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Compiler Techniques Kﬁ

(Extensions from FORTRAN:

N
°

a) Mixed mode expressions
b) Variables with any number of dimensions)

Polish Notation (prefixes)

The operators (e.g., +, -, etc.) precede the operands.

Examples:

1) +-Bi A .. . Anstead of By

2) + 4, = SQRTF A 2. instead of 4. + SQRTF (A) = 2.
Order of operators number of operands.
JiK aﬁgles:

1) SQRTF has order 1.
2) + has .order 2.

Parentheses in polish notation are necessary only if the

order of operators varies.

A push down list (pd 1) consists of :

a) A top pointer
b) an indication of its bottom
¢) Same memory space

It can be organized as association List for the purpose of

saving space when several pdl coexist.

(Clue : NEVER tie up index registers as top pointers of a pdl)

Translation FORTRAN into Polish needs one push down (pdl) list

for infix operators, named infix pdl, which also contalins
closed parontheses.

e
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Pranslation from Polish into machine code needs one pdl for
operands, nemed operand pdl. I¢ only contains addressess of
operands and intermediate veriables, alomg with indicatioh of
whether they are declared variables or constamts or inten--
mediate varisbles. The operands pdl can be zugmented by
associating to each entry the following information:

mode (e.g. £loating, Boolean, etc.)

One pass formula translatiion

Both infix pdl and operand pdl coexist at compilation
time. The Polish stage is skipped.

Treatment of intermediate variables (iv)

IV are the results of applying operators to operands within
a formula.

Example:
In 4 = (3 + N), the number 3 + N is an intermediate
variable.

They =zre actually only vomputed at execution time, butb
space for them is allocated at compilation time in the ghost
pdl. The ghost pdl at compilation time simply consists of a

top pointer (without space) and a regiéter'to remember its
meximum length. It has space but no top pointer at excution
time.

Organization of the compiled program (COMMON excluded
(This is a very simple one, more efficient ones are desirable)

1) Transfer vector (list of names of subroutines and functions)

2) Excutable c¢ode followed by constants

3) Areas for declared variables and constants.

4) Space for ghost pdl. :
Puring compilation it is mecessary to build the transfer vector
znd to keep track of the length of items 1,2,5 and 4 above.

At the end of compilation or at leading time item 2 above need
to be relocated.



10. Formula for dimensioned variables
The adress of A (Il, IE’ st a5 In),
where Ii is an integer formula, preceeded by DIMENSION
A(My 4 My, ool , M)
where Mj is an integer constant,
is computed at excution time by the following routine:
B::Il. Ml"'IE
. Ij+l
Adress: =
B + initial ("0") adress
of the space allocated
. for the dimensioned
variable.

‘l exit
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An Interactive, Algebraic Compiler

Introduction

A computer time-shz=ring system, such as that under development
at MIT's Computation Center and at Project MAC provides one with
the unusual sbility, in this age of ultra high-speed and ultra high
cost computer equipment, of enjoying "hands-on" operation of the
machine. The programmer need not walt long peridds of time to
locate his program bugs; he may instead debug his program on’line,
with direct supervision of the machine’s operation.

Seated at a remote conscle, usually consisbting of a 4 sewriter
and prinbter, the user msy “interact” with the computer. In the MIT
Compatible Time Sharing System (Cmssﬁg“f@r exsmple, the user eumbters
his system commands, such as INPUT, LOAD, STARTs EDIT, and compila-
tion commands in response to observed actiom by the computer, as
reflected by the printsr porticn of the consele. Thus, a normal .
sequance of commands might be

INPUT Enables the user o enter bis source stabtements

FILE Caguses list of source statements te be retain on
the disc file.

FAP  Causes the source program %o be assembled in the
FAP 1sngusge

LOAD Loads the assembled object code into the computer.

START Causes execution of the previously loaded obh’'2c%
code. d

In each instance, the usexr enbers = command wufter he Teceives a
confirmation that his last commend has been svecessfully sxscuted.
For example, if the FAP agsembly, in the above iilustration, was
not successeful, the user will be azble to lezrn this and tzte
steps to correct his source program, rather than to lcad the hoped-
for object code. The important point here iz that the user does,
in fact; intersct ~ with the compuver. His estiops ave generally
basé@"upunminfcrmation‘;Ecgived from the computer, znd the
computer's actions are generally based upon instructions received

\
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from the programmer. Both the user and the machine make decis- 3
ions, each upon some action taken by the other.

If the user makes a mistake, for example, trying to load the
object code of the FAP program that did not assemble, the computer
will inform him of his error immediately. Similarly, if the user
enters a command that is misspelled or that just does not exist,
the computer will inform him of this immediately. The user is
thus given an opportunity to take sppropriate measures.

- Let us go into a bit more detail about the means of entering
a source program. In particular, let us suppose that a hypothet-
ical user wishes to enter a program written in FORTRAN, the most
widely used algebraic programming system. Under the present CESS
development, the computier user follows the following procedures.
He enters an INPUT command, which causes the computer to type out
a line number, starting with 00010. After the line number appears,
the programmer enters his first source program statement. He =~ -
enters a carriage return to denote the end of the line, and a new
line number is given automatically by the computer. The line
number progress in jumps of 10, thus, the second line number is
00020, the third is 00030, etc. The programmer continues to enter
his source statements until his program has been completely entered.
If .he makes an error in any statement, he may use the regular
CIBS error correcting procedures (“to delete the previous character,
to delete the entire line) or he may reenter the entire statement by
entering the line number followed by the corrected text of the
statement. A new statement may be'inserted”by first entering =
line number between the two statements that border the inserted one,
such as 15 between lines 10 and 20, and then following this number
the text of the new statement. A statement msy be deleted by using
the DELETE command. Finally, the corrected list of statements is
given a symbolic nasme and is file. It is here that the computer is =
informed of the particular language in which the file has been
written. Thus, the statement to file an input list named, 8ay,
TEST, would be i
FILE TEST FORTRAN
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This mesns "Store the previousiy created input file in a disc file
named TEST in the FORTRAN language.® To compile this program, the
user enters the command

FORTRAN TEST
which tells the computer to compile the source program file called
TEST in +the FORTRAN mode using the FORTRAN compiler associsted with
the CTSS monitor. After the program has been complled, the user
must load it, and then start it, by means of the LOAD and START
sequence, or the newer LOADGO command. If an error occurred during
compilation, due To either a typographical error in the source
program, or possibly some more substantive ristake, such as 'rench-
ing to a nonexistent statement number, The user must correct the
gsource program, by using the EDIV command to reinstate the program
in the INPUT mode, make his zorrection (s), file the program, and
recompile it. Basically, ke does not learn about errors until he

_commences the compllatiom process, or until he executes the compiled

program. And he cannot correct these errors except by reinstating
his source program in the input mode and then recompiling it from
scratch.

Although the time sharing concept provides for the relztively
short'delay Fime in Iearning about aud corrscting program €rrors,
much of the potential of the interactive features of the time
sharing system are nct present in the existing approach Yo program
writing. It is for these reasons that work is being done w~vards
the development of an algebraic programming system that will, in
fact, be based upon its inclusion in the repertoire of a time
sharing operation, such as CISS. This system will be based, I
general upon the existing FORTRAN language, since it has been found
to be the most widely used algebraic langusge in existence today.
Hopefully, the new system will be fully compatible with the
existing FORTRAN systems, such that any program or subprogram written
in languages such as FORTRAN II or FORTRAN IV may be included in
systems using the new infersctive language. A guestionnaire was
recently circulated to computer users in the MIT community for the
purpose of determining their preferences and reguirements for such
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an-interactive algebraic programming system. Detailed results of
this study are given in a later section of this paper.

The interactive language will provide its users with the many
features that will best enable them to take full advantage of the
time sharing hardward at their disposal. For example, the entire
structure of the inputi-output aspects of the FORTRAN system are
being redesigned so as to provide for the requirements of the time
sharing console. A description of this aspect of the work is also
included in a later section of this paper.

‘But most important,_the new system will give the programmer -

significant advantages in his ability to effectively teke advantage

of the time sharing system in the process of debugging. First of
all, he will be able to make changes in the source program during
execution and without total recompilation. He will be able to
keep track of the progres: of program’s execution by means of some
poweriul tracing feabures which may be selectively controlled at
the remote console. The programmer will be provided with some
powerful interactive features, enabling him to enter a part of his
program, in the form of regular FORTRAN gpurce stabtements, during
execubion of the program. Finally, the programmer will be able to
dump and reload his completed object code in a manner that will
provide the must efficient operation of the program during its
regular execution.

The programming system under discussion here is mot of he
interpretive form. Rather, it will generate actual machine code

in response %o each FORTRAN source statement, without the uszs of an

intermediate language. (An interpretive system, incorporating some

3

of the features described here, has been developed by the IBU Applied

Programming group of the Data Systems Division in New York. However,

because 1t is an interpretive system, it produces an object code
that is rather slow, and hence cannot be used to compile programs
intended for production rums.)

The purpose of this paper is to describe the var;ouS‘component

parts of this system, with a view toward gpecifying the means by
which it should be constructed. Thus, the paper includes sections
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on the language specifications, the input-output operations, the
construction of the compiler and the compiled executive rou@ine;
and finally the results of the aforementioned gquestionnaire.

Specifications of the Language

In general, the interactive system will include all of the
language features now present in FORTRAN II, and probably will
snelude those present in FORTRAN IV. The latter system includes
the ability or using recursive subscripts [eogo, AMICHKE)SY - ]
Boolean statements,ljeagn, IF (A .LE. B .OR. (C+2xD) .GE. 50)

GO TO 25], and the ability to use an expression énywhere in the
program. In addition, FORTRAN IV provides for the legality of
miged mode expressions, and also permits the programmer tn define
labels as being either fixed or f£iloating, so that he need not
adhere to the I ... N rules in FORTRAN II. There will be some
changes in the inmput-output wtatements, and theue will be a more
complete discussion of these in the next section.

In addition to the regular FORTRAN statements, the interactive
system will provide a number of new features that aid in writing
and debugging a program. We may call these pseudo insiouctions,
since they direct the operation of the compiler, but do rot have
any direct affect upon the genmerated object program.

The Alteration Statements. These statements perwit 3
programmer to change the nature of his program either h=fure or
after compilation.-

DELETE s * 8, LINES where s, is a stabement numb:v, -and
8., is the number of additi: mal lines
tﬁat define the statement to be
delgted. If s, is 0, the "+ so LINES"
~mgy be omitted.

Causes-deletion of the defined =
statement from the source program.

DELETE S + Sp LINES Causes deletion of a string of
THRQUGH 83 + S4TLIHES statements inclusive of the beginn-
: ing and end statement as defimned by
S1s So 55. and Sy o
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INSERT 81 -+ 32 LINES

INSERT 81 + 8, IN s5+ Sy
ATLTER 81 + 8, LINES AT c
ENDCGHANGE

TRACE sl+32LLIHES THROUGH

sz + 5, "LINES

TRACE ON Vi ees Vo

Causes the compiler to accept and
sequentially compile into the over-
all object code a string of state-
ments starting with the first to be
located in the position defined

by 81 and Soe

Causes the statement located at
S1+8p lines to be removed from that
spot and be inserted at the point
defined by s; and sy. The state-
ment previousSly at Szt8) lines is
pushed up one line.

where ¢ is the column number of the
card image where the alterawion is
to commence.

Cause& the sompiler to accept
changes in the statement -number
defined by &, and S, starting at
position given by ¢t

Causes the end of the insert mode.

‘Results in a logical trace on all

statements of the source program
that lie between the two statements
defined by the parameters of the
IRACE statement. The tracing
includes the statement and line
number, and the value of the state-
ment if an arithmetic expression;,
the value of the index of a DO if
a DO statement, or the type »f
statement if some other kind is
being executed.

where v. is the symbolic name of
a vaniaﬁle to be traced.

Causes tracing of zll statements
where the variables v; are affected
oI appear. In addition to the

tracing information described

above, the symbolic name of the
variable is printed out for each
statement traced.

¥
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Definition of an operabtion at object time. Present FCRTRAN
systems, which provide for am alphammeric FORMAT specification,
also provide for a so-called "variable FORMAT statement,” which
is read into the program at object time. This is made possible
in the present FORTRAN systems because The execution of input-
output statements with FORMAT specifications is accomplished by
means of an interpretive process. Thus, the FORMAT statement is
never compiled; rather, it is stored in memory in basically the
same form as it was written in the source program. Thus, a
FORMAT specification may be quite readily read in at object time
and used in the same manner as any other type of FORMAT stetement.
With a remote access time sharing system, it is'possible for the
programmer to thus enter a FORMAT statement at the console, followed
by, say, input data, which will be read in according to this

specification.

