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I. INTRODUCTION

A Y A I T AT T e e

The purpOSﬁ of this paper is +o reformulate the gompact sing
division methog & in such a manner as Lo obtain non~-recursive
formulae for the backwsrd solution. The advantages of the method
are 1lllustrated through certain applications.

: In the classical me thod, the matrix to be inverted, M say(2)
is transformed into two frisngular matrices X & Y such that:

=X .X 1y
where X has meros above the Principal dlagonal, and Y has zeros 1

below It. At the same time, the inverse of X is obtained, say Z=X
This constitutes what is called the “"Forward solution®,

The inverce of M isil 1wl -1
U™ =Y X" =Y "2 (2)

menst = =]

This latter formula regquires in fact two steps: the computation
I and the multiplication of Y™+ intc Z. The classical compact
method achieves this by aarrying cut the two steps gimul taneously,
threugh what i called +the "backward solution®, This might have
the advantage of giving the Inverse il the most concige number of
steps. Howsver 1%t has some disadvantages, egpecially from the
procedural point of view. TFiveth, the rules of computation are
digtinetly diffsrent between the forward snd backward solutions.
Turther the positions of vows and columns to be used together in
the backward solution are wide apart. These tend to make it
extremely difficult gspecially for crdinary computers. One might
add also that the necessary rules for checking are rather complic-
ated.,

O the other hand, the backward solution makes ugse of the rows
{or columns) already obiained in the inverse to build up the rest.
This has the disadvantage of carrying over the errors of rounding
of f throughout. Further in order to obtezin & gpecific element in
the inverse one has to compute all the subseguent ones (with
respect to cider). This makes the method rather expensive and
Time-consuming when only certaein elements of the inverse matrix are
required, the diagonal ones only for example.

In some cases ome mighi need also the inverses of certain
submatrices of M. For example, in the multiplex method of linear
programming, there is a need %o obtailn the inverses of matrices of
all consecutive orders starting from the first. As we have already
neticed; the clasaical method starts its backward solution from the

(1) Cf.. Dwyer : Linear Computations, p. 103 - See also, Re Frisch:
"The gompact method for golving linear equations and inverting mat-
rices in the nen-symmetric case®, Memo. no. 1, NoP.C. ~ Cairo,
24/11/1957 -

(2) We shall use underlined letters to denote vectors ang matrices,
denoting matrices by capital letters and vectors by small ones.
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last row (or column). This means that the results of any coperation
will not be useful for the rest, Of course method of reduction of
the order'of,?he inverted matrix, and methods of building up are
available., \3 However, these methods are rather cumbersome, especi~
ally in the process of calculating the successive moment matrices
inverses as in the mulitiplex method.

What we propose here is the following: -1
. Since in the so-=callad “feiward" golution we obtain X, Y & X
We can in the meantime obtain Y+ also. This will git involve much
work since Y, like X, 1s triangular. The inverse M — can be then
computed as the product of two trisnguler matrices, as defined in
{2), As will be Shown later this Wiil help to overcome the sbove-
nentioned difficulties. In particular this method svoids the recur-
sive formulae of the backward sclution. It helps further in the
Process of building-up the inverses of submatrices in a simultaneous
manner. This is due to the fact that the bullding-up (or down) of
the inverse of a iriangular matrix is quite simple. The method is
self=checking in a censistent and comprehensive manner. We shall
begin by considering the asymmetric case, notiecing that the method
is most suitable for the symmetric case where it does not involve
any extra computations. The symmetric case can be obtained as a
special case. Applications where the method gives most suitable

resulte are given later.

IT - THE ASYMMETRIC CASE

v 1108 e e s s e v,
e T e e ——

Let M be the real, non-singular square asymmetric matrix to
be inverted. TFor purposes of computation we border it by two unit
matrices: one on the right-hand side, and the other below, each being
of the same order as M, viz.,, n.n. Putting N = 2 n, then we obtain
the N.N. matrix:

aﬁ:z

=

I (3)
. .

