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IHTRINLCTION ‘
It has freountly been arqued that the‘traditfonal dpproximation of

mqltiple cools of the decision models by a sinale criterion is efther 1n%~

. - ppropriate or fhcorrect. In reality, decisicon situation is charactérized

bv a series of conflicting goals. abd 1t miakt be an fmbossible task to tie
all onals into 2 sincle unifyinc trade-off function. Recenfly. the search

for a discovery of concepts, theories, tools, and’solvinn aloorithms anpli-
cable to multiabjective 1inear programs has been continuing in order to

serve the decision-meking rrocesses.

The Tinear pregranmine hrcblem 1hvo?v1ng mu]tfple objective functiee
ons induces Bubsfituation of » sfnﬁle cbtimal solution by a set ¢f subopti-.
mizations. The suboptimization situction could be the‘best pessible values,
under the given conditions, for tha consfdered objective functions, or could
- be the full optimization of one (or more) objective in the expense of a
lower degree of attainment of the other ob1ectives, ar cther ccnsiuerations.
It might be worthwhile to state the followine auctation

John Vea de. wn " ... This multiple objcctive situation 1is certhf-
nly no maximum problen., but a r¢CL11ar end disconczrtino mixture of cevera]
cenfticting maximum prodlems... This kind of problem is no - where dealt
with in classical mathematics. “e emphasize at the risk of being pedantic
that this is no conditional maximum prreblem, ne nroblem of the calculus of

functional analysis, etc. ..."



N The efficient solution is consfdered as a technical interpretation
,'of;the;multiple'oﬁjectivé sftuation. In recent yenés; the theory of vector
functioh maximization problem hqs heen developed, -especially in the direc-
tion of alcorithmic developmentsy’ As a consequence, the charact erization‘
and determ1nat19n of the‘set of efficient solutions has become one of the
rain targef#, Thoush the.interest in the description of the efficient

set has increased subsfantially, no satisfactory alaorithms for generating
all efficienf‘sclutions have been found yet. Some of the algorithms for
1ccatinn efficiént solutions are presented in (2cleny.f), and (Iser-

mann, 3 ),

uﬁe’give here a»@eﬁpqtational algorithm with some new features for
aenerating all efficicnt extreme points for a multiple objective Vinear
procram. The algorithm seems to provide a computationally effective

method.

Notations, Definitions, and Basic Théorems

Let the linecar multinle 6bjecfive rrooramminne problom be in the
form
Faximize the vecter - volued
F(x)=(eclx,e2x,...,¢"x)
Subject to .
hx = ¢, | e (1)

and x)’ 0 R



where A is mxn coefficient matrix of rank m, n» m, d is a require-
ment m - column vecteor, and x is the m - column vectcr of variab‘les, The
compon: ‘nts of F (x) are the cbjectives that are to be maximized over the

cenvex polvnedren X = {x frx=4d x} o}.

Let B denote the basic metrix cf order m x m, the J-th column vector
of L will be denoted by the.small letter aj , Lét X = (xq, Xas «eos X)) and
vs= (,yl; ¥25 ««os ¥i) be twc vectors, then
(i) x)Y@xi )_y., 1i=1,2, ..., k
(i1) X2YCD Xy ) 2¥i» 1=1,2, ... . kand xgv
(1"1) X= Yex.l: yi, i= 1, 2', ceey k.
fefinition 1 .

0 . ,
The point » & X is .alled efficient 1f' thcre is no other X G X
such that F (x)) F (>0<) That is. there is no Xy, > F for
1
J=1 Jd ¢ =1
anv1<{lq.. . ,r

Definition 2
e call xE X an alternative efficicnt solution to (I) ifF (x) =

F (x) X #5% and % is efficient.

Befinition 3

The efficient basic solution % is called degenerate if one or more

¢f the tasic variables of ﬁ has the value zero.



Lat x be an extreme point ( a basic fegsible solution) of X,
Then corres ponding to‘each norbasfc column aj of A there exists a vector.
ZJ - (Z;. g, coes Z; ), where
Z; -;c; B'1 ay - c}. l.' 1, 2, «uuy r. c; = ( c;, coes c; ) is the
pfices of the basic variebles of .x 1n the 1 - th objeétive funczion. For
the basic columns Z; = 0, 1 c.l, eees r. In addition, there associates to

vectcr uf values of the r - orjective functions. .

