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Introduction:

For some practical problems, the conventional transportation problem
which usually minimizes only the total cost of transportation, became of no
benifit to the real situation. For example, high way motor carriers, although
considerably cheaper than airfreight, require much longer shipment times, and
consequently the freshness and perishability of many grocery products are
influenced. Also, for a certain finished goods inventory, the shorter the
shipment time the faster is the response of a logistic system to surges in
demand. Furthermore, pipeline inventories and associated opportunity costs
are directly related to shipment times. Thus, for some problems of real sit-
uation, an average shipment time may be used as an objective function beside
the total costs. These two objectives, i.e., minimizing total transportation
costs and average shipment times are in general conflicting. It is not pos-
sible in general to minimze both (or all in case of more than two objective
functions) simultaneously. However, there are several different criteria wh-
jch could be considered and employed to provide alternate solutions to multi-
objective problems. One can determine the "efficient" solutions, and conseg-
uently the efficient curve, which denote the minimum attainable value of each
of the objective functions for different values of the other ones. This idea
of determining the efficient curve aids the decision making of the manager in
eliminating the inefficient solutions. The decision maker can then subject-
jvely choose that efficient point which mostly suits his company. Another
approach to the problem is to find the feasible solution which can be consid-
ered'the best regarding the optimization of all objective functions. That
can be the solution for which the summation of the relative deviations of the

different objective functions from their optima is minimum. This turns to--



be the optimal solution of an overall objective function equal to the
summation of the different objective function each one weighted by the
reciprocal of its optimal value (see, reference (6)). On the other hand
if it is possible for the manager to order the objective functions accor-
ding to their relative periorities, then‘the prdblem can be handled as
follows: a subset of the overall feasible region which contains optimal
solutions to the most important objective function is to be determined.
Oﬁt of this subset a set of solutions which optimize the second important
objective function may be located and so on the process continues for all
functions. The most inner subset is considered to be the optimal region
for the problem (see, reference (5)). Another alternative is to trans-
form the problem into a program of a single objective function if one of
the functions could be considered (by the manager for example) as the most
important one over all others. In this cases that funétion is taken to be
the main objective function and all other ones are to be transformed into
constraints with lower bounds. The lower bounds represent the required
ratios of the optimal values of the objective functions, e.g, it is reg-
uired at least 90 % of the optimal value of the second objective function,

85% of the fourth one etc. (see, reference (5§).

In this paper, we suggest a method for finding the efficient points
of a multiobjective transportation problem when the conflicting objectives
of minimizing}tota] costs and shipment times are considered. Corresponding
to each efficient point, the method provides the optimal routes, modes of
transportation, and the appropriate shipping amounts. The method has been based

one the idea of Srinivasan & Thompsons method(see reference 4). In section I we.



present some theoretical results of the multiobjective transportation problem.
In section II, a method for finding all optimal basic solution to the standard
transportation problem is provided; we sometimes need to identify all optimal
solutions (if there exists more than one) to the first or second objective

during the process of locating the efficient points. Section III presents an

algorithm and a worked example.

I. Theoretical Results For a Multiobjective Transportation Problem

Let
I = { 1,2, oo m'g , be the set of origins O (rows),
o= X 1,2, ..., N } , " # 1 Jdestinations D (columns)
and
K = { 1,2,5004 PS , M " 1 modes of transportations.
Let
xijk be the amount shipped from the origin Oi to destination
Dj via mode k,
C; be the unit shipping cost from 0; to Dy via k,
jk
tijk be the time of shipping any amount from 0; to D4 via k,
a; be the available amount at O; (aj ?; o),
and
. i t D. . o).
by be the requirement at Dy (bJ jz; )

The problem is to generate the efficient solutions to the following

multiobjective transportation problem:



Minimize the toal cost
o(x) = = = = ik
i1€1 jey k € K

and the total time
T(X) = 'Z: Z: = tjjk x'i,jk

i 3j k
Subject to
= = x. = a, i €1
: ijk
3j k

i k

gk 7 ©» Vi andk

The following conditions are assumed:

ceee (1)

oo (2)

ceee (3)

(1) The p modes of transportation are available for all routes.

If this

is not the case, the unit costs cjjk and times tijk for the modes

not available for a route from 0i to Dj can be set equal to a large

positive number M, so that, the optimal solution will not utilize such

modes.

