THE INSTITUTE OF
NATIONAL PLANNING

Memo. No.567

Advanced Compiler Techniques
(Lecture Notes)

Lionello A. Lombardi

May 1965

Operations Research Center

Table of Contents

Page
Cpmpiler Techniques 2
M interactive, Algebreic Compiler 5
Input-Output Considerations 24
Organization of an executive Routine 48
One Pass Translation of Do-loops 63

Notes on FORMAC

Compiler Techniques Kﬁ

(Extensions from FORTRAN:
a) Mixed mode expressions
b) Variables with any number of dimensions)

1. Polish Notation (prefixes)

The operators (e.g., +, -, etc.) precede the operands.

Examples:
1) +-Bi A .. . Anstead of Burihih
2) + 4, = SQRTF A 2. instead of 4. + SQRTF (A) = 2.
2. Order of operators number of operands.
B aﬁgles: -

1) SQRTF has order 1.
2) + has .order 2.

3, Parentheses in polish notation are necessary only if the
order of operators varies.

4. A push down list (pd 1) consists of :

a) A top pointer
b) an indication of its bottom
¢) Same memory space

It can be organized as association List for the purpose of

saving space when several pdl coexist.
(Clue : NEVER tie up index registers as top pointers of a pdl)
5, Translation FORTRAN into Polish needs one push down (pdl) list -

for infix operators, named infix pdl, which also contalins
closed parontheses.

-.1(;1

Be

Pranslation from Polish into machine code needs one pdl for
operands, nemed operand pdl. I only contains addressess of
operands and intermediate veriables, alomg with indicatioh of
whether they are declared variables or constamts or inten--
mediate varisbles. The operands pdl can be zugmented by
associating to each entry the following information:

mode (e.g. £loating, Boolean, etc.)

One pass_formulawtranslation

Both infix pdl and operand pdl coexist at compilation
time. The Polish stage is skipped.

Treatment of intermediate variables (iv)

IV are the results of applying operators to operands within
a formula.

Example:
In 4 = (3 + N), the number 3 + N is an intermediate
variable.

They =zre actually only vomputed at execution time, butb
space for them is allocated at compilation time in the ghost
pdl. The ghost pdl at compilation time simply consists of a
top pointer (without space) and a regiéter'to remember its

meximum length. It has space but no top pointer at excution
time.

Orgamization of the compiled program (COMMON excluded;)

(This is a very simple one, more efficient ones are degirable)

1) Transfer vector (list of names of subroutines and functions)

2) Excutable c¢ode followed by constants

3) Areas for declared variables and constants.

4) Space for ghost pdl. :
Puring compilation it is mecessary to build the transfer vector
znd to keep track of the length of items 1,2,5 and 4 above.

At the end of compilation or at leading time item 2 above need
to be relocated.

10. Formula for dimensioned variables
The adress of A (Il, IE’ ifais? 5 In),
where Ii is an integer formula, preceeded by DIMENSION
A (M]- 9 NIE] o o @ ’ Nin)
where Mj is an integer constant,
is computed at excution time by the following routine:
B::Il. Ml"'IE
Jd st = 2
\ 4
Bl = By ey Ij+l
Adress: =
B + initial ("0") adress
Vo of the space allocated
el [(for the dimensioned
variable.

\L exit

o

An Interactive, Algebraic Compiler

Introduction

A computer time-shz=ring system, such as that under development
at MIT's Computation Center and at Project MAC provides one with
the unusual sbility, in this age of ultra high-speed and ultra high
cost computer equipment, of enjoying "hands-on" operation of the
machine. The programmer need not walt long peridds of time to
locate his program bugs; he may instead debug his program on’line,
with direct supervision of the machine’s operation.

Seated at a remote conscle, usually consisting of a 4 sewriter
and prinbter, the user msy “interact” with the computer. In the MIT
Compatible Time Sharing System (CTSSﬁg“f@r example, Tthe user eunters
his system commands, such as INPUT, LOAD, STARTs EDIT, and compila-
tion commands in response to observed actiom by the computer, as
reflected by the printsr porticn of the consele. Thus, a normal .
sequance of commands might be

INPUT Engbles the user 1o enter bis source stabtememts

FILE Causes list of source statements tc be retain on
the disc file.

FAP Causes the source program %o be assembled in the
FAP Ismgusge

LOAD Loads the sssembled object code inbto the compuber.