whose south-east submatrix is emﬁ%yo This matrix is to be written
ocn the top of the shset, together with two extra columns to its
right. The first of these stands for "row sums®:
: N n ’ _
a = & = Z 8 + 1 (i=1,eewn) (4)
i. J=1 1j J=1 4ij ‘

i

The other column is for Ychecks%:

n
g m + 1 (‘;’ a j (i=lg.o.,n) (5)
(=2, s J=1 1} ie -
where mj 4, /for i, J=l,...n) are read from the original matrix, M. No
checks afe reguired for the remaining (unit) rows. Below A we introd-
uce a row for column sums:

a,j = fﬁl 84 3 (j:lg,?ogn) (6)

(37 Frisoh, 0P, oits
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n =
which can be checked against £§lmij + 1),

A new matrix D, of order N.N. is obtained and registered below
A in the following manner. On and below the Prinelpal diagongl, in
the first n columns, we build up successively the following elements:

J=1
— — (4] =
°i3 = 813 =381 iy 1 dr Itlseenlly 0y
yooceaeoog
The elements by 4 are those above the principal diagonal of Dy, in the
first n rows, agd are obtalned as follows:
k-1 :
bl":O ’/G Ck°= a‘“"z‘; Cb k3 k:"J.Zouon 8
9| kj ki J akJ h=1 “kh hj {jzkil:a,ﬂ:N; (8)

Thus ckj are obtained in the same manner as ci. in (7), and they are

transformed into by ., by a simple division operation. For computat-
ional purposesgonég%sually registers the ¢y s in an additional sheet
subdivided in the same columns as D, and chécked directly then
multiplied into a constant scalar = 1/0k s the products belng regis-
tered in the corresponding positions in D as bk'o This covers all
elements in D except those in the rows snd 001-‘ﬂs nog.: N+ly...,N.
These latter (corresponding tolthe null matrix in A) are the
elements of the inverse K = M™", and they are obtained as follows:

n
kij: dh+i9n+j:ﬁ§1 Cﬂ+ighbhgn+j (i9j=l9°°°9n) (9)
Por checking purposes,we have first the row sums:

n

bio =j=z:)i+l bij (i:l,nnoegn) (10)

Then we check by:
i.-_ o
25 =] Cipby, - ey4by = oyy (i=1,...,n) (11)
Again we obtain the column sums and write them below D. It is

advisable here to build the sums upwards, in order to obtain the
sub-gums: ( ) (12)
T3 =1&w %1j
which can be written down immediately and below them we write the
complete sums obtained by continulng the same operation:
, i .
c,j =f.; +i§g Cij T48j Ciy (3=150.00,m)  (13)

Both sums are checked simultaneously (apart from errors in copying
domm £ .) by

"J %51 _
B cokbkj e 4=0 (14)
Finally, the check on the elements of the inverse in made through
checking its column as follows:

= n : _
Kog=iE Ky ng1 T.nbhy — kK 5 =0 (15)
Similar checks for rwos can be easily obtained in an obvious manmner.
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Our resulits can be summarised in the following proposition:
PROPOSITION: :

frosdviopi oyt e i g

in (1) and (2) are _ -
. ‘;&ml = lgl’l‘i“l O O o600 0 (16)
E . b29n+l b29n+2 0 CRCIC ] 0
bn,,,n+1 bn,n+2 bn,n+3 eeere bn,N
ko i
and S -
I = Gn+191 Cn+192 cn+1,3 ceeee cIl+lgl'l (17)
O On+292 cn+293 [ I 2 - cn_:’__29n
) - O 0 O a0 v e a CN9n
Further, N . =
25; = ﬁolﬂl = 011 0 puooo6 o O (l8)
021 022 o o B 0B O O
cnl cng & 8080 Om-
Similarly, -1 - -
) 3;'—': _}E y_[ = .L b12 ceo o0 o0 bln (19)
O 1 L - - bzn
O O cocoooo l i

These relations show the main differences between the familiar
method and ours. Both methods involve the evaluation of X and Y
whose product is, by (1), equal to M. In our method, both the Ewo
inverses X —and Y~ are_sgeparately calculated, and thelr product is
then obtained to give M . In the classical method either of the
two inverses is calculated., The inverse of the other is obtained
in a rgiursive manner together with its product into the other to
give M gimultaneously. The recursiveness is due to the diagona-
lity of X and Y.