(2) For any route from 0; to Dy there are no two modes k and 1 with cijk £

©ij1 < M oand tij < tijy < M. If this is not so, cjj1 is

set equal to tij] = M.

(3) A single homogeneous good is considered in the system.

If there were

multiple goods, the problem may be solved separately for each of the goods.
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= =z bj. A dummy origin or destination can be added in order

this condition to hold.

A feasible solution X to (I), i.e., satisfying (1) - (3), is called

. * . . . . A
efficient if there does not exist other ﬂ%a31ble solution X such that

c(®)

or C(g)

L e amd TR LTX)
< ¢(X) and (X)) <L TN .

We now consider the parametric problem P( )g):

Min (1 - M) + N T(X) , under constraints )
-

(1)-(3), where 0 < “)\ 5§ 1.

(11)

Problem (II) is equivalent to problem (I) in the sense that:

every optimal

solution to P( N\ ) is an efficient solution to (I) and

conversely, if X is efficient then there exists a scalar ‘)\ in the unit

interval (o,

) such that X is an optimalrsolution to P( N ). The

sufficient condition is Lemma (2) in reference (1).

The necessary condition may be proved as follows:

Let o

£ ©N<1and assume that an optimal solution X to P( N)

~
is not efficient. Then there exists a feasible solution X such that

c(X)
or e(xX)

Hence

£ co(x) and r(x) < T(X),

~

£ o(x) and T(X) K T(X).
AN k) +p (KD L= N ex) + RTOO,

which contradicts the assumption that X was optimal tc P( 7\). The previous

argument does

not hold when A =0 or 7\ = 1. It holds only when there



exists a unique optimal solution to P( ‘A) for both N\ =0 and N =1.
Hence, it is assumed that there exists a unique optimal solution to each

of P(o) and P(1).

Let (CXT) denote the two dimensional space with cost C as the abscissa
and time T as the ordinate. Let W( 7\) be the convex set of all optimal
solutions to P( "\ ). Thus for each optimal solution X € W( ‘A ), there

exists an image Q(X) = i c(x), T(X)& in ( CXT ).

Let Q { 1[G N )-X be the set of images corresponding to all
solutions in W( N\ ). under this mapping. The following theorem proivds

a characterization of the set of efficient points.

Theorem 1

(For the proof see Lemma 3 in refepence (1.) ). Fbr- eaéh fixed value
of N satisfying o <N Q YW( PN )] ';‘Ls either a singleton or a’
compact line segment in ( CXT). In the second case if Q(Xl) and Q(Xz) are the
end points of the line‘segment corresponding to the optimal solutions X,

and X7, then
Q0 x 3+ (1-3)%)= Qx3)+(1-35)0alk, )

for all J satisfying o© < 3 £ 1.
Now, let us introduce the modes of the transportation into the picture.

Let dij ( N\ ) be defined as

dij(7\)= 1]1(1%& [(1-7\)Cijk + xtijkl' ceee (W)

Let Ky j ( }\) < K be the set of indices over which (4) attains its



minimum for a particular route (i,j) and for a given value of '}\ , and the

variables y; ; be Ve = = X3 , for a given and solution X.
13 9 Sexgon Y A

Let us consider the following standard transportation problem PY( 7\):

min =2 Z= du (N v e (5
= o5 Y N Y (5)
subject to
'z: Yij = al N i €1 2 se e (6)
J
gj Yij=bj , 1€ J, ... (7)
l .
and
yiJ >/ 0 Py \Q i,j . R (8)
Let
Lo N) mi C (9)
Coes = n i+ ’ EEEEE
4 Ki (N) gk
1
and k.; ( N ) be the index in K ( ')\ 2 at which this minimum is attained -

ij
Let t1 ( 7\ ) denote the unit time corresponding to the mode ki] « N).

Similarly, let
tzj (N) = min | J.J s eeees (10)
k€ Kij (N
and k2 ( "N\ ) denote the unique mode in K; i ("N )at which this minimum is
attained and C . (N the unit cost corresponding to k:. Jll)-Theorem (2)
below charactrizes the optimal solutions to P ( A\ ) and Theorem (3) relates

the optimum solution of (5) - (9) to that of P (N



Theorem 2

(i) fbi- every opt'imé.l solution X to P( N, Xijk = 0 for k© Kij( .)\ ).