START Causes execution of the previously loaded obh’'2c%
code. d

In each instance, the usexr enbers = command wufter he Teceives a
confirmation that his last commend has been svecessfully sxscuted.
For example, if the FAP agsembly, in the above iilustration, was
not successeful, the user will be azble to lezrn this and tzte

steps to correct his source program, rather than to lcad the hoped-
for object code. The important point here iz that the user does,
in fact; intersct ~ with the compuver. His estiops ave generally
baséﬁ"uponminfcrmation‘$Ecgived from the computer, znd the
computer's actions are generally based upon instructions received

\

\

= T

from the programmer. Both the user and +the machine make decis- 3
ions, each upon some action taken by the other.

If the user makes a mistake, for example, trying to load the
object code of the FAP program that did not assemble, the computer
will inform him of his error immediately. Similarly, if the user
enters a command that is misspelled or that just does not exist,
the computer will inform him of this immediately. The user is
thus given an opportunity to take appropriate measures.

- Let us go into a bit more detail about the means of entering
a source program. In particular, let us suppose that a hypothet-
ical user wishes to enter a program written in FORTRAN, the most
widely used algebraic progremming system. Under the present CTSS
development, the computier user follows the following procedures.
He enters an INPUT command, which causes the computer to type out
a line number, starting with 00010. After the line number appears,
the programmer enters his first source program statement. He =% -
enters a carriage return to denote the end of the line, and a new
line number is given automatically by the computer. The line
number progress in jumps of 10, thus, the second line number is
00020, the third is 00030, etc. The programmer continues to enter
his source statements until his program has been completely entered.
If .he makes an error in any statement, he may use the regular
CIBS error correcting procedures (“to delete the previous character,
to delete the entire line) or he may reenter the entire statement by
entering the line number followed by the corrected text of the
statement. A new statement may be'inserted”by first entering =
line number between the two statements that border the inserted one,
such as 15 between lines 10 and 20, and then following this number
the text of the new statement. A statement msy be deleted by using
the DELETE command. Finally, the corrected list of statements is
given a symbolic name and is file. It is here that the computer is =~
informed of the particular language in which the file has been
written. Thus, the statement to file an input list named, say,
TEST, would be :

FILE TEST FORTRAN

”

S

Y

This means “Store the previously created input file in a disc file
named TEST in the FORTRAN language.® To compile this program, the
user enters the command

FORTRAN TEST
which tellg the computer to compile the source program file called
TEST in the FORTRAN mode using the FORTRAN compiler associated with
the CTSS monitor. After the program has been compiled, the user
must load it, and then start it, by means of the LOAD and START
sequence, or the newer LOADGO command. If an error occurred during
compilation, due te either a typographical error in the source
program, or possibly some more substantive mistake, such as reach-
ing to a nonexistent statement number, the user must correct the
source program, by using the EDIT command to reinstate The program
in the INPUT mode, make his correction (s), file the program, and
recompile it. Basically, he does not learn about errors until he

_commences the compilatim process, or until he executes the compiled

program. And he cannot correct these errors except by reipstating
his source program in the input mode and then recompiling it from
scratch.

‘Although the time sharing concept provides for the relatively
short'delay Fime in learning about aud corrscting program €rrors,
much of the potential of the interactive features of the time
sharing system are not present in the existing approach 50 progranm
writing. It is for these reasons that work is being done w~vards
the development of an algebraic programming system that will, in
fact, be based upon its imclusion in the repertoire of a time
sharing operation, such zs CISS. This system will be based, Intsas
general upon the existing FORTRAN language, since it has been found
to be the most widely used algebraic langusge in existence today.
Hopefully, the new system will be fully compatible with the
existing FORTRAN systems, such that any progrzm or subprogram written
in languages such as FORTRAN II or FORTRAN IV may be included in
systems using the nsw intersctive language. A guestionnaire was
recently circulated to computer users in the MIT community for the
purpose of determining their preferences and reguirements for such

o8 =

an-interactive algebraic programming system. Detailed results of
this study are given in a later section of this paper.

The interactive language will provide its users with the many
features that will best enable them to take full advantage of the
time sharing hardward at their disposal. For example, the entire
structure of the inputi-output aspects of the FORTRAN system are
being redesigned so as to provide for the requirements of the time
sharing console. A description of this aspect of the work is also
included in a later section of this paper.