Table (1) shows a schematic representation of the steps involved
in the process of computation as suggested in this proposition for
the case where n = 4.
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Table (1)
A Schematic Representation of the Inversion of s

Matrix of the Pourth-~Order
' (Part 1 "Leftn)

Orde 1 2 3 4
1 a1q 815 B3 214
2 ap1 800 853 Bna
3 81 835 8% 84
4 841 80 83 844
5 1.0 0 0 0
6 G 1.0 0 0
7 0 0 1.0 0
8 0 0 0 1.0
- 3 - =0y,
ké@ #1538 8 &, 0738y an3_§ha33 =t2’04 %854
Lofe11® 8y izl | bismeysfery  yymoy,/ep
> Cp1= &y Cpo=Bs,=Co1 by, _”Eajifgz_?az__,b24=024/°22
-3 jes.= a Cp y =8, =0, D Cop oy =& .m?o b,odb,. =c_ /o
317 239 327732751012 | C3378537405 Dy ooy = e
4' s =] ) = = = “é 4 = AR =, ;
417 By R PR R TR S TUT Ty O
5 1,0 b %
(¢ =10 Q o = e
51 527 P12 %537 "1%; P13 C54™" C51byy
0 062mle0 065m ab23 064 c6ibi4
0 0 0 5=1.0 C4= b3,
0 0 0 0gy=1e0
Z "—-'-?j = :;%c = ==
1 AN t.278%12 t,5=§C43 £,47%C%414
(&] =f -+ =3 =
% ffatha %011 T P IR K T RV
m. ) -
Check a 4 a_, c.lb12 2 %P.ibiB 3.4 %c.lbi4
L““*"J"v_ngm b T e R I S S e e e e o et e e oy S o vt o _..==zmz=L




j - 6 -
; Auxiliary ﬂable ' _ #
1 Cqq= all ey p= alz | G13$al3' 014= al4
L1 T %2221 12 | %237%23 “C21P13 | ©247%,,"C%21P14
3 = ‘ - 033=a33= §p31b13 034wa34u c3ibi4
4 - - | - ®4478447%3% 1 4
T T 2o o s £ e E R E R e o= = ,._zmzéﬂz:::m:ﬂ:mnm—:mﬁ“—mq'-
|
Table (1), cont. (Part II)
- Right
5 6 T 8 Check
1T 1.0 0 0 0 ay
2 O 1.-:0 0 0 a2
31 0 0 1.0 0 2,
410 0 0 1.0 | 8,
51 0 0 0 0
Bl 0 0 0 0
71 o 0 0 0
8! 0 0 0 0
|
ﬁ o S em mm S I TR ET ST fad e S e - I T I L T T R o e e T T e T TRy z SETEEEmmb mpT I T
i blel/cll 0 ) 0 Glo/cli
0 b25ze25/022 b26x1/e22 0 0 020/922
: ‘5 b35=035/633 b363036 033 } byn= 1/c33 0 33,/033
P Pas™0s % | 67046 %y | Y4707 % | s Vs |4/
B S 7
P K11 %°5ib15 k1, §°51 16 | T13 %CSibi7 K147 %50%8 §05i 1o
ko-=2c..b | k.. =3¢ b =3c 1 kK = ¢ b ¢ b
6 feoq %Cbi 15| 2273%41 %16 | Koz %061 17 24 64 A8 {B 61 1.
- o K= . -
[ 31 %%7ib15 32%3F7iPi6 | Ez3= 7447 K3,™ Ca4bug 714,
P FarTPas | ko= by ky3= byq ky4= Pag | Py,
I k = =] = =
%y °17%kil k7 RERE iz | k g=Pyy
5 : —
Checlk <. ‘ 14 i
AN | BT | Baby | fgp, ||
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Auxiliary Table, cont,

N

= AN

€1571,0 0 0 0 "
1,
c25$ m021b15 026= 1.0 0 0 a20w021b1°
035" “%GaibiB ®36” - 3 32 26| 3770 0 85, $C31%,
45~ T1%4 biB “46™1%41°16 P47 %37 | %48” 10 %1.74%: ",

TEXE = sty fros: fom rfcetoinnd

In the actual grocess of computation, one_ starts with the first
column of c's, the first row in the auxiliary table, from which

the first row of b's is obtained. Then we calculate the second
column of c¢'s, and the second row in the auxiliary table, from
which the second row of b's follows. Similarly for the third, then
the fourth columns and rows,