N . 4 \ N
© (ii) Given an optimal solution X to P( N, any other solution X satisfying:

- = x\;.k = = Xi.k = ¥y is also optimal to P( 7\).
k€ Ky (N 9 K J :
. Theorem 3

Cori'esponding to any optimal solution Y to P'( ‘A),(for some given 7\),‘

the solution X, =. {x%k } that has‘the minimum total cost is given by:

1
. -1 )
L |

0 k#ky CN) el (11)

The corresponding total cost and time are:

exty == = () eee (12)
i 3 3 13 7\ yij |
and. . . , .
‘ i . j . J - .
The solution X2Athat mininiizes the total time is given by
¥, - ‘.‘k=k2-(')‘\)'
2 ) E W
Xk © | » Wiy
| o - Tk AKGOND) /eoi. (14)
, , ] R — ‘ _ . -
and ‘
2 < & 2
X = s $. o PN
(%) : j g N V44 (16)



From the above theorems, it follows that the set of efficient points (cxmT)

of problem (T) can be obtained by applying the following basic stages:
1) For each chosen value of ')\ Wwe optimize the problem p' ( )\ ).

2) Using theorem (3), the optimal solution of ol )\) corres ponding to that

of p'( N is constructed.

3) If for any 7\‘the optimal solution is no. unique, we choose among the
alternate optimal solutions a 1limit - cost solution X¢ and a limit-time
solution x¥ such that c(x%) fé c(X) and r(xt) << T(X), where X is any

optimal solution to p (N).

L) By theorem 1, the set of efficient points is the line segment connecting
the limit-cost point [ c(x®), T(XC)]and the limit-time point
[ext), T

( If the optimal golution is unique for any 7\then the limit-cost and

1imit-time points coincide).

It is well known that any optimal solution to a linear progremming
problem is a convex combination of its basic optimal solutions. The following
theorem uses this result to identify the limit-cost and 1imit-time solutions

for any jﬁ_. Using this theorem we can implement the previous stage 3.

Theorem 4*_

Let Y 10 Y2 s cee Yg be the Dbasic optimal solutions to p'( 7\). Let
l 1l 1 2 2 2 .
Xl N X2 s see 9 Xs and Xl . X2 s see s Xg be the solutions constructed

# For the proofsof theorems (2)-(4) see reference (4)-
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corresponding to Y4, - Yg using theorem (3). Then the limit-cost solution

Xy to p( }\) is given by that solution which minimizes C(Xl), i=1,...,8, and

the limit-time solution X2 is given by that solution which minimizes T(Xi) s

i=1, .0y g

I1I- A Method for Generating All the Alternate Basic Optimal Solutions
to the Transportation Problem

Let us assume that the transportation problem; min.

= ii-éj- cij X33 subject to 6 Xij = bi s i- xij =a; o

i 3
iz 1,..., M, j= 1, «..y D, and xij 2} 0, has more than one
optimal solution. This can be recognized from the final optimal transporta-
tion tableau, when the coeffients of some of the nonbasic variables have
the value. zero. An indicator oCof a basic optimal solution Y to the pre-
vious transportation problem is the set (i1, ips v2es im+n—1)C: 1UJ, where
11’ 12, vevs ipin-1 are the indices of the basic variables. Two indicators
<><1,<’<2 are said to be neighbouring indicators if all except one of the
elements ofC7<1 and£><§ are the same. The neighbouriné set of an indicator&
consists of all neighbouring indicators to ol and will be denoted by G(ed ).
Let P denote the set of all indicators of the optimal basic solutions.
The method is based on the use of two sets. The first is sz P, we call it
the served set, and tﬁe second is W P, we call it the waiting set. We
start the process with an optimal basic solution Y. We store the indicator
0{ associated with Yg in the set S¥° re 1, i.e., slzg. We analyze the optimal
transportatlon tableau corresponding to OL to specify all the nonbasic varia-

bles of zero coefficients. If more than one neighbouring indicator ofclb will
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be created from the current tableau, we store all of them except °(° in the
set Wr’rzl, i.e., w1 = 6( 0(0) - °(°. If only one indicator is specified,

!

say / o{ / we calculate its corresponding solution and put & in grsr =2',

i.e.,
2 . o I | o, :
s¢= U o . We pick the last element stored in W~, say/ 4/ if more than
one indicator have been stored in Wl, and calculate the associated basic
optimal solution. We examine the optimal transportation tableau corresponding
to °(1 in order to create the new indicators (if there i. any) neighbouring

' 2
to °(1. We update g2 and W° by adding the new neighbouring indicators of "(1

) ; :

1

to W2 and removing °(1 from W2 and adding it to s? so we get

2 2
s2= X y A and wewue( X)-s%
o 1 1
We pick the last indicator stored in 82 and repeat the same process. At the

g-th stage the waiting set w8 and served set s® will be:

g

g-1 _
UG ( °<g-1) s°.

