or smaller modulil.
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Example Determine the roots of the polynomials

P(X)= X' +39 X + 958 x> - 1080 x - 2000

we try to determine the largest root by means of the
equation
o i e SR |

Then Xy = -39, However a trial convinces us that X, = -39
is not even approximetely a root.
We form the second equation s

¥ +39 % +958 = O

From which
X, = - 19.5 + 24,04 )
x, = -19.5 - ou,04 7
The exact roots are x; = =20 % g§,48 1 9
X, = =20 - 24.48 Z'

For determining the smallest root we take the equation
- 1080 x - 2000 = O,

from which x, A - 1.85 . A trial shows that the number found
is not a root.

We teke the equation g% §x° - 1080 x - 2000 = 0
Then x, = - 0.99, Xz = 2,12 (exact values are X, = =1,

x5=2)
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4, ZIteration in the complex pleiue

A study closely amalogous to that ia [3) for the
iteration methods may be applied to the solution of equations
involving functions ¢f & complex variable. For example, Newton's
mathod may be applied readily if a sultable sherting value 1s
availables

4,1 Exauple
Using the starting value xo=i,i= -1 , and applying
Newbon's formula to the eguation 3

f(x)ﬂk4+x3+5x?+4x+4= 0 (22)
we obtain
xl=i - i) =1 - 3L = 09#86‘#00919 i J
£1{ L) l+6i
xy= 0,486+0,919 & =  =0:29240.174% = ~0.495¢0.5651
1.780+6.0051

as two approximations to the solution

.2 The sguare root of & real number

If we write X :Q a, then £(x) = x?ma where a é% Os
Newton's iteration method here assumes the forn

e (& - a)/ex; (13)
or, more simply
X1 =1 (xgr 2 ) (1)

2 - Xy
If pecursion (14) is to be coded for a computer, it
will be desirable t0 have the starting velue X chosen To
exceed the first iterate X . Since the code shzould be appil-
cable to finding the square root of any positiwve, numben a8,



large or small, and since it is convenient to start with a
Preasigned value, say X, = l, we introduce a change of
variables to meet these requirements. If the program is
based on decimal erithmetic, we introduce & new guantity b
which provides that a = lOakb, b en integer, and l_{35(3'< b \<1

We find Y b using (14) end convert to \a through
tue relation yYya = lO]‘c \/?.

If the computations indicated in (14) are done
in the base 2, a natural choice of range for b is normally

=l b. The starting value x_ = 1

%-( b\<l}. Such that a = 2 <

again yields a decreasing sequence of iterates converging
to Yb and henceVa = 2k Vb . The sequence of calcula-—
tions is indicated in the following flow czhrt.
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