A slight variation on the order of the table can he made as
follows. Iirst, the unit matrix below the M matrix ( and the null
matrix beside it) can be dropped to spare space without affecting
the results, since we bear in mind that it is there. Futher, we
can insert the elements of the auxilisary tsble in the main table in
place of the corregsponding b's. This will help to retain the same
type of operation both row-wise and column-wise. The corresponding
b's would be then written in a transposed manner on another sheet. .
Using this shest by folding it so as to have the required b's
apparent and putting the column thus exposed beside the relevant
c=column, we can obtain the products regquired for calculating the
subsequent rows and columns of the e¢'s. For obtaining the inverse,
i.e., the k's, we can use the relavant bv's in the same manner. This
would relieve the computer'’s eye from moving row-wise and column-—
wige at the same time., But the underlying formumlae and method will
remain unchanged.

11I. THE SYMMETRIC CASE

3 ot Tf m mam e S

It is clear that the general formulae given in the previous
section can be directly applied to the case of inverting symmetric

‘matrices. The symmetry introduces a lot of simplifications which

can be summzrised as follows. PFirst, it would be natural to erte
A simply as (M I). Further we can neglect the elements lying
on one side of the | prlnoipal diagonal, e.g., those below it. Thus:
i=1 1
"T"‘E + A, 4+ 1 (iﬁlgunogﬂ') ’ (20)
iu : zl i" .

ji
and similarly for the check (5% There will be no need to add the
two rows of checks and sums defined by (6).
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The matrix D is calculated as follows : the ¢ § are calculated
as in (7), using the property of the symmetry, vi%a, g
C,, = C
ij ji
i.e., we can use (8) instead. It follows thet the elements b . can
. . . i
be obtained by: Y, ( ) (21)
b = ¢ C, . k=ly25000,00 21
ky I3 FESCISRNNS
In other words, after calculating each column of c's and writing it
down, we obtain the corresponding b-row by dividing the c-column by
ity leading term. The elements of the inverse are ocbtained accor-
ding to (9), neglecting again the elements on one gide of the
principal disgonal. Equations (10)-(15) still hold except that in

(15) we have:
j=1 2
k = Sak +3 Xk
.3 i=1 ji 1=J 1]

Owing to the symmetry of M, eguations (1) and (2) can be adjus~
ted to exhibit this property. Let us define a dimgonal maitrix M

W - [wij}:[gijci;] | (22)

which is obtained from the diagonal elements of X as defined in (18)0'
Than: -1
I=0 "% (23)

Thug we obtain the following factorizations:

M= LN X W= xelwx (24)
Comparing the present method with the classical, it will be
clear that the extra work involved here is the registration of the
matrix (17), which had to be calculated in any case to obtain (16) .
Agsin we can register the bis on an additional sheet in a column-
wigse form, as was mentioned in the azsymmetric case.

IV. ADDITION & DELETION OF ROWS AND COLUMNS

e e gt Pt

If it is required to obtain the inverse of a submatrix of K
occupying the first nf (<§ n) rows and columns, the only step needed
hesides those involved in the previous two sections is to calculate
the elements of the new inverse as:

n=1

- %

L ja= o0 o ‘
1] h=1 Cﬂ+i9hbh9n+j (1, =1, »1) {25)

This formuls is analogous to (9) and it is related to 1% through:
k k! | :% b
= + c ‘
13~ §3 TR+l nedigh h,me)
This latter formula can be used to obtainm the k!, from k, .. If the
decision on n' & n is taken before computation ljis stardéd, both

k{j and kij can be obtained from a single sum-product machine operation.

(iejzla°°°anv) (26)
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The only necessary condition is that the order of the o ;
columns” and rows 1,2,...,n permits obtaining the required submatrix
by merely deleting the columns and rows nos., n'+l,...,n. Extensions
t0 more than one submatrix, possessing the same property are obvious.
The checks (15) on the elements of the new inverses can be easily
obtained on replacing n by n'. These rules apply whether the matrix
K is symmetric or not. :