It was suggested, by Professor L. A. Lombardi and S. S.
Alexander, that an analcgous feature be extended To arithmetic
expressioné that may occur in virtually any scurce program state-
ment. This feature would work as follows: The programmer will
insert a special symbol in any particular position where he wishes
to enter an expression at object time. This symbol will consist
of a dollar sign followed by an alphanumeric label of from one to
five characters in length. Thus, such a label might be $PRICE; ox
$X. During execution, when a statement containing such a izbel 1is
encountered, the program comes o & paﬁse, and the lccabtion (in
the source program) and the name of the insertion variable are
printed out at the conscle. The programmer then enters an expres-
sionm, in the source program language (FORTRAN) that is to be
substituted for the insertion symbol. The expression is compiled,
and execubtion combtinues.

Whnen the expression is entered, the programmer may attach, at
the beginning, a specisl character, such as another dollar sign,
to indicate that this. inserted expression should be used through-
out the current exccubion of the program. Without this special
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symbol, the system will call for the insertion-of 2 new express—
ion each time the particular insertion symbol_is encountered
during execution.

- The programmer may, if he wishes, include informational
printouts of specific instructions governing the particular
insertion. This would be done in the conventional manner, as will
be more fully discussed in the section on input-output statements.

The insertion feature provides for great flexibility in the
use of the remote console. The same program may thus be used to
handle similar problems with varying parameters, decision rules,
etc,

Finelly, it should be noted that the insertion feature mneed
not be limited to the insertion of .expressions; it would be quite
feasible to permit the insertion of one or more statements in
basically the same manner. However, such inserted statements
will, collectively, take the form of a single-valued
FUNCTION subprogram.

Iracing. The interactive algebraic programming system will
incorporate a number of powerful program tracing features to -
facilitate the debugging process. The trace is selective, i.e.,
it is defingd and requested by = the programmer, who also starts
it and stops it as he pleases.

An example of some of the trace features to be imcoru -ted
in this new system may be found in the FORGO system developed at
the University of Wisconsin for use with the IBM 1620. FORGO is
a load~and-go version of FORTRAN II, with some language restrict-
ions and, in the case of the 1620 FORTRAN II system, a few exten-
tions. FORGO is an interpretive language, i.e., it translates the
source lamguage inmbto an intermediate language, and translateg this
into machine code for the purposes of execution. FORGO was-i .ot+:
recently converted such that it may be used interactively on the
1620, making it an excellent demonstration of the type of system
under discussion here.

tj/
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Since FORGO, like the interactive system under development,
maintains an image of each source program statement, logical +*
tracing, by source statement, is made possible. FORGO includes
s number of trace options. They include a complete trace on all
statements between two given limits, a complete trace on all
branches in the program, and other features that permit the
programmer to limit the length of the program, if it appears %o
be excessively long, and to dump the object program.

The new system will incorporate these same features, but will,
in addition, provide even greater tracing ability. Most important
will be the ability to trace selectively on a single variable, OT
on a group of several given variables. . The trace will contain the
source program name of the variable, the location in the source
program of the statement being traced, and the net result of the
statement on the variable in question. This one features is, 4in
particular, a very significant improvement in the repertoire of
debugging aids.

In gdditionm to the trace feabures for logical tracing at
execution time,-tﬂ; interactive algebraic system will inciude some
of this same ability for use by the programmer during compilation.
In particular, the computer will inform the user, either volun-
tarily or on request, the . means by which his program may get
to a numbered statement ag it is entered. Thus, when the Togram-
mer enters, say, stabement 47, the computer will inform him how
he might get to this statement from Ghe various other parts of
the program. This feature would be voluntary, i.e., it would be
requested by the programmer, on the initial input of the source
programs however, it would be mandatory, i.e., generated automatic-
ally, whenever the programmer inserts, alters, or deletes a
numbered statement.



Diagnosticg

Y
When an error is detected, the column number in which the
error was made, and the type of error made (in some code) is
printed out directly below a print-out of the statement to
which it refers.
We classify programmer errors into the following categories:
1) Dimension errors
2) Statement numbers and constants
3) Format and input-output errors
4) Arithmetic operations
5) DO statement errors
6) GO TO, computed GO-TO and assigned GO TO errors
7) Errors in IF statements
8) ZErrors in EQUIVALENCE, COMMON and FREQUENCY statements.
9) Errors in calling and using subroutines and functions.

10) Subscripting errors.

Since the program is being compiled one statement at a time,
certain errors will not be detected immediately, and the diagnos-
tics will not always be correct. However, the programmer needs
some information to guide him in his corrections. Either the -
compiler ”éuesses“ the error, and the diagnostic is printed out,
or the compiler has more than one disgnostic for the error. All
of the diagnostics for the error are printed out.

A system where the programmer has the option of asking for
more diagnostics if he does not understand the original one seems
to be the most satisfactory idea...In this way he will be able tor"
“"interact" with the machine.

This paper will tabulate programmer errors according to the
scheme given above. Beside each error there will be a suggested
(possible) diagnostic. Since we cannot expect the diagnostics to ¥

be exact, some of them will not even indicate what the real error
Was.
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DIMENSION ERRORS

Error

1) Dimension statement missing commas,
between variables.

left
2) Missing(rigﬁﬁ)parenthesis in DIMENSION,

3) Missing variable name in DIMENSION,
e.g. DIMENSION ALPH (3,5), (2,5)

4) Function name in Dimension variable
table.

5) More dimensions than specified in
language (e.g. ALPH (2,3,4,5).

6) Missing subscript of variable in
Dimension statement, (e.g. DIMENSION
ALPHA (6, ), B(101).

FORMAT AND I/0 ERRORS
1) Format has no statement number.

left
2) Missing right)parenthesis in

FORMAT.

3) Unequal number of parentheses in
FORMAT.
4) Illegal I/0 unit specification.

Suggested Diagnostic

Missing comma in
dimension,

left ) :
M;ssing(right paxrenthe-
sis L
Illegal variable ﬁame.
This occurs since it
is reading it as a new
variable name after
the comma.

Too many dimensions

Illegal character in
DIMENSIONed varisble.

This will be diagnosed
as an illegal variable
name, since the compiler
will have no way of

“identifying whether the

statement is a FORMAT.

left
Missing(righa;parenthe-

sis in FORMAT.
ditto.
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5) Comma following format statement Illegal character in X
format
6) Too many Formats. (Identifiable Too many formats.
format .has not been referred to
by READ statement)
7) Variable overflow in format statement
table
&) Commas in READ statement. ‘ Illegal character in
read statement.
9) No number in read statement (e.g. Variable name too long.
READ A This happens because it
is read as an expression.
10) Too many format continuation cards Too many continuation
: cards.
15) Undefined wvariable in output Variable specified in
specification. output is not defined.
16) Undefined format Illegal control state-
ments. in format.

If the diagnostic is not correct, it is because the compiler
detected a different kind of error from what actually happened.

This is becalise it has no way of knowing what the programmer really
meant.

Also error in I/0 can cause errors to occur in statements that
strictly have no error. For example, if the programmer leaves the
statement number off the format statement number, then two diagnos-
tics can be made. One diagnestic will be made on the incorrect
format statement, and the other will be on the preceding READ
statement. The error on the read statement will be that it is
referencing a FORMAT statement that does not exist. Thus there

will be a diagnostic on the READ statement as well as the FORMAT
statement.

Tm—— i
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STATEMENT NUMBERS AND CONSTANTS

1) Statement label has an invalid
character.

2) Statement label has too many
digits.

%) liisuse of column six,

4) Illegal character in constant
(e.g. 2 34 I J)

5) lMissing digit after E+ or E- in
floating point constant

6) Floating point constant greater
than b,

7) Invalid character in expression.

8) Two statemnts have the same
label

9) Tape number must be fixed point
number.

Invalid character in
statement name.
Statement number too long.

Illegal character in
column 6.

Missing operator between
operands.

Missing digit in constant.

Floating point constant
greater than bN.

Invalid character in expres-
sion.

Statement number has occurred
before in line ...

Error tape number must be
fixed point. '

The diagnostics for arithmetic expressions will usually be
quite accurate since the errors are syntaetical and these are

easiest to detect.

ARTTHMETIC OPERATIONS

oy
1) Expression on left side of equals - Variable on left hand side

sign (e.g. AzxB = (C+D)/E

2) Two operations occurring in a row.
(e.gs A++B-+D)

3) Variable name begins with a number
(eg AJAX = 8 JAR + SBU)

cannot be referenced.
Arithmetic operations are

mnot successive.

No operator between operands.
(In this case the error would
be interpreted as a missing
arithmetic operation between
the number and the letter.)
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4) Unequal no. of parentheses in Unequal number of parenthe- Y
arithmetic expression. ses in expressions.

5) Illegal characters in expression Illegal character in expres-
(e.g; A-=B +, C) sion.

6) Fixed point variable begins with ifixed Fixed and floating
A-H or 0-Z (on right gide of = mode expression. Right
sign.) side of = sign.

7} Too many characters in variable Missing operator between
name. operands, Left side of = sign,

Variable name too long.
8) Variable name same as function Arguments missing in function.
neme. (e.g. ABLE-= BAKEF + CHARL). =
9) Variable has too many subscripts. Illegal operator between
(eg ABLE (3,4,5,6) operands.
10) Program too large for memory Program too large for memory
S~
The diagnostics in Arithmetic statements can be quite ambigu-
ous. This is because of a number of complicating factors of which
the major one is the side of the equals sign that The error occurs.
Again the compiler has to guess the kind of error that was made
and then print-out a diagnostic.

DO STATEMENT

1) DO statement refers to non execut~ Do references non-cuzcutable
able statement. eg DO 15 I = 1,5 statement.
15 FORMAT (. .

2) DO refers to statement number ! Reference of DO does not
that does not exis?® exist

3) DO refers so statement number This would not occur since
that occurs more than once. there would be a diagnostic

as soon as duplicate state-
ment labels are punched in.

4) Incorrect nesting of DO loops. Imptoper nesting of DO loops.
(eztDO TO\T = 3,820
DO 11 3 = 2, 20
10 - - -

A I = R



5)

6)

7)

8)

9

10)

—1c=

Illegal comma in DO statement,

eg PO I0, T = 1, 20)

Object of DO is a transfer

statement eg DO 12 I = 1, 20

12 80 1O 87

DO loop starts at O.

(eg DO 17 I = G, 10)

Floating point increment in DO

loop (eg PO 17 I = 10, 0.2)

Illegal transfer into DO loop.

GO TO 15

Do 15 I.= 15 10

15 40d) = BIGE) #ls

Illegal transfer out of DO loop
BO 15 1 ="1, 10

15 IF (ALP (I) -10.) 16, 17, 18

— A G e

16

17 - - -

11) Illegal indexing on DO loop.

GO

8O 15 I = 110
00,16 =1, 11

TO; COMPUTED GO TO AND ASSIGNED GO

Illegal character in DO
statement.

DO statement references a
transfer Statement.

Igproper indexing in DO
statement.

Improper indexing in DO
statement

Illegal transfer into lpop.

Illegal transfer out of DO
loop.

Illegal indexing in DO state-
ment.

TO ERRORS

1)

2)

5)

llore than 11 statement numbers
in computed go to.

GO-TO transfers illegally into
a DO loop.

Transrer (GO TO) to non-existent
statement numbers

4)_Transferito a non-executable

B T s e .

(e.g. transfer to a FORMAT
statement.)

Illegally formed GO T(. Too
many statement references.
Illegal transfer into DO
T

Transfer to non-existent state-
(This diagnostic will
occur only at the end of the
program when it old statement

ment no.

numbers.
Transfer o a non-executable
Statement
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5) Floating point number as indexin Floating point index in

computed GO TO. computed GO TO.
| left
6) Missing parenthesis in computed  Missing({right)parenthesis
GO TO. in computed GO TO.
7) lissing commas in computed GO TO. Transfer to non-existent
ez GO TO 56; 57, 58, .59) I statement. This occurs since,

if a comma is missing, two
numbers will be read as one.)
8) Too many if GO TO assign state-

ments
9) Transfer goes to itself, e.g. Illegal transfer. Transfer
15 60 TO 15 goes to itself.

10) Missing index in computed GO TO Illegally formed GO TO.
(Because it will seem %o be .,
a GO TO with illegal charac-
ters in such as commas and
parantheses. )

11) A predecessor cannot be found A predecessor to this state-
to this statement, e. g. GO TO 20 ment cannot be found.
ri e =B by

14 *Pr= A 55
12) Missing, in Assigned GO TO Missing, in assigned GO TO

13) Transfer to a transfer statement, Illegal transfer.
e.g. GO TO 15
58 GO PO 85
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ERRORS IN IF STATEMENTS

1)
&)
3)
4)

5)

Transfer to non-executable state-

ment.
Too many commas in IF statement.

Control to more than % statements,
i-eo’ IF (A_'B) 3,4‘,5,6-
= sign in IF statement.