€=-68Yy &  ana WE=W
g-1
The process will terminate finitely when WwC = §. We now prove that all optimal

basic solutions will have been found finitly when w* = #. The proof runs as

follows:

From the construction of s€ and W8 we have sg¢ N Wt =<‘>. Since the

number of basic optimal solutions is finite(lom_+t1n + m) ! is an upper
nm! (n + m) !

bound) and any indicator in w8 will sonner or later leave w8 and enter s8

then after a finite number of jterations WX will be empty. The only statement

iS5 . . . r
to be provedYthat W = & implies S = P.

Let 0(0 be an element of P. Since we start with an optimal basic

solution then s¥ # & . Let & 1 be an element of s¥ < P. Then we have
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a finite sequence of neighbouring indicators
&1; %<, S
such that ‘
€ g« ) |, 5= 1,2, ...y k-1,
i+l J
The existence of this sequence follows from the fact that any optimal basic
solution to the transportation problem can be obtained from any other optimal
basic‘sblution 'by a finite number of iterationg ; this follows from the fact
that the graph of the feasible region of any linear programming problem is
connected. If some °(j E 8T, then it had entered ST at some iteration

. £ ither %, . i g1 o € gr
g; & r, say. Thus either 341 is an element of S, and hence 341 s,

or °( is not an element of Sgi‘and °(, € ¢ ( 0(-) which implies
i+ B J

++1
°<j+1 € wgl . Since W = <, then°<j+1 must have left Wr at some

iteration between the (g; + 1)-th and the r-th stage and entered the set

gi+1

s so that &, ,€ s*. Thus in any cas € s’ impli e s'.
341 y e o{j implies o(j+1
Since "(1 € s we have by induction °(k= O(o € s'. Therefore P & sT.

But S* <. P. whence P = S°. C

The method presented in this section will be used to find the alter-

nate basic optimal solutions required by theorem (4).

III Statement of The Algorithm And a Worked Example.

We combine the results of the previous two sections to provide the
algorithm below. Applying the following steps, the set of efficient points
of problem (I) can be located, and the optimal transportation routes, modes

and shipping amounts can be determined.



¥

Step 1. Let ?\= o. Determine 4. (o) and Kii (o) by using equation (u).

Using equation (9) - (20), find
1 2 1 ; 1 2
kij (o), kij (o), Cij (o), tij (o), Cij (o), and t?_j (o),

foralliel & j€UJ. Solve the transportation problem P (o), i.e.,

(5) - (8), and find the basic optimal solution Y

Corresponding to Y find the limit - cost solution X1 by equation
(11).

Find the limit-cost point[C(Xl),T(Xijby (12) - (13). The efficient
point in ( CXT ) space corresponding to >\=0 is given by [_C(Xi), 'I‘(x1 )1
(Note that Y is unique by assumption, thus the limit-cost and time points

coincide for ‘)\ =0).

Step 2. Choose different values for 7\ in the interval (o,1). For each

chosen value of 7\ , apply the following:

(i ) Determine Kij ( '}\) using equation (4) and evaluate k}‘j (N> k%j’ N,
and the corresponding C%j ( N t}j N )’Cn?,j ('N\) and t]g_j ( ')\) from

from equations (9)-(10) for all ingj.

(ii) Solve the problem P ( )\). There are two different cases:
a) If the basic optimal solution Y\ to P ( N) is unique, then find the
1imit-cost solution x! using (11) and the limit-cost point [C(X1) s
T(Xi) 1using (12)-(13). Stmilarly determine the 1imit-time solution

X2 using (14) and the limit-time point [C(X2), T(X%Xusing (1u4)-(15).

% Since it is assumed that there are no two modes with the same Cijk' then
the set Kij(O) is a singleton.