F (A, |
where f =2:c ,i-'-'l, cees Py
j=i j j ; - .

Lat E denote the sct of all efficient extreme points and let @

be defined as
@ = min XB1 » Yyq > 0} where
J {Bl ...,.i-m yij J )

v o= (y,, ees Y. )=B a,:a 1is a nonbasic column, and'x , X o ...,
T FR 77 Bi B2

b
J

XB are the basic variables of x.
m

‘Theorem 1 o .
Let aP >0 (1), Then the extreme point 2¢ E if Zj\< 0, for any
' nonbasic column a (see zelény§)
| (i) If x is cfficient and Zj= 0 for any nonbasic
column, then introducing the i - th colum aj
into the basis will lead to an alternative

efficient point .



. L |
Proof 1€ z_ = 0, then the new valye of the objective functions Fo F -
e y-) . A,L0 R '
5 Zj = F. and since j.? 0 then x}:}: x

Theoren 2 (Zeleny, 6) | |

If éhy bb:jéc':tive functioﬁ fi,i=1, ..., 0r §s -at 1ts unfque maximum
value at the extreme point :. then :é. E. In case a function has atternative
optimal solutions at g, then some of the alternate solutions may be noneffi-

cient, .

Theorem 3 (Zeieny, 6)
Solve the problem:

r
1aximize v v
ze V= 1=£1— ;

Subject to Ax =d - i, _ V=C X o) (_T_[)‘
1=1,2,..., r,
_ X2 ©and V. ) o.
ThenX'# E 1f and only 1f Max V>0 and W€ E 1f and only if ¥ay

V=0, .
Theorem 3 Can be used to check the efficiency of an extreme point o'fx .
To illustirate the dpplication of th'is.theﬁrem, we analyfze the simplex table-
aux associated with the constrdcter' problém (I1). Let use define the fpﬂow_'lng
symbols: - | '
C- (rzn) - matrix of coefficients of the r objectives. |



Bk - (mxm) basic matrix at the k - th simplex step.

X “- n - vactor of variables -

CB _ {r x m) matrix, of the prices in the objective functions, cdrrespoi-
to basic vectors in Bk. |
I - identity matrix ( of proner order).

€S,

= Zoro, matpipamit (6 VeSO UL I HR K

- For the original problem (I), the simplex tahleau corresponding tc

the extreme point X is given by:

— Table (1) .
- o { '
() frantail iy N
gt ! ek
= Tl [E
2 Rt e s g -1
B.k. As.csC.B ya LB
N Bk 1= Bk d

A

Part (2) consists of r rows each corresponds to one of the chjective

=1 0 .4 ; .
functions, C B "d are the values of the objective functions at X, i.e
BES g

1)
CB Qd— cX

For the constructed problem ( 1T ) with the-appeﬁded constraints

i \ :
C X-v +yw = Ci X, where w are the artificial variables added, the
i i X L :
initial simplex tableau takes, the form:
Table (2)
-.r’\ I ' 0 0 d j
.......... 1-_--_-_m_x_m-____.““___"-Jn.x_n--_."_Ju_x_:-.------
G 0 -1 I
oY roxn. Pl B rxp. L cY.
== 0] 0 0 0
rxm pPxXr e 4R o Pl
L 4




..corresponding to X and its 'l;asis 'Bk" table (2)°has the form

L

i Table (3) : I
i -1 -1 JU R S |
M) A BT 1.0 , o 8 d
‘ k i k ' mxr mxr, k
----- ettt afede --“---i--r- - 4=~ ,
()] ¢ e la+ctc 870 0 a1 - 1 o
Bk bRk o bxre b rxYryorxl..
-1 T T | -1
(5] ¢ 8 A-ctc B, O i 0 €8 d
-~ B k »“‘Bk ' rxr. i rxr'Bk
]
The right hand corner of part (4) equal zero bec:‘r(ause)cB Bkldv cY
i-m
Comparing parts (4) and-(5) . it s clear that Vg = - .‘!‘j for i =

m+1l, ..., m+randdJd is an 1ndex of a nonbasic column Since the values
of Z (i - m) are the components of the rows of the objective functions for
the gnint Y then ¥ §° can be found directly without recalculating the
tatleau. Thus the constructed nroblen can be 1nitiated by rep'lac'lng ‘rows
(5) of table (3) with a new criterial rows ( 0 1xm 11 X r 11 . r )

) b .