Equations (21) serves to obtain the inverse of a bordered matrix
using the inverse of the matrix itself. The extra rows and columns
are written below and to the righ of M occupying positions nos. ¢
n+l,..0,0', (n'N n). This requires The calculation of the cy 5 for
j=n+tl, nt2,..50,n" {J = L,...,n belng already computed), then
rewriting n+l,...2n &8 n'+l,..,n'+n and adding similar elements up to
ont, In all camses the extra i's -are i=n#l,:.,n'. Similarly the extra
b,.; are those corresponding to: k=nt+l,..,n' and j=n+l,..,n & n'+n+l, . .2n'
asahes been shown above. The elements of the inverse can then be obta-
ired through the relations ?25) and (26). -

The Applications of Rules of Partitioned Matrices:
Suppose that we have a matrix P which is partitioned es follows:

P= 0 hij (M & H square) (27)
Let: -1 : )
M=K, Q= (- GK37 (28)
then the inverse of P can be written as follows:
R =27 ={K+ (K.F)Q (8.K) ~(X.F)Q (29)
-Q(G.X) Q
Now suppose that H is a scalar, h say. Then"g can be written as:
e em 2
£ h

where f' is a column-vector, and g a row-vector. Since K has been
already computed, we calculate the vectors:
T = geX & 8' = K.f'

and the scalar: '
t = goKof' = r.f' = gog'
The matrix Q@ becomes also a scalar and is found as:

l/q = h -t 0 q = 1

o 3 h. - t
This scalar is then to be multiplied into r & g'. Further we calc-
ulate the matrix obtained by '
s' {g.r)

B= 1Kk +38'qr ~-8'q
q.r q

The inverse is then: [

by (29) .-
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Thus we have used the above-mentioned rules of inveriing parti-
tioned matrices in building wp the inverse when one row and one
column are added. The same rules can be applied to the case where
H 1s not a scalar but a square matrix, If P is of a high order and
a number of computers can be employed, laws of partltloning can be
applied according te similar steps. -

The rule can be also applied to the case where P is triangular.
Suppose that ¥ = 0. Tor P to be triangular, both M and H should be
triangular alsc, but we néed not assume that for the moment. The

inverse R becomes:

=1 K L (30)

St S o
This relation can be applied starting from the first two rows and
columns, then building up the complete inverse step by step adding
one row and one column each time. If the matrix P can be partit-
ioned according to (27 Ylth M trisnguler and F = 0, we can apply
(30), calculating K & H - by The previous methods Then obtaining
R from (30)}. These rules were used by the present author to obtain

The inverse of a 3% X 3% technical matrir.

Let us now consider the case of deletion of rows and columns.
Suppose thnat after the dnverse R of P has been obtained we want to
obtaln the inverse K of a submadrix M of P. (Rearrarging rows and
‘columns we can bring M to the positidn indicated in (27). The
inverse R 1s now partitioned as follows: ‘ :

B=8 T
i) g

Comparlng thls partltlonlng Wlth (29) it can be segn that:

T F.Q 5 = =Q.G.X_ 7

hence, 7
8=K+1.97¥
This means that we can ob#ain X ag followas

K=M71=8-1.9"U (31)
This means that we have to invert Qy and calculate the product in
the second member of the R.H.S. of (31) and subiract the product
from the part 5 of the inverse. If Q is a scalar the same rule
applies noticing that T will be then a column vector and U a row
vector.

Let the (n°® ) independent variables be denoted by 2, (i=1l,...,n")
and the dependent variable by y. The matrix P definedlabove is now
replaced by the matrix of the moments ( Exgtxkt) where the x's are
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the deviations of the z's and of y from their respective means. Thus
f can be partitioned ag follows:

P=1IM m
- =—zZ A (32)

an m
R g
where y is treated as the n-th variable (n = n'+l). To the right of
L we write the unit matrix of order n'n' in the first n' rows leaving
the n~th row empty. Row sums and checks are computed as before,
{equation 20), except for the n-th row where the unit element is
replaced by a zero. '

The c's are calculated in the first n columns for the following
N = 2n'+l rows as in the symetric case. The b's are calculated by
(21) for the first n' rows only, i.e., leaving out the n-th row

corresponding . to the n-th column of the c's. The elements i n;
. : ¢

in this latter column give the regression coefficients
7
A " = = .
(Cori,n) == Eom (1=1,...,0') (33)

The element Cut+1.1 = 1 is the coefficient of the dependent variable
8 .

¥y in the regression eguations:
®ntin®i T Gy, T8 (34)

where u 1s the regidual in the eguation.