IF statement transfers to itself.
(e.g. 25 IF(A-B) 26, 26, 25)
Illegal sence light number.
Illegal sense switch.

Transfer to non-executable
statement.

Illegal characters in IF
statement.

Too many stabtement refe~
rences in IF statement.
Illegal character in IF
statement.

Illegal transfer.

Illegal sence light number.
Illegal sense switch.

ERRORS IN EQUIVALENCE AND COMUON STATEMENTS (also FREQUENCY Statement)

i

e

BQUIVALENCE statement as 1lst
statement in DO loop.
FREQUENCY statement in range
of DO loog.

Wrong variables put in EQUIVAL-
ENCE statement.

llissing parentheses in BEQUIVAL-
ENCE,

Unwanted symbols in EQUIVALENCE
i.e. (= , +, extra commas)
COMUON - too many commas
COMMON - missing parentheses
Only one variable given in
EQUIVALENCE.

lissing C in FREQUENCY.

llissing comma in FREQUENCY.

Illegal statement in range
of DO loop.

There is no way of knowing
that this error has been made.

left
Missing|{right)parenthesis

in EQUIVALEKCE.

All these errors should
be immediately detectable.
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ERRORS IN SUBROUTINES AND FUNCTIONS

Hi

2.

10.

1B

12.

15

14.

15

16,

Subroutine statement not first.

Function statemmnt must be first.

Unpaired parentheses in call
statement.

Improperifunction name. (eg SIN
(A,B) Not ending in F.

Improper function argument (eg
SINF (J,K)

Multiply defined SUBROUTINE

Subroutine not defined.
Missing)in function statement

Non-alphanumeric character in
function name.

Missing parentheses in subroutine

statement.
Functiogn name is in Dimensioned
variable table.

Return statement not in SUBROTINE

or function program.

End not preceded by If, GO TO,
stop, or return.

SUBROUTINE program name has too
msny letters.

Too mazmy characters in function
name. '

Function definition not first.

Subroutine statement not
first.
Function statement not

first.

Egeight)

Missing\ left /parentheses in
call.

Floating point subscripts
are illegal.

Fixed point arguments are
illegal.

Subroutine has been defined
previously.

Illegal character in variable

e

name.

This error would have been
diagnosed if the DIMENSION
statement has been entered
previously.

No entry back into main
program.

Illegal subroutine name.

Illegal function name.



SUBSCRIPTING ERRORS

1.
2,

Undefined variable in subsecript.
Missing DIMENSION for subscripted
variable

Too many dimensions for subscrip-
ted variable.

Floating point subscript, e.g.,
TABLE (5, 6)

Program too large for memory.
Symbol table too large for memory.
Subseript is an expression (float-
ing point).

MISCELLANEOUS

3
- O

25

Illegel Digit in end staztement
Missing, of tape number
Too many continuation cards

Statement number in column 1

Continue statement has no number

Undimensioned subscripted
variable.
Too many dimensions.

Floating point subscripts
are illegal.

Floating point subscripts
are illegal.

Tllegal character in END
statement. )

Illegal character in
column l;

Continue statement has no
number.
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INPUT-OUTPUT CONSIDERATIONS IN
AN INTERACTIVE ATLGEBRATC COMPILER

INTRODUCTION

Input-Output in relation to a higher level language has
conventionally had ta deal with files of data which were wholly
prepared in advance. The programmer had to be concerned to some
degree with the type of input-output device that was used and
the command structure had to specify which units were usec and
what the precise form of the data looked like. Since most out-
put was desitined to be read by another program the format of the
data had to be explicit and unambiguous.,

With the advent of time-sharing systems, a different approach
to input, output and formats must take place. Characteristically; =—-
the user is interacting with the computer on a remote basis and
is generally not concerned with what physical units are being
used to input data to his program and to accept the data generated
by his program. The Compatible Time-Sharing System in use at
l,I.T. uses random-access devices (disk and drum) for active
secondary storage.

There are now two major aspects of imput-output to b:
considered. On the one hand we have the storage of files of
data and programs on some large secondary storage device. The
user is not particularly concerned with where and how it is
stored but merely with the fact that files can be stored and
can be referenced easily-.

The second major consideration is the input and output of
data to the user via some remote device such as a typewriter key- .
board and printer or a scope. In this case there are two import-
ant things to be noted: the information must be readable to the
human and yet the human has a great facility for being able to
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interpret the information. This allows a high degree of flexibi-
1ity in the format of the information as it is presented and also
there must be very flexiblg ways of accepting input. We no longer
have experienced keypunch operators putting data into exactly the
right set of character positions in the input record. It is now
becoming increasingly important to have data identified by such
things as labels rather than specific positioning in a record.

One of the objectives of a time-sharing system is to get the
users thinking-bound. Thus,‘the user would like to delegate’ as
much as possible to the compiler and generated object cod=.

With his initial declaration of variable neme, mode and dimension
the user should not have to be concerned with such things as
mixed mode® and output formats. However, we still must allow
the user the flexibility of specifying his own formats as he
desires. We recognize that users may have different personal
desires and, hence, we must provide both a simple and a flexible
system.

The following treatment of formats, lists and other features,
in order to be general, will be kapt relatively independent of
both the interval represembation of information and the configura:
tion of any system with its many possible combinations of. compon-
ents. We would like to speak in terms of simple or complex
systems using general or special purpose compilers.

The approach will be To present slternative methods of
_evaluating formats, setting up the structure of commands and
ﬁanipulating the lists of varisbles. With this background, a
compiler writer will hopefully be in a better position to cater
to the needs of the user amd his problems and to take advantage
of the particular machine he has to work with--its particular
storage facilities and input/output devices.
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FORMATS AND LISTS

In carrying out input and output operations in a higher-
level language a LIST is used to specify what is to be transmitted
and to signal the end of the operation. The actual operation is
under the control of a set of FPRMAT specifications whether
explicit or assumed. It is convenient to think of_ fthe set of
FPRMAT specifications as being a program which has as its data
an explicit or implied list of variables and constants.

The FZRUAT language can consist of "commands" which cperate
at the micro level by manipulating characters in a buffer or at
the macro level by. dealing with fields of characters. At run
time the FPRUAT PROGRAM can be executed interpretively or it can
be a relatievely frozen block of subject code generated by the
compiler. The LIST of variables may consist of ordered or un-
ordered data; it may be dealt with in free-form or under the —
explicit control of the programmer. In the following sections
we will deal with these three areas and then evaluate them in
the light of an interactive compiler and time-sharing.

The design of a compiler must be done within the framework
‘and devinjtion of what is given--the macro language, and what is
wanted in the form of object code and tables subject to the
machine characteristics and components. Once these two ¢ 4 points
are clearly defined then the job of design is easier and can be
accomplished at a more concrete level. If is essentially a Jjob
of transforming the information given at the macro level into
a procedure to be used at the machine level. The transform
operator (the compiler) cannot be designed until the two sels atb
each end are clearly specified.

INPUT LISTS

Conventionally, input to a computer program has been in a
fixed form. This was not unreasonable in the light of batch
processing, which was often under the control of a monitor system,
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and to rebain simplicity. However, with today's gpplications
and the increased use of on-line compubation, freer and more
flexible forms of input expression are desirable and necessary.

FORMAT-FREE input consists of data contained in arbitrary
fields and to an arbitrary number of figures.

Data which can be ORDER INDEPENDENT goes even cne step
further. In this case the data must carry with it information
which will identify it to both the user and the program. This
would consist of a name or label which would appear in the
input record along with the data. This method of input is
espeéially desirable if the data does not possess any nabural
ordering as would be the case with elements of a matrix for
example. It should not be necessary to require the programmer
to use an artificial arrangement. Sometimes each cycle of a
program reguires a large number of input items but only a small
subset would be altered from cycle to cycle. It is even more
important if this subset is dependent upon tThe outpub of the
previous cycle as in on-line simulations or optimization processes.
This identification by names also makes the input record more
intelligible to the user. He would no longer be faced with
endless strfings of gmonymous numbers.

In the following paragraphs three forms of a read steabzment
are given which could be used to give the programmer simplicity
or flexibility, whichever better fits the requirements of the
application. These are independent of the input device being
referenced but, of course, that would have tv be specified.

In the case of a time-shering system they would reference the
device used by the programmer---the typewriter keyboard and
pointer in the time-sharing system at M.I.T., for example.

READ_QLJL

This is the most flexible form of the statement. The n
refers to a set of format specifications which define the fields
or character positions within the input record. The order of .
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the data‘wquld be that shown in the list of variables to receive \Y
values, and would correspond to the order as specified in the
format statement.

READ, £

In this form the data is still ordered according to the list
but now its specific form must be made inherent in the data. The
fields in the input record would be identified as to mode and would
be separated by appropriate delimiters. An appropriate delimiter
specification would be: one comma and/or one or more spaces. For
example (where s is used to represent one or more spaces):

/ s/ 8/ 48/ 8y / 8,8/

would all be acceptable. To specify the mode of the data appropriate
identifiers could be used. A period would serve the usual decimal
point function; octal or binary information eould be subscripted
with identifiers such as @, #CT, BIN, (2), or (8); alphanomeric
data could be bracketed by a specified character such as $ALPHAY;
and floating point data could be identified in the usual way of
using E such as -123%.79E+7. At object time a check would be made
for consistency between the declared mode of the variable (as
stored in a é&mbol table) and the data in the input record. In an
on-line system any detected inconsistency would not resul: ir a
halting of execution but rather a request for varification ..
possible re-input of the data.

\

READ

In its simplest form this statement would allow the user +to
specify at run time what variables would receive values--the order
and form of the input data being completely arbitrary. Once again
appropriate delimiters would be used and also each value would have
to be identified by the name or label of the variable which would be
known both to the user and the program via the symbol table. If a
label did not appear in the symbol table, then in an on-line system
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the user would be given the opportunity of saying +this label is
incorrect and should have been such and such or that it is vealid
and 2 new entry should be made to the symbol table.

An example of some entries which could appear in the input
record would be:

= -7.4, CODE = $ALP y
ARRAY(5 l) . « ARRAY(5,3) = 8,1.3,-.091

This is analogous to the $§ A feature covered in an earlier section
of this report with one major difference. The function of an
input statement is to assign a value to a variable whereas the
$ A would interrupt executlon and allow the user to input amything
from a single value to a whole sequence of statements. With this
command the end of the list must be signalled by The user. This
could be accomplished simply " by-having him hit the carriage
return key a second time.

PUTPUT LISTS

When data is on an input record its form is already determined.
With the output of data Lformatbecomes a greater concern since 1%
is under the control of the user or the user's program. There
are btimes when -he would like to receive data in an appealing
tabular form and then there are times when he is merely interested
in the values of some variables and just wants to receive that
information without explicit regard to its format. The latter
becomes increasingly desirable with on-line computation where
the user is right there to read the information and initialize
further action on the basis of this information. There may be
many forms of intermediate data of interest only to him, such as
would be desired for debugging purposes. Here, the user would °
like to insert a temporary print commend quickly and easily
without the corresponding format specification.

Similsr to the input commands we propose three forms of a
PRINT command which could be incorporated into a higher-level
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language. In the case of the time-sharing system at M.I.T. these r\}
would refer to the printer on the user's typewriter console.

PRINT n, L

This again is the most flexible form of one command allowing
the user to fully specify the format of the output record which is
referenced by n. The values of the variables in the list, L, would
be "fitted" in sequence into the format specifications.

PRINT, L

In this form the user is freed from having to specify the
format of the data to be output. At run time the program (the
code for such a program would be inserted by the compiler at time
of compilation if this format-free PRINT command appeared anywhere
in the user's program) would look at the symbol table and the
current value of the variable in order to establish the format
under which the data will be printed. The symbol table would
provide information as to mode and dimension and the wvalue would
be used to determine the size of the data.

Analogous to the READ command the data would be printed out
along with th& symbolic variable names to identify it. An example
of such output might be:

M~

X = =7.4

CPDE = ALPHA

ARBAY (S5 10" =18,

N(22) = -.14230000E + 12
BOYL = OE

Not that if a variable happens to be declared in the alphanumeric

mode then it would also be output as shown above. If the value of

a decimal variable is within a certain range (say, 10 ¥ jD!<flOn
where n is the maximum number of allowable character print posit- o
ions), then it would be printed as a fixed point decimal number;
otherwise it would be printed as a floating point number with the
exponent. It would also be simple to accept implied DO loops in

the list and then print out all the values.
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PRINT

In this form the statement could have only one meaning--to
print out the current values of all the variables listed in the
symbol table. ‘This could be helpful in debugging small programs
and subroutines.

THE F@RUAT LANGUAGE

The format language gives the programmer a set of specificat-
ions or "commands" which enable him to specify the form in which
data is to be output (or received as input). One way, which is
a characteristic of FPRTRAN, is to have a set of possible specifi-
cations which refer to whole fields to be inserted in an output
string. This leads to simplicity but by referring to data at this
sggrezated level a considerable degree of flexibility is lost.