Removing the artificial varfables “1xn from the basfs, we get:

- Table (2) -

[~ Con-l .
8-1 4 B 0 0 B-ld

k .k , mxr mxr k
(6 | ¢ & lnc col .1 -1 o
. B k B k' rxr rxr rxl

1 e @ sh o I 0

} Ixr B k 1xr B k .l'xr I1xr

artifical columns, can
be omitted




' Thej]'a;st row of table (4) s simply the sum of the r rows of the
ob_:]_ectives. This row can be used to check optimality of problem (TT) as wel
as the efficiency of the extreme point presented by the tableau. If there
- is a n2gative element in the last row, say the j - th, and all elements of

the j - th column in rows (6) are negative, then for ¢ Y 0OMax V) o and

) J
the corresponding extreme point ¥ f E.

dow, we present the technique used to enumerate the efficient extreme
points . of problem ( I+) .
A Method for Generating all Efficient Extreme Points

Clearly, the set E is a subset of the set of all extreme points of X.
Since the latter set is finite, then consequecntly the number of efficient
extreme péints is finite too. Thus, it is possible to construct a method
which can find such points. Here, we propose to give a computationally
feasible procedure .based on the standard simplex method which generates all
efficient extreme points. - | ’
, xn) is an extreme point of X

and X =0),
q

: n
Let Hq = (x€R * x = .(xl, X)»
be the q hyperplane in the n - dimensional space Rn, q €(1,2, ...n).

e start the methcd by exploring all the efficient extreme points (if there
is ahy) which 1lie on the facet Hr1n X. After the registeration of all such
points, we dibp the hyperplane “rj and continue §éarching for efficiént points

that may exist on the facut Hey n X , of the convex polyhedron Xz and not on-



Hr n i' At the k-th stage, we would drop the hyperplanes Hrl' H 2. cess
1
Hy.

H nX andnoton H.n X or H, n¥, cees or H. n X k-1. The convex

s and search for efficient extreme points that may lie on the facet

| polynedron'}i; where 1'g k € m, 1s decribed by :

a; x ' =d,, for all i 1, .5 ..;, r
glijj .i g il 2 k-1

)o’j r;r’.o-.r.
1o Ry T kel. oo

The process will come tc an end in a finite number of steps since
it must term1nate when m of the hyperplanas are dropped i e, all required

points will be found when at most hyperplanes are examined;_

The previous idea can be applied by imptemening the following

general rules: i

Assume that we are in the k - th stace ; then:

1) Arbitrarly, we chosse one of the nonbasic variables, say, er énd we
keep it in the nonbasic set throughout the current stage.

2) e examine. all the extreme points of X; and discard.those which are
not efficient.-

3) Ue insert x;k Into the hasic set (if it is not possible, i, e, sll
compenents of the er- column are zeros, then all extre@e eeints‘have
‘been found, see (OMAR , 5 ) ) and we hold it in the basfc set
fill themend of the process.



4) Ye pick another menbasic variable x’k 1. hold it in the nonbasic set,
. “ . $

and then transfer'to the next stage continuing from rule (2).
o To carry out rule (2), we apply two methods, one for locating¥all
extréme points of the convex polyhedra Xk’. 1< kg m, and the other for

. establishing the efficiency of each extreme point.

The general simplex tableau for the multisbjective problem (I)

will be constructed as:

Table (5)
nbasic
bastovars.] M1 Xyg oo+ Xiin-m,
X‘r1 | 1 “12- Y;(n-m) il
X Y : Yoo ey da
, rg 21 22 2(n-m) 2
' X; lHopivots in k-th stage !
. k-1 ' .
x _.
iy .
J2 .
. | N .
x-{ y Yoo Ym(n_m) d
m-k+1 ml m2 om
1 1 ~1
£l 2 z, Zpm | f
" ~
£2 zi zg zzn_m rZd
. i Fy
£ 2" ik 4 £
1 2 n-m ,
F VARE ™1 L S+ | 2 Composite
1 2 n-m Function




- ‘li -

The last row represents the composite function i:: c X which is

" used to check the efficiency of the current solution. YNI’ N2® ...,XN
represent the nonbasic variables. Let us assume that all efficient extreme

oints of X that m HeonH nX, H, nX, ... and H,  nX  have
i Y 2 25 T M e

2lready been generated and thus the .convex polyhedron X' is left.