The residual variance is simply:

52 = cyy/(T-n) (T = no. of ob-  (35)
gervations)
This can be seen from the expressions (28) and (29) for inverting
partiticned matrices., TFor if H in (27) stands for the scalar myy

then G = F' = d 11 b - m aim -1,
enG=FE' =m and Q will be (mw z A zggzy) But Q will

element by y,1(which has not been calculated):

be obtained by the

io@ag { o1
Con = \myy - gyzggzgﬂy) = gumsquare of residuals

as is well known from least-sguares theory. Hence (35) follows.

In order to obtain the covariance matrix of EEe regresgion
ccefficlents, we first compute the inverse K=M by (25). We then

caleulate the scalar T .c . The covariance ma%?fx is

T = (qogec, )oK (36)
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Finally, the goefficient of multiple correlation is:

"t = {(myy " i O yy'} (37)

In some cases we are interexted in estimating the regression of
a vector of m dependent variables y, on a vecor of independent
variables z;. In 3uch cases ‘the vedtor m_1s replaced by a matrix
Myz of ordef m.n',, occupying the first ~7% n' columns of the rows

nos.: n'+l,n'+2,00., n'+m=n, and similarly for its transpose M .
The element - in (32) is replaced by the m.m matrlx,ﬂyyo- To=Y

right of P we again write the unit matrix of order n'yw, The elements

€59 for j=l,...,n' are obtained by (21). The inverse of M, is

found by (25).

Defining the elements Gij for 1,j=n"+1,..., n as:

n
Cij s aij “"kzlz cikbkj (igjzn?“i‘l,oon;n) (38)
we obtain the elements of the residual covariance matrix:
=1
W =M M M M (39)
=vy “yy TYZTRETZY
The elements cy 13 calculated by {38) for i=n+l, n+2,...,n+n* and

J=ntl;.0.on,"give the elements of the regresgsion coefficients
matrix -1
=M "M (40)
BBy

These relations are simply straightforward extensions of the one-
variable case,

Example:
Let %Ee moment matle be

| zi= z, .
Zq 5.864665
Z 6.602500 8.250000

Z 4.734635 5.564500 3.983969

suppose that we want o calculate the regression of y on the z's,
knowing that T = 20. The computations are represented in Table (2):
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Table (2) - Calculation of regression

1 2 3 4 5 (&Cheak)
11 5.864665 1.000000 0 18.201800
21 6.602500] 8.250000 0 1.000000 |21.,417000
%1 4.734635) 5.564500 3.,983969 . - - 14.283104
1| 5.864665( 1.125810 | 0©.807316 0.,17051% %,103%139
2§ €.602500; 0,816839 §__0,286716 | -1.378252 | 1.22423%1 ) 1.152695
Bl 4.7T34635]1 0.234201 0.094473ws= Residual moment
4] 1.000000§-1.125810 | =0.,484528= 1.72216% Tnverse ML
5 0 1.000000 | =0.286716% | =1,378252 | 1.224231 ' ZE
s bk} fdeirod o oy o e s 1 e D A T o e g e e o r.a._@mmfsmmzzmz = e e S R I I A S e S R e e
2& 1.000000{ =0,125810 0,34%911 [-0.154021

3 18.201800] 0.925230

# Regression Coefficients

s% = 0.094473/17 = 0,005557
Hence covarignce matrix is:——s G. 009570
500007659 Oo006803I

= e == N L M I S oL e e S e e

For thg multiple correlation coefficient:
Re = 83,925969 = 20 x 0.005557)/3.983969 = 3.872829/%,983969
= 0,972

VI-FURTHER APPLICATIONS: THE MULTIPLEY METHOD

P R g 1 v R ST . i3 e s e o £y AR S S Y S

For the purposes of the multiplex method of linear programming
successive inverses are reguired to obtain regressions for sets of
variables increasing by one each time. For example, Table (3)
contains a part of the data included in Prof. Frisch's Memo. no. 8
(of 4/1/1958) "Data for = numerical example of multiplex method in
macroeconomic linear programming®. It is noticed that in this case
we are interested only in the regression coefficients and not in
thelr covariances. Hence we do not add the unit matrix as usual.
The successive sets of regression coefficients are registerad below
the table, while the 6~th column (and row) stands for the "dependent?®
variable - in the regression analysis sense.