In view of the fact that we can provide a great deal of simplicity
to the programmer by having free-form input and output it would
now be desirable to increase the flexibility of the language by
allowing a more complete and extensive set of commands with which
to specify formats.

For compiete flexibility the commands can be structured so as
to allow the programmer to build up an oubtput record on = character-
by-character basic (see ALGOL report, Comm:. ACHM, May 1964).
Within the framework of existing macro languages, such as FPRTRAN,
some users have taken great palmns to provide more powerful format-
ing capabilities (see ATLAS paper Number 32, by I. C. Pyle).

In setting up such a language we must think in terms of
getting things in and out, character by character, of a buffer
string. Each format specification can be thought of as an instruc-

tion or operator on this buffer and a sequence of these can be
thought of as a Format Program. - The other éssentisl item to be
associated with the buffer ls.g pointer and sach operation may
affect the position of this pointer. This pointer would point to
some character positibn in the buffer string.
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The format program would operate on the string of character .
positions represented by the buffer on a one-line-at-a-time basis.
Initially this buffer would Pe set to blanks at rTun time. Then
some primitive operations would be set up to operate on the
character positions or the pointer. Such commands as reset or
update the pointer, insert the digits in the value of the variable,
sign control, insertion of such characters as a dollar sign and
other editing functions.

The purpose of this paper is not to attempt to completely
specify such a format language, but it is important to emplasize
what should be considered and possibly how one would go.abcut
setting down the specificabtions and within what framework.

THE GENERATED @BJECT CODE

e —

We have discussed what sort of language could be used at the
macro level. Before we can design a compiler we must specify what
we are trying to produce in the way of machine coded procedures.

The code which is to be generated for the READ and ‘PRINT statements
must be rather modular in form--in other words, we want to generate
a quantum ¢f code for each statement. In the case of the input-
output statements the primary block of code generated :ould be
that represented by the FORMAT specification, either expl’ 1t or
implied. At run time this block of code would reference erother
btock of code generated in place of the list, which in turn would
reference the symbol table.

The following diagram, (Fig. 1) is schematic of the gcaerated
blocks of code. The blocks shown in a vertical sequence.would
be somewhat contiguous in the memory of the computer. '

)
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CODE GENERATED CODE GENERATED
EXECUTIVE BY PRINT BY FORMAT
TABLE STATEMENT STATEMENT
"PRINT" f
JINITIALYZATION Y
| FORMAT PROGRAM
RE[ "\g E'IE —i
J/pml CONTROL i
V/ - LIST QF
VARIABLES

(Fig, 1)

In the executive table a branch to the initialization block
would transfer control to begin the execution of the input-output
statement. At the point of initialization a number of things
would be done. '

l‘

2.

Attach a buffer to format statement to be used in setting
up the output string of characters or to accept the input
string.

A link would be set up to the buffer associated with the
specific input-output unit. This buffer would be used

to accept completed data records for input or output

(see later section on buffers). Within the time-sharing
system at M.I.T. this buffer is controlled within the
system and hence the generated object code for this user
would not have to be concerned with this buffer.

A pointer would be set to point to the first element in
the list of variables.

Then a branch o the referenced format statement would
be made. This reference could be made through a table
of macro-language statement numbers or, the reference
could be inserted at compilation time. If the format

is implied rather than explicif{ly specified by the user,
then reference to a standard block of code would be made.
This standard block of code would be inserted at com-
pilation time.
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The 1list of variables would reference the machine addresses'
of the variables indirectly through the symbol table. For input
statements, the value of the variable would be extracted from the
buffer by the format program and inserted in a common location.
The format program would get the address of the variable in
memory from the list and then deposit the value in the memory
location. For output the reverse procedure is carried out.
When the format specifications call for the value of a variable to

be inserted, the format program will get the address from the list,

put the value of the variable into the common location and then
insert it into the output string being formed in the buffer
according to the format specifications. Since the format speci-
fication may apply to more than one list there wan be no explicit
correspondence between them. This is accomplished by means of the
common location to hold the value of the variables.

Once the initialization procedure is carried out the format

controls the entire operation. It prepares the output string or

examines an input string according to the set of format specifica-
tions and references the list of variables when a value is called
for or when a value is ready to be deposited in memory. When the
last item in the list of varigbles has been dealt with the format
program reléases control back to the executive routine to begin
execution of the next instruction in the higher level I=nguage.

In order to clarify the functioning of these blocks - code
we will present a possible scheme for the execution of a print
command using relatively fixed object code (see A. J. Perlis,

"A Format Language'). _

In a fixed location (v) of the Format program is stored the
address bl which is the initial address of the sequence of
instructions in the list of variables block. Then the format
program calls on a subroutine which uses the contents of (v), in
other words bi’ to access the current value of the next variable-
to be output. At compilation time the list of variables is
constructed and consists of a succession of closed subroutines—one
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for each variable. In the format program v is the address of the
next format specification to be dealt with. When the set of
specifications has been exhausted, (in other words the line of
output has been completed) v is set to zero. Similarly, when the
list has been exhausted v is set to zero. F(r) is used to
represent the 8 fornat specification and P(v) is used to represent
the closed subroutine at v which will access the variable in
Memory .

In the following flow charts is included the code genersted
by the print statement (Fig. 2) including thet which references
the variables in memory, the main format program (Fig. 3) generated
by the explicit or implied set of format specifications and the
format program subroutine (Fig. 4) which provides the main program
with the value of a variable. Following these are some examples
of P(v) code that would be included in the piled list of closed
subroutines representing the list of variables.
(Figures 5, 6 and 7).
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(Figure 3)
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( Figure 4)

P(v) SUBROUTINES TO ACCESS THE
VALUE OF THE VARIABLE

Block of code to
extract value from the
e variable in the list

W and store it in some
common location to be
later referenced by the
main format prograim.

Set V=bi+l

eturn

Fig. 5 - Simple Case
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Fig. 7 - Conditional
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The scheme which has just been covered would be entirely
satisfactory if no changes in the statements or lists were
anticipated. The code which is generated is relatively frozen at
run time and hence modification is difficult. Within an interact-
ive scheme the basic framework is valid and useful but some modi-
fications are needed. The first thing that should be done is %o
make use of the symbol table and the information it contains.

This would eliminate the need for the set of closed subroutines
P(v) end also make additions or deletions to the list much easier
at run time.

The next problem which faces us at the interactive level is
that of modifications to the set of format specifications at run
time. There are two modes of representing the format program in
memory (the F(v) routines as in our preceeding diagrams). One
way is to generate object code at compilation time. This may be
rather efficient at run time but it doesn't provide us with enough
flexibility to modify the format specifications at run time. 1In
order to facilitate this requirement it would be better to execute
the format statement interpretively. The format specifications
themselves would be retained in memory to be interpreted and
executed at run time. This only applies to explicifly specified
formats. In the case of the implicit format statements one would
have a choice between inserting fixed object code or merely insert-
ing the appropriate specifications into the set to be interpreted.
A decision as to which approach would be the most efficient will
not be made here. It would be desirable to try them both on the
implied formats and actually see on a computer which is best from
the standpoint of speed and space.

So far we have talked mainly concerning output and this is
the most important use of the format statement. With an input
statement the format specifications are used to provide a '"picture"
of the input record. The chart inm Fig. 1 can still Dbe used to
show how the code would be set up to execute a read command.

Here we must add to the initialization block the physical reading
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of the input Tecord into the buffer. Then the format program
would appear as in Fig. 8.(See p. 23).

We now have the facility of changing a format to a print
statement and it would be desirable to have an analogous operat-
ion for the read statement. This could be accomplished by provid-
ing a command which will re-examine an input record. A set of
such commands would be as follows:

REREAD n, L
REREAD , L
These commands would function exaptly as the corresponding READ

commands except that no physical read takes place. This would
allow the programmer to reopen an input record and extract informa-

tion from it. If a mixture of records were being input, each with.

a code identifying it, the user could read once, identify the type
of input record, and then reread under the appropriate format.

FILE COMMANDS

So far we have concentrated on the higher-level language
commands to accomplish input and output with reference to the
user's device~-namely, a typewriter keyboard and printer. In the
specifications, we have allowed both flexibility and simplicity.
The second major consideration in the input-output facility of
the language must be the reading and writing of files.

As was mentioned earlier the user need not concern himself
with the physical units being used for input and output and for
secondary storage; he is more concerned with the storing and
accessing of files. BSince, in general, these files will be
written and subsequently read under control of a program it is
reasongble to require that the programmer explicitly provide a set
of format specifications for each record transmitted in the file.
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The following commands could be provided to allow the manipu-

lation of files within the user's progran.

READ FILE label, n, L

WRITE FILE label, n, L

END FILE label
As before the L is the list of variables, n is the reference to
a set of format specifications and label is the name of the file
referenced. This would take the place of the logical tape number
previously used in tape operations. The size of each physical
record in the file would be strictly determined by the format
statement. There are also obther functions which the user would
like to perform on the files such as inserting and deleting
records. There may also be more efficient ways of storing files
given a random-access storage device such as disks.

USE OF BUFFERS

Since input and output normally occur in burata it is desir-
able to use buffers to allow input and output operations to be
performed samultaneously with computation. This would facilitate
bringing in files prior to use and writing them out sometime after
the string is formed. A buffer is used to hold data while =
record is being completed for output or used from input, as well
as for timing considerations.

In a time-sharing system such as the one at M.I.T. this
buffering between tThe user and the input-output units is pandled
by the system in that data is collected in a user's buffer identi-
fied by where it is going or where it came from, and then, when
the physical record is formed, it is transmitted by the systen.
However,when the comipler is being designed to work within a less
structured environment it is necessary to understand the use of
buffers and how they can be set up.

This requires 1) a somewhat standardized set of record formats
within each file, 2) a set of internal tables describing the
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current status of internal buffers and the buffers themselves,
and 3) a set of routines which operate on these records and
internal tables and the particular input-output unit. Each of
these routines should be-independent--in other words, refer to
each other only through the internal tables, the buffers and the
data records. This leaves the system open-ended for possible
expansion to include other input-output units.

By sufficiently defining and identifying the data, perhaps by
the use of flags in the physical records, and using the internal
tables and buffers it is possible to achieve independence between
the three requirements mentioned above. The f£lags would indicate
mode of data, word counts and end of file and end of record condi-
tions. The internal tables, bast kept in a list structure, would
consist of control words listing inactive buffers, current input-
output action and priorities for subsequent action, and each
input-output unit and its status.

The routines written to manipulate the buffers and data
within them could be set into four classes:

1. Core transcription routines to transmit data between
usér's working storage and the buffers;

2. Physical input and output routines to transmit data
between the input-output units and the buffers;

5. Dispatching--to corrdinate the action of the routines
under (2) and optimize the effective input-oubtput
efficiency by keeping the units as active as possible,
setting up priorities and, in effect, serves to call the
routines in (2);

4. The manipulation and reassignment of buffers and to give

control to the dispatch routines when needed.

A general schematic diagram of the interaction of these
aspects of the system are given in Figure 9. In this diagram
working storage is used to hold program, data, intermediate and
final results. A buffer is active when the user's program is in
the process of transmitting data. A buffer is classed as a moving
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buffer when it is currently being operated on by the hardware
that controls the action of the particular input-output unit.
A buffer enters the quiet buffer pool when it contains data
which is currently awaiting use.

This explanation of buffers and how they can be incorporated
into the system of machine procedures generated by the compiler
is in no way exhaustive and is not completely defined. It is
given to provide the compiler designer on.basic understanding of
some of the problems which must be considered and a possible

approach to a solution.

Remarks on FORTRAN INPUT-QUTPUT

lMost people who have used FORTRAN are keenly aware of some
of 1ts shortcomings, which become even more evident to programmers
who have used it as a higher-level programming language within a
time-sharing system such an the one in use at M.I.T. In relation
to input-output we will indicate the more pressing problems and
possible solutions that could be implemented in the short-run.

The figst is the need for explicit statement of format on
input and output records. It would be desirable to provide
statements which will output data in-free-form, and accept data
in free form. The format language provides a low degree of
flexibility since it deals with fields and not characters. This
is somewhat of a compromise between no free-form and no c2haracter
manipulation. Within the format langusge the Hallerith specifica-
tion is the greatest source of error and frustration in the
entire FORTRAN language. Here it is necessary to insert a count
of the numbers of characters in the Hollerith field before the
field has even been typed on the console. This is clearly
redundant information and one solution would be to immediately
follow the H specification with a defining character. The second
appearance of this character in the string after the H would
signal the end of the Hollerith field. For example

HOTHIS IS A HOLLERITH FIELD®




where @ represents any character chosen by the programmer at the
time of writing this particular hollerith field.