_ That is, the variables X i, ...,er . are holded in the basic set

How, we are in the process of findino the efficient points of X' which

my lie on the hyperplane Hrk. i.e, al efficient points of X' for which
=0, "e cal] X a satisfactury point 1f 1t is an extreme point of X’

anu not of %. e call the mek+l- tuples of the unordered integers ( :

o 1o oindp k+1,’ 1 € (l 2, ..;. n), the indicator v of the extreme

peint X, ‘

. , 0
He Start the k-th stage by a. satisfactory point X of 7' we put the

indicator VD

the X - column, of the simnlex tableau corresponding to 9 we can fdentify
rk

of x0 in a set R. By inspectino every nonbasic column, except

0
all neighbor indicators of V. In the k-th stage, we locate the extreme

points of X lying on Hr; but not on H,.19 H"z’ ceey CP, Hr . thus , the
elements 1ying in the basic rows Xri. i=1,2, ..., k-1, must be holded
as basic variables, i.e, the restrictions X”> 0 are {fgnored. We put in
a set ¥ all tie new neighbor indicators {- (9) of 9. lle choose an
arbitrary element v’ from ! and compyte it, i.e, compute the satisfactory

solution xicorresponding to Vi We check x for efficiency and out put -
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it directly if it is efficient. Then we' identify the new neighbors of Vi
and put | R = \li u 9 and i =r(9)\’ r(v') - R.

We pick ancther element from I and repeat the same process. At the
- s=th iterat{On we will havg the two sets - '

R=D v iandu=10 r(v‘)-R
i=0 i=0

The process will terminate when thie set W = ¢ It holds that :
if w ¥19then R.='ithe~indicatcrs of ali extreme points of X; (see J 4 ).
It is assential to consider the fbllowihg cases: 4
(1) ‘“hile construéiing the neighboring indicators, if a tie occurs between
some basi; varfables then all alternative basic variables must be |
COnsidefed in constructing the new neighbor indicators. Also, if
some basic varigbles have zero valuesv( a degenerate case ), then'
each must be ;pb;en in forming a neighbor idicator as soon as the
_ cerresponding e]ement in thg inspected column is nonzero.
(i1) If the elements of any of the currently investigated column are
nonpoitive, then we leave it and move to the next column.
Although, we do not cbtain a new extremé point in the degenerate
case, it is éssential to create all different representations of the
same degenérate solution Because some may lead to new points in the

subsequent steps. '
It remains to present the techorique used to discard the extreme points

which arge not efficient.
e first check whether any of the objective functions, including the

composite function, is at its maximum value at the current solution x1, 1f

at least one objective is uniquely meximizec by x‘, then xi’fE. On the -
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other hand, if ZJ( 0 for- at 'ieast one nonbasic colum and ej > 0, this
assures that x f E. However, if 2 $ 0 i"or aH nonbasic columns then we
have to establish the effwciency of the current solutfon. In this case we
perform a number of simplex iterations on the criterial part. which is
framed 1n tgble (5), of the simplex tableau. Each iteration 1s carried
out with the largest positive coefficient to be the pivot element, of the
nonbasfc co]umn having the most negative V in the (r+1)-th criterial
Crow. If 63 = 0, we add the rows giving Bj =0 to .he,criterial part and
explore them after each iteration for-any y J) 0. If there is y .j) 2,
then Ojca and we perform the hext 1teration -around y rj* After a number
of simplex iterations, one of the fbl]owing two situatfons may occur:
(1) An coefficients of the (r+1) - th composite row are nonnegative,
thus in this .case max V=0 and X €E,
(#1) " There is a negative element Z for which ;js;ozand aj > 0, thus,

in this case X ¢ E.

Now we give a computational algorithm for the previous method. .

Let S be an array of dimension mxu, w'hereu is an upper bound of
the number of extreme points of a convex polyhedron of dimension n-m-1.
He divide S into two parts; the right part extends from the U-th coiumn
to S ; -th column, and the left part extends f-rom the 1-st column to Sz-th
column. WMe consider the most ieft nonbasic column of any simp'iex tablaau

as the X r” column: ( any other column can be considered ).