'But most important,_the new system will give the programmer -

significant advantages in his ability to effectively teke advantage

of the time sharing system in the process of debugging. First of
all, he will be able to make changes in the source program during
execution and without total recompilation. He will be able to
keep track of the progres: of program’s execution by means of some
powerful tracing feabures which may be selectively controlled at
the remote console. The programmer will be provided with some
powerful interactive features, enabling him to enter a part of his
program, in the form of regular FORTRAN gpurce stabtements, during
execubion of the program. Finally, the programmer will be able to
dump and reload his completed object code in a manner that will
provide the must efficient operation of the program during its
regular execution.

The programming system under discussion here is mot of he
interpretive form. Rather, it will generate actual machine code

in response %o each FORTRAN source statement, without the uszs of an

intermediate language. (An interpretive system, incorporating some

3

of the features described here, has been developed by the IBU Applied

Programming group of the Data Systems Division in New York. However,

because 1t is an interpretive system, it produces an object code
that is rather slow, and hence cannot be used to compile programs
intended for production rums.)

The purpose of this paper is to describe the var;ouS‘component

parts of this system, with a view toward gpecifying the means by
which it should be constructed. Thus, the paper includes sections

-

- -

on the language specifications, the input-output operations, the
construction of the compiler and the compiled executive rou@ine;
and finally the results of the aforementioned questionnaire.

Specifications of the Language

In general, the interactive system will include all of the
language features now present in FORTRAN IT, and probably will
snelude those present in FORTRAN IV. The latter system includes
the ability or using recursive subscripts [eogo, AMICHKE)SY -]
Boolean statements,]:engn, IF (A .LE. B .OR. (C+2%D) .GE. 30)

GO TO 25], and the ability to use an expression énywhere in the
program. In addition, FORTRAN IV provides for the legality of
miged mode expressions, and also permits the programmer tn define
labels as being either fixed or f£iloating, so that he need not
adhere to the I ... N rules in FORTRAN II. There will be some
changes in the input-output wtatements, and there will be a more
complete discussion of these in the next section.

In addition to the regular FORTRAN statements, the interactive
system will provide a number of new features that aid in writing
and debugging a program. We may call these pseudo instouctions,
since they direct the operation of the compiler, but do rot have
any direct affect upon the genmerated object program.

The Alteration Statements. These statements peruit 3
programmer to change the nature of his program either hefure or

after compilation.-

DELETE s * 8, LINES where 854 is a statement numb-.v, -and
8., is the number of additi: mal lines
tﬁat define the statement to be
delgted. If s, is O, the "+ So LINES"
"may'"bE“omitteﬁ°

Causes-deletion of the defined =
statement from the source program.

DELETE S1 + sp LINES Causes deletion of a string of
THRQUGH 83 + S4TLIHES statements inclusive of the beginn-
: ing and end statement as defimned by
S1s So» sj. and Sy o

sl

. \
INSERT s, + s, LINES Causes the compiler to accept and ¥
' sequentially compile into the over-
all object code a string of state-
ments starting with the first to be
located in the position defined -
by 81 and =PY
INSERT 8; + 8, IN Szt 8y Causes the statement located at
891+8p lines to be removed from that
spot and be inserted at the point
defined by sz and sq. The -state-
ment previouSly at S3t8) lines is
pushed up omne line.

ALTER 81 + 8, LINES AT c where ¢ is the column number of the
card image where the alterawnion is
o commence.

Cause& the sompiler to accept
changes in the statement number
defined by &, and S, starting at
position given by ¢t

ENDGHANGE P Causes the end of the insert mode. =

TRACE sy+s8, LINES THROUGH = Results in a logical trace on all
Sz + 5, 2LINES © statements of the source program
5 ' that lie between the two statements
defined by the parameters of the
” TRACE statement., The tracing
includes the stabement and line
number, and the value of the state-
ment if an arithmetic expression;
the value of the index of a DO if
a DO statement, or the type of
statement if some other kind is
being executed.

TRACE ON V) ees V, where v, is The symbolic name of ;
a variaﬁle to be traced.

Causes tracing of zll statements

where the varisbles v; are affected

or appear. JIn addition to the

tracing information described

above, the symbolic name of the
variable is printed out for each 4
statement traced.