CONCLUSION

It is hoped that this paper can serve as a guide to program-
mers who are deisgning an Interactive Algebraic Compiler and
perhaps the associated higher-level language. In relaticn to
input-output, once the language is defined and the general set-up
of machine language procedures has been established the programmer
can take into account the existing system with which he has %o
work—--its internal structure, external components and the
programning system (time-sharing)--and begin to design an
interactive compilér to 1link these segments together into a useful

system. - -
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Orgenization of an Ixecutive Y
Routine for the object
Program

This section will cover those features of the ojbect program
which will result from compilation with the interactive algebraic
system under discussion here. The first part will discuss the
congtruction of the executive table and the symbol teble, the
second section will cover the procedures to be used by the compiler .
for handling alterations at object time, and,finally, the third
section, written by D. Thornhill, discusses the compilation of
iterative DO loops using the one-pass, incremental compilation
approach.

I. The Executive and Symbol Tables.

The object program willi be in the form of small quanta, each
of which will represent one source program statement., To implement
the various on-line features of the proposed system, each quantum
will contain test and branch instructions to certain interactive

i

routines, such as those involved in source program tracing, on-
line entry pf formulae (the § prefix), the entry of variable
format information, and the entry of any other on-line iuformation
required during execution.

For each quantum of code there will be am entry i an
executive program, which will consist, basically, of a list of
all of the quanta with their respective absolute (or subprcgram
relocatable) addresses. BHach entry in the executive table
contins the following elements:

Line number of the source statement
source statement number, if any
Address of the corresponding quantum.

The first word in each quantum contains
Statement type code
Size of quantum
Address of variable on left of = ,
if any.
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The statement type code defines the various categories of
source statement vari@ties, and will be useful in tracing as well
as in execution and alteration of the program. A set of such

categories is suggested below:

Non~executable statements: FORMAT, DINENSION, EQUIVALENCE,
COLmON, END

CONTINUE,PAUSE,STOP

Arithmetic Statements : A =D +C « o+ o

Conditional and Unconditional branches:IF's and GO TO's

DO statements

All executable input-output statements.

CALL, SUBROUTINE, FUNCTION, RETURN

When a source program is first compiled by the system, the

executive table has a one-to-one correspondence with the source
program. That is, for each statement in the source program, there
will be an entry in the executive table in the corresponding position
A1l exits, whether there are one or more than one, are referenced to
an entry in the executive table. And, since the address of the new
quantum is contained in the address field of the word in the table,
the transfer can be accomplished quite efficiently by a flagged
transfer instruction from the old gquantum, on the next entry in the
executive table, to the first executable six instruction of the new
quantum, Thus, the compiler need not maintain a record of the addr-
esses it assigns to each individual machine instruction; it must
be concerned only with the addresses of the executive table entries
and of the beginning of each executable quantum of code.

Thus, the program may be compiled in one pass, without refer-
ence to any instruction addresses other than those correspoanding to
source statement images in the executive table. Thus, a GO TO 50
quantui'wduld have as its lipk address the addreas of the table entry
for statement 30, and would not have to be concerned as to the exact
wheregbouts of statement 30 itself.,
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Some more gpecific discussion of the executive table itself
is in order here. First, note that the quantum concept is used in
this system for the purpose of prdviding both the interactive and
alterstion features, as well as providing an efficient means of
obtaining a one-pass compilation. Some of the advantages of this
approach for one-pass compilation will be discussed in the next
section,on the compilation of DO loops. This section will provide
some illustration of this concept in the handling of the altera—
tion features of the system. Y

When a programmer first enters his source statements, sach
will be assigned an internal line number, which  will start at
00010 and will be incremented in units of 10. The programmer will
not have to be concerned with this number. He need be concerned
only with the statement number plus n lines in order to define any
statement in his program. Incidentally, note that the statement
number he will use will refer only to executable statements, and
such statements as FORMATS will not necessarily he:included in his
count. An executive table will be set up, as well as a symbol
table, as the source statements are entered. The executive table
mey be considered to be a gymbol table for the source statement
labels, since the entries equate the statement label, if any,
with the appropriate memory location denoting the first exec table
instruction in a gquantum of code. Similarly, the symbol tsoie,
which will contain necessary information on the varisbles =nd
constants in the program, will be builtup as the program 1is
entered. The symbol table should contain the following elenents:

BCD representation of the variable or constent name, €.Z.,
PRICE; d, 5420

The Mode of the variable, e.g., integer, floating,Boolean,
complex, octal, binary.

Dimension (i,j,k) of the variable; these will be 1,1,1 if
the variable in question is not a dimensioned array.

Storage address of the variable; this will be the first

location of an array in the case of dimensioned
variable.

2
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Iracing. An example of the use of the executive table, the
symbol table, and the program quante may be seen for the case of a
source program trace at object time.

The programmer will have at his disposal . a number of tracing
options, some of which have been discussed in the first section.
Consider here the instance where the programmer specifies a trace
on a particular variable., Basically, he wishes to know where and
how this particular variable is affected during the execution of
the program. His input of the required symbol causes a scan of the
symbol table, wherin the address of the varisble in questior is
found. At the same time, it is determined whether or not the
variable has been dimensioned. If it has, the trecing may become
somewhat more complex.

The address of the variable to be traced is compared with
the address given at the beginning of each quantum of code. If
the two match, then the branch to the tracing routine is made
operational, at the end of the execution of the quaantum, and the
programmer receives a prinﬁed message containing the name of the
variable, the location of the statement, and the new value of
the variable., If the variable has been dimensioned, but no such
dimension (subscript) was specified in the trace command, the
trace will be made on all elements of the array. If suu.crits
were given in the trace command, then these will be compa:
against the current values of the subscripts in the gquanium Lo
be traced, and, if equal, a trace message will be given; if nequal,

the trace will be omitted for the particular quaatum.

Note that the location information is obtained from tie
executive table, the symbol address from the symbol teble, and the
value of the variable is obtained from the executable guantum of
program. (A flow chart of this operation is given on the next

page. )
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Source program Alterations. Consider next the various

types of program alterations that may occur after the initial
compilation. The simplest case is the deletion of a previously
compiled source program statement, or of a string of such statements.
The programmer enters an appropriate DELETE command. The compiler
will alter the executive table enties corresponding to the deleted
statements to provide a braanch to a system NO OP quantum, and will
place the locations and sizes of the deleted guanta on an avallable
storage list maintained by the systeum.

The second type of alteration consists of a change in ome
existing source program statement. If the heration does not involve
the exit address, all changes occur wholly within the quantum of
code, and no change is made to the executive table. If the change
involves some change in one or more of the exits from the quantunm,
then again the changes are made directly to the quantum, replacing
the old executive table addresses with the new ones. If the size
of the new quantum is smaller than the old one, then the freed
storage is placed on the available storege list. If more memory
is required by the revised guantum, the compiler will establish

hatever links are necesséry within the block in the event that
it cennot be stored in a continuous sequence in core. Such
internal links do. not concern and hence are not containec 1n “he
executive table. (To some extent, this storage assignment . e
nade by the loader instead of the compiler. Specifically, ke
dump and reload package, to be discussed shortly, will reass..;n
storzge such that, after reloading en object progrem, each ¢ 1its
quanta will run in a continuous sequence 1ln memory.)

Finally, gonsider the last general category of alterations
the insertion of a mtatament or a string of statements in the
source program. TLhe programmer enters an INSERT command, defining
the particuler location in the source program abt which he wishes
to start his insertion. He then enters one or more new source ,
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program gtatements, and terminates the insertion by entering an
ENDCHANGE command. For each inserted statement, the compiler
will follow these proceduress

1.

2

S

G

Insert the address of the first free word in the executive
table in the exit address of the previous statement quantum
( n; +n, = 1) if this previous statement was not a branch

pr an 6bject.of a DO.

If the inserted statement is numbered, a new exit address
is placed in any existing branch statements that reier
to the newly inserted statement number.

Create new guanta and executive table entries for the
inserted statements, according to the availablility of
Storege as glven in the avallable storage list. This
list will be updated accordingly.

- 4

When the final statement has been entered for a given
INSERT instruction, as detected by the insertion of an
ENDCHANGE commond, the compiler will place the executive
table address of the next sequential quantum as the =xit
address of the last statement quantum entered by the
programuer,

Multiple address exits are handled in the same mannec @ as
for original statements and alterations, as given asbove.

Assign to each inserted statement a line number that
lies between the two numbers corresponiding to the stat-
ements on either side of the inserted statement. Since
the programmer is not concerned with these number, some
automatic renumbering may be used if necessary.
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General Description of the Dump and Loader Programs

When source program statements are first entered by the
programmer and compiled by the computer, the executive teble and
quanta in core are in the same sequence as the original source
progrem., And, if no changes are mede in this progream after this
initial compilation, the coding will remain in this same order.
However, if alterations are made, then the ordering of the object
code may be affected.

Deletions will cause "holes" in both the executive tz.le
and in the object code of the quanta. Alterations of specific
statements may result in no change in seguence, but will, in
most instances, result in either holes in the object code or in
disjoint quanta. Insertions will cause breaks in the seguence
of both the executive table and the string of program blocks.

From the point of view of object time efficiency, it will
be necessary to reorder the entire program every time it is
dumped and reloaded into the computer. After these operations,
the object code should appear as if the current version of the
Progrsm had just been entered. -

The réordering is accomplished by the dump routine, which
may also be used to obtain a permanent copy of the object code.
first, the execubive table is sorted according to the line
nunbers contained in each entry. Then, the dump routine proceeds
sequentially through the teble, picking up tie corresponding
guanta in their correct order. Where a particular guantur is
disjoint, the dump routine picks up a flag indiceting this fact,
and, by picking up the size of the total quantum and of that part
up to the first bresk point, it is able %o write out the entire
quantum in a single unit form. When a disjolnt quantum is being
dumped, the chaining register, which connects the two disjoint
sections, is not written out, and all addresses in the disjoint
portion(s) are altered to correspond to local reloctable form,



|

-5~

i referenced on the first register of the first section of the

{ disjoint quantum. The cumped object program appears as follows:

1.
2e

2
4o
5

Loader

Executive. table, symbol table, and other reference
information

Ordored obJject code quanta

Interactive and trace routines

System subroutines and other utility programs

The Loader places the executive table in memory, and then

proceeds o load the quanta consecutively. The addresses of the
starting polants of each of the quants are placed in the appro-

priate position on the executive table. ZFinsally, the interactive

and trace routines, and then the system subroutines, are placed

in core, and the program is ready for execution.
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» ONE RASS TRANSDATTON
OF FORTRAN DO=-LOOES

ABSTRACT

Fortran Do-loops can be fitted into a scheme for one
Pass sequential translation by employing a push down.1list
storage. The same techniques can be employed in an incremen-—
tally compiled version of Fortran which provides for on-line
insertions and deletions of, or changes to, statements.,. For
optimiiation, The addresses of subscripted variables used
within Do-loops should be obtained by recursive address calcu—
lation but this is not feasible in a true one pass system.
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ONE PASS TRANSLATION OF FORTRAN
DO-LOOES

i 1" Introduction

In the process of translating a computer program from
programming language into machine language, it is often necess-
ary to have information contained in a subsequent statement in
order to translate a given source statement completely. For
this reason, most translators use a multipass system, on each
pass scanning the program all the way through accumulating
information to be used the next time through. The actual machine
code is generated on the last pass.

However, for an algebraic language such as Fortran or
Algol, a scheme has been devised for compilation using only
one pass through the source statement cards. A clear formula— “-=»
tion of the elements of this method, called sequential formula

translation, has been presented by K. Samuelson and F.L. Bauer.(l)
In their aspproach,not only is the whole program read only once,
but: there is only one sequential recading of each card, avdiiing
the scanning back and forth that others have used. To accomplish
this, they use three push-down lists for storing symbols, nunbers,
and addresses. In each case, only the item at the top of t » list
will be needed next in translation.

One particularly difficult statement to handle in one
pass compilation is the iteration statement, which in Fortran
is the Do statement.

A Do=loop is a means of executing repeatedly a group of
statements in a program until a certain condition for termination
is met. There is a counter, called the index, which is given an \»w
initial value when the loop is entered and is incremented by a
constant each time through the loop. The termination condition
may depend on the wvalue of the index. The DO-loop consists of
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the DO statement itself, followed by the group of statements
which are to be executed repeatedly, called the scope. The
last statement in the scope, the target statement, is numbered
and its number iE specified by the DO statement in Fortran.

Since the location of the target statement is not known
to the compiler when a DO statement is read, a one pass compiler
would have to save for use when the target statement is reached
any information necessary for terminting the loop. The following
sections present a scheme for the handling of Fortran DO-loops in
a one pass compiler, with additional information on its application
to an incremental compilation scheme and on recursive addre:s
calculation in DO-loops.

-

ITI., Syntex of the DO statement

The Fortran DO statement takes on the following general

form:
PG 8 FOR 1 = 3§ 1 K

where

the statement label of the last step in the loop
the variable used as the index for the loop

the initial value for i

the increment for i each time through the loop

l: the upper limit fori; terminate loop when exceeded

With the present Fortran compilersy i must be a non-subscrirfed
integer verieble and j, kK, and 1 must be integer constants
greater than zero or non-subscripted integer varieble names.

©e 0@ ©O oOe

wen e

There is one major deficiency in the syntax of the DO
statement; namely, that the termination condition must depend
on the index of the loop. The presently used Fortran compilers
have several shortcomings. The worst has been that the test for
termination is made only after the loop has been executed once.
The requirement of only positive increments and of only non-gubscre
pted integer veriasbles are also unnecessary restrictions.
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Therefore, the following more general form of the DO state-
ment will be used for this development of the one pass compiler:

DO s FOR i = j, k, b

where
ss the statement label for the last step in the loop
i: +the index variable for the loop
J: the initial value for i
ks +the increment for i
b: any boolean expression; terminate loop when true

The compiler will translate the loop in such a way that the
boolean expression is tested before any instructions in the r-ange
of the loop are executed. i may now be any variable, including
subscripted ones, and Jj and k are any arithmetic expressions. b
is any boolean expression.,

It will be evident in the further development that this | N
i R
greater flexibility places almost no extra burden on the
translator,

A MES P Translation of the DD~loop in an ordinsry compile:

The first case is that in which the compiler loads the
program into the machine during translation. In additiocr to
Bauer and Samuelson's symbols, numbers, and address push=d:
lists, there will be a DO pushdown list. (It is definitely
possible to handle the DO statements without cresting a new _ist
simply by putting all the informetion into the o0ld lists. The
separate list is a bit simpler conceptually.) This list wil.
store the target statement label g, and two machine addresses.

The flow chart of Figure 1 will be used to represent the
translation of all statements other than DO statements. -



start

57—

et get next

no

statbement

l

is 1%

- END?

no

proceés it,

generating

the machine
code

4

does it have
| a statement
number?

‘yes

process for
targets of
£ or GO.TO
statements

e

Figure

1.




08—~

3

\,
A
Figure 2 shows the modifications necessary for providing
for the translation of DO statements. When a DO statement is
encountered, the machine code corresponding to the following

operations is generateds

k
dJ
o test
i +
test if b, go o =

H-0r <
o
ek un

where ¥ is an internal veariable, test is a statement label. and

Zx indicates that the address portion of the transfer inst. action

is not yet filled in. The machine address of the register .
containing the transfer corresponding to b being true will be .
denoted by t. = will represent the address of the first instru-

ction in the coding for the statement i=it+v, which is the place

to which control returns for repetition of the loop. N —

The target statement label 8, and the two mechine addresses
L and t are then stored in the DO pushdown 1ist snd translation
Proceeds to the next statement.

Whenever a statement with a statement label is encouncered,
this number must be checked to see if it is the target of = DO
statement. (Statement labels must be checked anyway for r~ ‘e e=
nces by GO TO and IF statements.) The rules Ffor nesting DU
statements require that the last statement ecountered be ti:
first completeds therefore, only the first target statement
label in the DO pushdown need be checked., If it is not the
terminus of a DO, continue normally.
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If, however, the present statement label is the target
of the next DO to be terminated, a machine transfer with
address r must be inserted next in the program (after the code
for the statement whose statement label was matched). The
address of the next machine location after the transfer instruc—
tion.. must be inserted in the address portion of the machine
instruction in location t. In this way, when the boolean condi-
tion is fulfilled, control will continue with the statements
after the target statement for the loop.

When this is done, the top item is deleted from the Du
pushdown list and the same statement label checked to see if
it is the terminus of another DO statement. Figure 3 illustrates
the form of the resultant machine code.

The oniy difference for the translator which produces
a binary copy of the resultant machine code rather than loading
it directly is that, upon finding the target statement label of
a DO statement, produce a new binary contents for register t,
giving its new address portion. This would require saving the
specific instruction which corresponds to b being true, or, more
likely, knowing what instruction would have been used. TFor
instence, if boolean representation for false is zero, for *rue
is non-zero, the instruction transfer on non-zero would al e
be the one used in location t.
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IV, Incremental compilation of DO statements

Tp@ framework for incremental compilation of Fortran
programswhas been presented by L.i. Selwyn(a). The incremental
compiler, designed for on~line interaction between programmer
and program, generates quanta of machine code corresponding to
the source program statements typed in by .the programmer. In

genzral there is one qguantum of code for each-statement.

The system consists ba31cally of an executive table and
the quanta of copde. For each quantum, there is an entry in the
executive table containing an internal sequence number, the
programmer's source statement number (if any), and the entry
address of the corresponding quantum. IFor purposes of insertion,
deletion, or change, the programmer refers to his cards as
statement number ny plus n, lines. The system uses the internal
sequence numbers along with the statement numbers to find the
exact entry in the table. In the case of repeated insertions,
it would be necessary occasionally to resequence the internal
nunbers.

Bach quantum will heave attached to it f{probably in the
registers immediately preceding its entry point) a code number
giving the type of statement, the number of machine registers
it occupies, plus additional information which depends on the
particular type of statement. All exits from the quanta are
referenced to entries in the executive table rather than being
direct transfers from one quantum to another.

The coding for a DO statement in the incremental compila-
tion system is very similar to tLat used for the ordinary compile
ation. However, it requires two quanta of code and two entries
in the executive table. The first is the normal coding which
appears where the DO statement appears. The second is the DO
termination quanﬁum, which corresponds to the transfer to g in
the normal coding. This comes immediately after the target

\
-
R r—

\?_
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statement of the loop. It should be noted that the executive
entry for the termination block must have gome flag to indicete
that it does not correspond to a line at this point in the source
program. VWhen the program is first typed in (in order), the
standard DO pushdown list from normal compilation is used; an
entrj being made when the DO statement is eéncountered, and delete
when the termination quantum is inserted. In this way, transfers
between the DO statement and the Gtermination block are direct,
rather than indirect through the executive table., This csuises

no problems since the two quanta are both checked whenever »
change is made to either.

Figure 4 illustrates the executive table and quanta and
the connections between then after a simple Program with a DO-
loop has been translated. Internal sequence number 10 is the DO
statement itself and 40 is the target of the DO, Sequence number
50 is the DC termination block, which is Tlagged Lylindlcate that
d

it does not correspond to a line from the progream,



QUANTA OF CODE

EXECUTIVE TABLE

\

addresses of r and t© Internal| F {Statement | Location
TYPE: DO SIZE: _ registers sequence| 1 number of quantum
number | a |(if any) of coding
g i g
e qa= j
: trgnffgr to test 10 - A
H___.Mo l - l e V
tests if b is true, 20 B
t: ‘transfer toe——
transfer indirect
to next block R 50 -3 C
4.0 S D
information 3
B¢ machine code 50 = =
transfer indirect next «w-iﬁ¢o C 60 F
p| information
4 machine code
! transfer indirect next —mmgéto D
. L
P information
' machine code
transfer indirect next «*wwpﬁo B
loop starts sequence # 10
TYPE: DO TERM, SIZE
e
. > transfer direct to TP et
transfer indirect next —#to I
Information
e machine code
: FORTRAN PROGRAIL
Number Statement
w D@ s RER 2=nd, Ks b
(statement) (B)
52 (statement) (C)
S (statementg (D)
(statement) (T)

Figure 4.,
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The information section of the DO quantum gives the
machine addresses of r and t, the return point and exit trans-
fer locations (the same items that are stored in the DO pushdown
list). The termination block information section gives the
internsl sequence number of the DO statement which it terminates.

Given the progream of figure 4, suppose the command

DELETE LINE w

were given. The result is shown in Figure 5. The blocks

labelled g end g, corresponding to the quanta for the DO statement
and the termination blocks have been replaced with system no-
operetion blocks, and their executive tsble entries have been :
flagged as not corresponding to progresm statements. The termina—
tion block was found by using the address £, and its executive table

,entry by msing s in the information section of the DO quantum.

If the command
DELETE LINE s

had been glven instead, since statement s has a statement label,

the succeeding executive table entries would be checked for DO
termination entries. A DO termination block following a state-
ment which is to be deleted would cause the termination block

(here lebelled ¢) as well as the block named in the delete -ommand
To be replaced with no=operation blocks. From the information
section of the termination block, the gequence number of its ¢
corresponding D0 statement is found. This sequence number

leads To the informstion section of the DO statement quantum from
which g, r, and § are obtained and placed on an unsatisfied-DO list.
It should be noted that the unsatisfied-DO list is no longer

a DO-pushdown list since modifications may be made in any order.

Of course, the proggfmmer must provide target statement for all

the items on the unsFisfied—DO list before the program is executed.
The lack of order in this new list means that there is no longer any
check to prevent improper nesting of loops. It would be possible,

T o oide T 2 AT er rrrmrAnAaccaeTT A ArnolnnAs ciieh o Peatiira o



QUANTA OF CODE EXBECUTIVE TABLE
TYPE:no-operation SIZE Internal { Statement| Location
A+ transfer indirect nexbis-to B  |sequence|’ number |of quantum
: number (if any) |of coding
information 8
machine code
B— ¢ nansfer indirect nextleto C 10 = A
information 20 B
_ machine code
s transfer indirect nextlto D 20 - C
E information ' 40 - D
: nachind Gode | 50 x E
wO“_ETt;l:'ansfez:‘ indirect nexﬂmquto ji
: 60 B
ﬂ
TYPReno=-cperation SIZE -
h_ﬁ treasfer indirect nexti—=to F '
| information
o machine code
e
3 Figure (5)

Returing to the program of figure 4, consider the coumand
4o modify the DO statement so that its target is changed from g
0 X. Figure 6 shows the result. The address t from the
information section of the DO quantum was used to find the
termination block, which was then replaced with a noxoperationk
The exectutive table is then searched for the statement number X.
If x is not found, tune information X, r,and § is placed on the
unsatisfied—DO list. Since x is found, a DO found, a DO termina-
tion block is inserted after it in the executive table, and, using
£ and § appropriate connections are made with its quantum,

To inserv a new DO statement, the process is almost the
same as that for caanging the terget address of an old one,




<7~

QUANTA OF CODE EXECUTIVE TABLE

addresses of © and © Internal

TYFPE: DO SIZE: registers Statement | Locatlon

number (if any) |of coding

B

sequence|l | number |[of quantum
a
8

=

rs i=d=w 10 w A
test: if b is true,
t: transfer to _&=—> 20 B
transfer indirect next —» to B
; 30 X C
information : 40 s D
machine code ,
transfer indirect next 3= 0 C 28 * B
60 F
information 45 % G |
machine code J

| transfer indirect next—w to G

intormation
machine c¢ode
transfer indirect next—o= to E

TYPE: no-operstion SIZE
~transfer indirect next —ﬂp—to F

information
machine code

TYPE:DO TERI, SIZE

transfer direct (o P—r+1 . _——
trangfer indirect next<*Ft»to D

loop starts sequence #lO-J

Figure 6.
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In the case of nested DO loops, two or more of which
terminate on the same target statement, it is necessary to be
careful as to which terminates first, and to insert a new term-
ination block into the right place, or to delete the right old
block. Deletion actually causes no problem, since each DO
quantum has in its information section the address &, where the
address portion of register t contains the address of the
termination block., For insertion, however, there must be a check
to sqe if the target statement nemed is followed by any other DO
termination blocks. If so, the internal sequence numbers oi the
new DO statement must be compared with the starting sequence
numbers of the other DO statements as gi.en in the information
sections of the DO termination blocks. The termination blocks
must end up in reverse order of internal sequence numbers of
the starting poihts of the loops. Figure 7 illustrates the
addition of aD0 statement with the same target address as a
statement slready in the program. The two blocks ¢ and £ have
been inserted in the executive table and in the quanta between
2 and b and b and ¢ respectively. This illustrates some of
the great flexibility of the incremental compilation schene.

These facilities should provide for any legitimate
manipulation of DO statements and DO loops within Fortran
Programs.