-

-]]

Definition of an operabtion at object time. Present FCRTRAN
systems, which provide for an alphammeric FORMAT specification,
also provide for a so-called “variable FORMAT statement,” which
is read into the program at object time. This is made possible
in the present FORTRAN systems because The execution of input-
output statements with FORMAT specifications is accomplished by
means of an interpretive process. Thus, the FORMAT statement is
never compiled; rather, it is stored in memory in basically the
same form as it was written in the source program. Thus, a
FORMAT specification may be quite readily read in at object time
and used in the same manner as any other type of FORMAT stetement.
With a remote access time sharing system, 1P is'possible for the

programmer to thus enter a FORMAT statement at the console, followed

by, say, inmput data, which will be read in according to this
specification.

It was suggested, by Professor L. A. Lombardi and S. S.
Alexander, that an analcgous feature be extended To arithmetic
expressioné that may occur in virtually any scurce program state-
ment. This feature would work as follows: The programmer will
insert a special symbol in any particular position where he wishes
to enter an expression at object time. This symbol will consist
of a dollar sign followed by an alphanumeric label of from one to
five characters in length. Thus, such a label might be $PRICE; ox
$X. During execubtion, when a statement containing such a lzbel 1is
encountered, the program comes o & paﬁse, and the lccation (in
the source program) and the name of the insertion variable are
printed out at the conscle. The programmer then enters an expres-
sionm, in the source program language (FORTRAN) that is to be
substituted for the insertion symbol. The expression is compiled,
and execubtion combtinues.

When +the expression is entered, the programmer may attach, at
the beginning, a specisl character, such as another dollar sign,
to indicate that this. inserted expression should be used through-
out the current exccubion of the program. Without this special

1o

symbol, the system will call for the insertion-of a new express—
ion each time the particular insertion symbol,is encountered
during execution.

" The programmer may, if he wishes, include informstional
printouts of specific instructions governing the particular
insertion. This would be done in the conventional manner, as will
be more fully discussed in the section on input-output statements.

The insertion feature provides for great flexibility in the
use of the remote console. The same program may thus be used to
handle similar problems with varying parameters, decision rules,
etc.

Finally, it should be noted that the insertion feature need
not be limited to the insertion of .expressions; it would be quite
feasible to permit the insertion of one or more statements in
basically the same manner. However, such inserted statements
will, collectively, take the form of a single-valued
FUNCTION subprogram.

Iracing. The infteractive algebraic programming system will
incorporate a number of powerful program tracing features to -
facilitate the debugging process. The trace is selective, i.e.,
it is definegd and requested by = the programmer, who also starts
it and stops it as he pleases.

An example of some of the trace features to be imcorv -ted
in this new system may be found in the FORGO system developed at
the University of Wisconsin for use with the IBM 1620. FORGO is
a load-and-go version of FORTRAN II, with some language Trestrict-
ions and, 1in the case of the 1620 FORTRAN II system, a few exten-
tions. FORGO is an interpretive language, i.e., it translates the
source lamguage inmto an intermediate language, and translateg this
into machine code for the purposes of execution. FORGO was-i .o
recently converted such that it may be used interactively on the

1620, making it an excellent demonstration of the type of system
under discussion here.

4

Slp=

Since FORGO, like the interactive system under development,
maintains an image of each source program statement, logical +*
tracing, by source statement, is made possible. FORGO includes
s number of trace options. They include a complete trace on all
statements between two given limits, a complete trace on all
branches in the program, and other features that permit the
programmer to limit the length of the program, if it appears %o
be excessively long, and to dump the object program.

The new system will incorporate these same features, but will,
in addition, provide even greater tracing ability. Most important
will be the ability to trace selectively on a single variable, OT
on a group of several given variables. . The trace will contain the
source program name of the variable, the location in the source
program of the statement being traced, and the net result of the
statement on the variable in question. This one features is, 4in
particular, a very significant improvement in the repertoire of
debugging aids.

In gdditionm to the trace features for logical tracing at
execution time,-tﬂ; interactive algebraic system will inciude some
of this same ability for use by the programmer during compilation.
In particular, the computer will inform the user, either volun-
tarily or on request, the . means by which his program may get
to a numbered statement ag it is entered. Thus, when the Togram-
mer enters, say, stabement 47, the computer will inform him how
he might get to this statement from Ghe various other parts of
the program. This feature would be voluntary, i.e., it would be
requested by the programmer, on the initial input of the source
programs however, it would be mandatory, i.e., generated automatic-
ally, whenever the programmer inserts, alters, or deletes a
numbered statement.