QUANTA OF CODE

addresses of Ty and tl
TYPE:DO SIZE

o Ly b s
tests if bl is true,

tl s transfer to—m |

transfer indirect next—4» to B

information

Bﬂr machine code
Itransfer indirect next—— to F

| TYPE:DO TERM,. SI72E
nr transfer direct to ri%
R [ transfer indirect next“ls to D

loop starts sequence #&CLJ

information

D flacine code
L2

addresses of EZ and t2

TYPr:DO STZE
E_'F' [

—v’re'.' J‘2 % l2 3 v2
test 2: if b, is true,
by transfer to_ee——ul

transfer indirect nextH

loop starts sequence#l5
- TYPE: DO TERI, SIZE

F_T transfer direct to r

transfer indirect next

EXECUTIVE TABLE

Statement |Location
number |of quantum
(if any) |of coding

Internal
segquence
nunber

|

10
20 s

40

15
25 x

- ] -0 R o ST 2 TR o o LR

ORIGINAL FORTRAN PROGRAIL
DO s FOR iy = J;,K;sby

s (statement) (B)
(statement) (D)

MODIPIED FORTRAN' FROGRAN

(statement) (B)
(statement) (D)

s

Figure 7.
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V. Recursive address calculation in DO-loops T
When the subscript of a veriable within a DO-loop depends

on the index of the loop, much time cen be wasted if the address

ig calculated from scratch each time through the loop. This is

especially for the innermost loop of several nested loops.(3,4)

The following restrictions will be placed on programs for
this discussions:

1, The index variable must not appear on the left
' side of an arithmetic substitution expression
within a DO-loop.

2. The index must be an integer, and its increments
must be positive or negative integers.

3, Subscripted vaerisbles must have subscripts which
are expressions in the index variable containing
only additions, subtractions, and multiplications,
(parentheses allowed) but no division or exponen—
tation., Bach subscript must be able to be reduced
to d; = A Cy.» Where i is the index of the loop, =
and "¢, and dk are constant during the execution of
the 1lo0p.

4, An array must have been declared before its varlable
is used.

Dimension statements will assume the following general
form:

DIMENSION Z (al: 13 853h55 e an:an}

where a5 is the minimum value and Ai is the meximum value assumed
by the ith subscript. The constant By are defined:

Bi == Ai—ai+l fOI’ i= 132, P 9 I.L"-l
(The stendard Fortran DIMENSION statement has all &; = 1, so that
Bi = Ai.)
The first element in the array is then Z (al,a?,...,an), y

abbreviated %4 (a). For arrays stored forward iﬁ.memory, the
address of Z(yl,yg s s l‘yn), abbreviated adr [é(y)_k (< S )
adr [% (yil: adr {? (a%}- £ (al,az,,..,an)+f(yl,y2,.,.,yn)
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where
f(bl’b2,aoo )_ (--.((bn N l'l‘bn—l’i‘. o ) Bn 2 n 2)X-;-)Bl+bl

which is abbreviated £(b). Note here that

f(x+y) = £(x) + £(3)
f£f(ax) = af(x), a constant

Then
adr | Z(a)l - £(a) + £(3)

= adr [?(Oi]+ £(y)
The constant, adr‘Z(Oi} as well as the Bi , need be calculated

adr [Z (y)]

only once during compilation.,

Bach subscript position of 7 within a loop has been
restricted to the form

— —— v‘ - z -
Fie dK_ 4id 4 xck

where i is the index verisble of the loop and ¢, eand d, are
constant during any perticular execution of the loop. Then

adr YZ (yS] = adrE(Oﬂi- £(d) + ixf(c)
If i has the initizl value r end is incremented each time
through by s, then the initial value of the address will be

adr {E(yi] = adr _Z(05]+ £(d) + rxf(c)

and the address is incremented each time through the loop by
s x £(e)

Now, since f£(c), £(d), and sxf(c) are constant during each execution
of the DO-loop, they can be calculated during execution before
entering the loop. Then, in the execution of the loop, only one
addition is required each time around to modify the address of

the subscripted veariable, rather than the n-1 multiplications

and n additions reguired to compute the address completely each
time, When the same subscripted verisble, or variebles with the
same subscript, is used in several places within a loop, the saving
is even greater.
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An example will best illustrate the procedure.
DIMENSION Z (1:5, 3:8)
The first element of array Z, namely Z (1,3) is assigned to the
location named .

adr 2(0) = q - £(1,3) 5 @ - (3%5+L) = q - 16
v edr 4(yyyo) = 4 = 16 + %54y
Then, for example

adr 74(3,3)
adr  Z(4,5)
adr %(5,7)

q - 16 + 3%5 + 3 g-+2
q - 16 + 5x5 + 4 = g+15
q-16 + 7x5 + 5 = q+24

li
1l

1

Suppose within the DO-~loop

DO g“BOR%1i ==, cky D
there is an expression involving a form expressable as

Z (O+ixl, - 3+ix2)
for the particular execution of the loop in which
d = 3 and k=1

The following calculations are made before entering the loops

d, = 0 4, = =3 g = 1 ¢ = 2
£(d) = =3x5+0 T=rial5 f(e) = 2%5+1 - 11

CrEsETal axf(ec) ‘= 11

The initial address

adr %4(3,3)

The increment was found to be 11, so the next two times we should

get

is
=lqa=216 =3k Fu5xL
i [ SR
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adr Z(4,5) g+ & Hll =9q+ 13
adr Z (5,7) = q +13 + 11l = q + 24

which check with the values for Z(3,3), Z(4,5) and Z (5,7)
calculated previouslye.

For nested DO-loops, ¢, 4, L, 8, may depend on outer loop
indexes. The calculation of ‘values of f£(c) and £(d) must Ghere-

-

fore bes made immediately before ippering the ianermost loop in
which the subscripted variable is useds

Now, to fit this sclheme into one pass translation poses
significant problems. Before recursive address calculation
can be set up, it is necessary to know first whether or not
a loop conbains any subscripted variables depending on its index,
and whether or not they satisfy the conditions given at the
_ beginning of this section. This at least requires look-ahead
whenever a DO stabement is encountered (or the programmer would
have to give the information explicitly). In any case 1t does
not fit in with the last-in first-out scheme of trenslation
scheme. The most practical scheme for recursive address cslcula-
tion would employ a first pass to determine the structural lay-
out of loops and to collect information on the form of subscri-
pted varigbles within them. The maln pess could then effectively

translate the program.

VI. Conclusions

A one pass Fortran scheme can readily include processing of DO-
loops, with extended features available. Though an extra pushdown
list is used during compiletion, it is not lef® around during execut-
ijon., These DO-loops fit well into the incremental compiler system,
allowing easily for insertions,deletions,changestﬁftarget address, etc

If recursive address calculation is used for subscripted
varisbles within DO-loops, either very stringent restrictions are
placed on the language and extira requirements on the programmer, oI
a look—ahead is required in the one pass systien, destroying the
e e e ML e el R E e amoe s ceonl d golve
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I. BASIC CONCEFTS L

1. General Description

FORUAC (EORmac lAnipulation Compiler) is an experimental
systen designed to provide a practicaltool for doing non-numerical
mathematics (i.e. symbol manipulation)., FORMAC is an extension
of FORTRAN IV, and as such the user has numeric and loop capabili-
ties which can be intermingled with the capacbility of doing formal
Mathematical manipulation.,

It should be emphasized that FORMAC is only an experimen—
tal program and at present there are no plans to release it to
Customers. It has been developed by IBil's Boston Advanced
programming Department.

2. Difference Between FORIUAC % and FORTRAN

2+205 %

Assume the equation Y = X

A FORTRAN program can evaluate Y for numerical values of X and %.
For example, the FORTRAN program

: Sl —
Z = q“.
Y = X=x2 + Z%2.,5/X

generates code to calculate the value of Y, which is 27,

A FORUAC progrem can create a symbolic value (i.e. an ex;ession
for) numeric or symbolic values of X and %. Fop example, the
FORMAC progranm ‘
ILET X = A + B
4, =y

LET ¥ =-Xxx2 + Zx2.5/X

generates an internal representation of the expression (A+B)2 +
which is named Y.

zThroughout the rest of these notes, FORUAC will be used to refer
only to those elements which have been sdded to FORTRAN; strictly
speaking, FORTRAN is a subset of FORIMAC.

-
.
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%, BExpression Formation

Expressions in FORMAC are written in essentially the same
way as in FORTRAN, except that some additional operations are
sdded. TFORIAC expressions can contain both FORUMAC (i.e. symbolic)
and FORTRAN (i.e. numeric) variables.

FORTRAN operators FORUAC operators
(for numbers) (for expressions)
G - )
(== )
ATOG FICLOG
STV FUCSIN
Cos FNCCOS
EXP FUHCEXP
ATAN FUCATN
TANH FUMCHTN

FUCDIF (differentiation)
FUCOMB (combinatorial)
FMCFAC factorial)

FMCDFC (double factorial)

As an illustration of the differeniation operator, the FORIAC
statement IED Y = TUCDIF (X2 + 4mXex3, X, 1)

causes the name Y to be assigned to the expression 2X + 12X2.

4, Types of Simplification

(1) Automatic - Performed after each executable command
and sometimes during the eXecution of the commands. The user .
can control the type of evalution being done, (see AUTSIU) but
has no control over when the automatic simplification is performed.

(2) Removal of parentheses ~ EXPAND.
(3) Factoring with respect to powers of single variable -
COLEFF.
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Examples of Automatic Simplification

-

A+ Q —a 4
L

A —_— A
1l
AA ok

1 .
A + 40 = A =9 24 + 4C
3.2 + (4/3) B = (1/3)B + 6.34 - (1/3)B —» 9,5A + 6666666678
(L/4)X- (2/3)Y + (5/4)X + (4/3)Y —= (3/2)X + (2/3)Y

2 A° BA? o+ —p A7 BC72

IT. LANGUNCE DESCRIPTION

l. List of Executable Statements

In addition to all YORLIRAN statements, there are 15
executable FORUAC statements which are listed below in 3 categories.
Later pages show the exact syntax and an example of each command.

Statements Yielding FORIAC Variables

LET - Construct specified expressions.

SUBST - leplace variables with expressions.

BEXPAND = Remove parentheses.

COEFF - Obtailn coefficient of variable or its powers.

PART - Separate expressions into terms, factors, exponents.

Statements Yielding FORTRAN Variables

EVAL - Hvaluate expression.
L[ATCH - Compare two expressions for equivalence or identity.
FIND - Determine dependence relations. W

CENSUS - Count words, terms, or factors.
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Miscellanecus

BCDCON - Convert to BCD form from internal form.
ATGCON - Convert to internal form from BCD form.

AUTSTIN - Control erithmetic done during automatic simplification.

ERASE - Eliminate expressions no longer needed.

ORDER - Specify sequence of variables in output expressions.
MCDiIP - Provide dump of all or some symbolic expressions

during execution.

2, IList of Declarative Statements

In addition to the FORTRAN declarations, there are 4
declarative FORIMAC sbatements listed below. Later pages show
the exact syntax and an exemple of each statement.

ATOMIC =~ Declare
DEPEND - Declare
PARAII - Declare
SYMARG - Declare

flag

baslc variables.

implicit dependence relations.

parametric pairs for SUBST and EVAL.
subroutine arguments as FORMAC variables;
program beginning.

%, lletalanguage for Syntsx

The formal syntax of each statement is shown in a metalang-
uage_which is defined as follows:

(1) lletalanguege Used in Statement Definition
UPPER CASE

|
i}

La]
max n zyar}

Cdnstants, or literals which stand
for themselves.

The vertical stroke denotes "or".
The curly braces denote grouping.
Repetition of preceding patiern.
The square brackets meen 'optional'.

The pattern "var'can'gccur no more
than n times.
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(2) Metavariables Used in Statement Definition

The meaning of the metavariables cen be derived from the
abbreviations used. That is, "cons" is short for constant, "f£it"
is short for floating "fxd" is short for fixed, "fme" is short
for FORMAC, "ftn" is short for FORTRAN, "exp" is short for expres-
slon and "var" is short for variable.

In genefal all variables can be subscripted and may be
of any mode.

i.e. ftn-var stands for FORTRAN variasble which may or may
not be subscripted.

4. Syntax of Executable Statements

A

LET leb=var = fmc-exp

Purpose = Basic assignment command. It generates, at
Object time, a FORMAC expression and assigns the FORMAC let vari-
able as the name of that expression.

Iixample ATOMIC Z
M = 4, :
IET C = M ¢ FUCDIF (Z®e2, Z, 1) = Z
results in C == 4, + 7

I SUBST

P
LET let-var = SUBST fumc-~exp, '{

aram=label max 9 param—label}}
param-list

paramn-list = (seek-var, fmcmexpl) {: (seek-var, fmc—expli}
1) fmc-exp is the expression into which the substitutions will be

made, w

2) param—-list specifies the varisbles to be replaced and the
expressions which are to replace them.

20 paramrlabel (s) reference param-lists which are specified
elsewhere in the program.
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Purpose - Replace varlables in an expression by constants,
& . . - - .
other variebles or other expressions according to the specifica-

tions of a referenced or accompanying parameter list.

Example ATOMIC. X, Y, 7. A, By €
IET R = SUBST (X + X = 2 + FUCSIN(Y)),
(X, 048 4 (EpdoBda - coini . (0ms)
!EKE%ﬂDl results in A — A+3 + (A+B) ®Er 2 + PUCSTY (A-B)

LET let-var = EXPAND fmc-exp [} CODEMt]

Purpose - To remove parentheses in the FORIAC expression
by applying the distributive law and/or multionimal theorem.

Sxanpo ATOUIC A,B,C,D
IET R = EXPAND (A+C)==2 + A%(C-D)
results in R—p Axe? + 3.%A%C +
Cxx2=AxD

COEFF

LET let-var = COEFF fmc-exp, seek-var , fit-var-l ,

ftn-flt-var-2
1) fmec-exp is the expression containing the variable whose

coefficient is desired.

2) seek-var is the variable whose coefficient is desired.

3) ftn-flt-var-l is a FORTRAN variable which is assigned
the next highest power of the seek-var which exists

in the expression fmc-exp.

4) ftn-flt-var-2 is a FORTRAN variable which is assigned
the next lowest power of the seek-~var which exists

in the expression, fmc-exp.

e Purpose -~ Obtain as a new expression the coefficient of a
variable (which may be raised to a power) within a given

expression,



Example ATOMIC X, Y, & : .
| IET R = COEFF (X + AxXwe> + Xme2 +YxXEx3),
X=x2, B, C
results in R ~-—»= L, + A
B =
&= 1,
PART

LET let—var1 = PART let-vara, ftn~fxd-var
LY let-var, is the name of the expression to be partitioned.

2) ftn-fxd-var is the FORTRAN variable which receives a value
" which describes the partitioned expression.

Purpose -~ Separate out the first well formed sub-expression
from the expression named.

Example ATOMIC X, Y, A
LET R = XxEY+A
LET S = PART R,I
results in S—=A
' R —s-XxY

I = 4 which indicates a sunm
of terms was partitioned.

now

IET Q = PART R,I
results in Q —=X
Rep=Y

I = 5 which indicates a produ-
¢t of factor was
partitioned.

LEEéEm param label
LET ftn-num-var = EVAL fmc-exp , parem list

Purpose - Evaluate a FORMAC expression and produce a FORTRAN
numeric value.
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ATOMIC X,Y,%
-
Example IET All = EVAL (X+4X)®Z, (X,3),(Y,FMCFAC(2)),(Zy.5)
results in AM = 2.5

MATCH

ID
IET ftn-log-var .= MATCH y ftn-flt-num | ,fmc-exp-1,
' EQ fmc~exp~2

1) fmc-exp-l and fmc-exp-2 are the expressions to be compared.

2) ftn-flt-num is the tolerance value if the equivalence option
is specified.

3) ftn-log-var is the FORTRAN logical variable which receives the
resultant value of true or false depending on the sucess
or failure of the match.

Purpose - Compare two FORUAC expressions for either identity
or meathematical egquivalence,

Example
-
ATOMIC A,B
IOGICAL @
IET X = (A+B)x=e2
IET Y = Axx2 + 2%A=B + Bxx2
IET Q = MATCH ID,X,Y
results in Q = FALSE.
results in Q = .TRUE,
FIND‘
APP ALL
IET ftn-log=var = FIND fmc-exp, DEP (° ONE ’
(seek-var {;seek—var_}- sisin
1) fmc-exp is the expression to be examined.
2) seek-var are the varisbles being investigated.
2) ég%}SPecifies whether the seek-var must appear explicity in

the exgregsion'or whether a dependence relationship
is sufTficient.

4) ALL specifies whether ALL or ONE of the seek—var must meet
ONE the APP or DEP condition.
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\
Purpose - To determine if one or more specified variables \\\
exist explicitly in an expression or if they are implicitly depen-
dent (see DEPEND declaration) on any variables which do exist in
the expression.

Example ATOMIC B,C,X,Y,Z,D
IET A=B +C #D - F
LET Q = FIND A, APP, ALL(B,C,D,F,G)
results in Q = .FALSE,
whereas ; :
LET Q = FIND A,APP,ONE,(B,C,D,F,G)
results in @ = .TRUE.,

CENSUS (WORD
LET ftn-fxd-var = CENSUS let-var, TERU
FAGTOR

1) let-var is the name of the expression in which the number ..
of words, terms, or factors is to be counted.

2) ftn-fxd-var is the FORTRAN varlable which receives the
result of the count.

Purpose - Count the number of terms, factors or computer
words which appear in an expression.

Example ATOMIC A,B,C,D

IET Z = A +B +C +D

ILET M = CENSUS Z, TERM
results in .= 4

LET M = CENSUS Z, FACTOR
resultsﬁln M.=1

LET M = CENSUS Z, WORD
results in M = 6

DCOW

LET ftn-num-var = BCDCON fmc-exp, ftn-fxd-var, fxd-num
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l) fmc-exp is the FORuUAC expression which is to be converted.
2) ftn-fxd-var is the FORTRAN array which acts as a . buffer
and receives tlie resultant BCD string of characters.

3) fxd-num is a FORTRAN value which specifies how many words
of the buffer are to be used by the BCDCON command.

4) ftn-num-var is a FORTRAN variable which receives a value
indicating whether or not the tramnslationfor an expression
is complete.

Purpose - When used in conjunction with the FORTRAN output
statements this command permits expressions to be put out during
execution of a program,

Example = ATQIIC AB,BC,X

DILUENSION LIST (4)
IET R = AB + BC + FLCSTN(X)=EFICCOS(X) + 4.5

R = 0.
LET Q = BCDCON R, LIST,4
would result in LIST(1l) |binary 18 indicates
18 significar
(2) | AB=BC+ characters ir
(4) | (X)=pp

and Q # O, indicetes there is more translation to
perform. Upon re-entry to BCDCON with Q # O the translation
"would. continue.

ATGCON

IET let-var = ALGCON ftn-nua~ver, ftn-fxd-var

1) ftn~-fxd-var is thé deme of the FOITRAN array which contains
the BCD representation of tle expression to be converted.

2) ftn-fxd-var is the FORTRAN veriable which indicates whether
translation is to begin at the top of the buffer or from
wiere the last translation ended.
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Purpose - When used in conjunction with FORTRAN input state- ﬁ;
ments this command permits expressions to be read in at object time. \
With a FORTRAN read statement under control of an "A" (alpha)
conversion in a FORMAT statement, the user may read into an array,

an expression which is in BCD form.

\
Example If ARRAY (1) A+B2T--
(2) FUCDIF
(3) (X,X,1
(4) ) $BYBY
ATOMIC A,B
DIMENSION ARRAY (4)
d=0
JLET I = EVAL (A+B), (4,3), (B,1)
IET Y = ALGCON ARRAY (1), J
results in Y -=A+BEt.-1. N
AUTSTH
7 QINT )
AUTSTM UM |
;'QNINTﬁ
Loy

1) QINT causes evalution of FMCFAC, FUCDFC and FUCOMB operaiors.

2) QUM causes evalutions of FUCSIN,FMCCOS,FHCIOG,FUCATN,
FLUCHTN ,FUCEXP and =% operators.

3) QNINT combines QINT and QNUM options

4) ON specifies that none of the above operators are to be
evaluated.

Purpose - Provides the user with control over which FORIAC
operators will be evaluated during Automatic Simplification. \
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Example ATQOUIC X,Y,Z
AUTSIM QINT
I=2373

LET A_: 4 + T#xl + FMCFAC(I)=FMCSIN(I)
results in A4 +3z=3 + 6 FUCSIN(3)

L g

e A herten

Purpose - Delete the expression (8) named and make available
the storage which the expression (s) used.

Exsmple ATOHIC X,Y
IBT R=X + ¥
ERASE R

causes the expression R to be destroyed
and more space to be available to the
FORUMAC dynamic storage allocation
system.

ORDER

IET let-var = ORDER fmc-exp, DEC PRT

ING } FUL
92

., Seek-var. ... )

,(seekrvari {, seek—varigooo)s (seekavara 3

s (seek-var; i, seek-vari].o.)

J

- — . k— 0 o s e
,,(geek var ZJ see vara} )

1) fmc-exp is the expression to be ordered.

2) The INC, DEC option specifies that powers of a variable
are to be put in increasing or decreasing order.

3) The FUL or PRT option permits full or partial ordering.

4) The lists of seek-var(s) specify the order in which
variables are to appear.
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Purpose - To specify the sequence in which factors in produ-- .
t
cts, and terms in sums, are to appear in expressions. Normally
to be used just prior to a BCDCON or FUCDUP statement.

E:xamgle ATOMIC X,Y, 2
LET R = ORDER X=5 + Y=Xzx? +Xme2xYx2,INC,FUL, (X)
results in Z-e3%X + 2=XEw2xY + {Ex3=Y

JFMCDMPI

Syntax omitted because the options are too numerous to
list here.

Purpose — To assist the user in debugging a FORMAC program
by providing snapshots of symbolic expressions and dumps during
execution of a program,

Example FUCDMP NOW, CURRENT, ALL, INFIX

means print all variables from the routine >
currently being executed in regular (i.e.infix)
form.

5. OSyntax of Declsretive Statement

ATOMIC |

ol name S s ;name" S
ATJMIC‘{;ame (dim=-gize) ;i!nameﬂ (dim 3129}}

Purpose -~ To declare those varisble nsmes listed as "FORUACT
atomic varisbles.

Example ATOMIC X,Y,Z, (50)

DEPEND

DEPEND (all{g al2j°°‘/hll £’b12}"')i;(a2lﬁa22i"'/b?-l[’b22} -.\_\_

eos)
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1) Each a and b are atomic variables.

2) Each a;5 is dependent on all bi.

Purpose -~ To declare an implicit dependence relationship
between atomic varisbles. It permits the inclusion of deriva-
tions where functional reletionships between two variasbles are
not explicity given.

Example ATOMIC X,Y,Z,A,B,C
DEPEND (X/4,B,C),(Y,%/B)
LET R = FUCDIF(X + Ax=2,A,1)
results in R-» FUMCDIF(X,A,1)+2.%A

PARAI

param-label P PmRAMjEseek~var, limited—fmc-exp?],(seek—var
limited=fmc-exp) ...

1) seek-var are the FORUAC variasbles and operetors which are
to be replaced.

2) limited-fmc-exp are the FORMAC expressions which are to
replace the seek-var.
Purpose - To be used with the FORVAC commands SUBST and
EVAL to simplify the listing of pairs of parameters.

Example ATOMIC X,Y,Z,A
LBL PARAN (X,B),(Y,FMGFAC(4)+A),(Z,A—FJCSIN(A)),
(4,5.)
IET R = SUBST (X+Y) , IBL
results in R-%3. + FUCFAC(4) + A
IET BR = EVAL R, LBL
results in BR = 32.



SYMARG

SYUARG [%ame

Purpose -~ A necessary flag for the implementation and also
declares which variables in FUNCTION and SUBROUTINE arguments

=100

Iy namij %

lists are FORMAC variables.

Example

10

SUBROUTINE X,Y,% (A, PAR, I)

SYMARG PAR

RETR = 0%

D@10 W = ‘EA5
IET R = R + IxPAR
CONTINUE

RETURN

END

PAR is a FORMAC dummy variable and hence
appear in the SYMARG statement.
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- III, INPLEJENTATION

l. Compilation Process

The compilation process for FORMAC had been based on the
use of a preprocessor which translates the FORUAC program into
a correct FORTRAN progrem, and then automatically compiles the
FORTRAN program. The entire process operates under IBSYS, and
uses FORTRAN IV. The following diagram shows this schematically.

FORMAC ﬁrogram
(FORMAC end FORTRAN statements)

\

Preprocessor
I !

FORTRAN 'CALL's FORTRAN statements
(untouched

FORTRAN pseudo-data

¥
FORTRAN Compilen)

¥

Object program

2. Summary of Implementation Characteristics

The most significant cheracteristics of the implementation
thown below. They are best understood and illustrated by the
use of the computer printouts of the liatrix iultiplication
Example shown later, and by Section III.3.

2.1, FPurpose and Operation of Preprocessor

Build Symbol Table
Build Expression Teble
Transform FORIAC statements to FORTRAN CAILL's

Generate additional statements as input to FORTRAN
compiler 3

—
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The preprocessor scans the entire FORUAC program., It looks at
each FORTRAN statement only enough to determine whether any
information is needed from it. The following FORTRAN statements
are scanned and information extracted from them, but they are
not modified in any ways

INTEGER

REAT

DTUENS TON

SUBROUTIVE

FUNCTION

REAT, FUNCTION

INTEGER FUNCTION

DOUBLE PRECISION FUNCTION
COMPLEX FUNCTION

LOGICAL FUNCTION

Note that these FORTRAN statements cen have FORTRAN and/or FORIAC
varisbles in them., The following FORUAC statements are scanned
and made into Comment cards:

ATOQMIC
SYMARG
PARAILL

DEFEND

All executable FORUAC stabements are made into Comment cards snd
CALL's to the appropriate object time subroutine are created. The
necessary statements to "trick" the FORTRAN compiler are generated.

2.2 Object Time Subroutines

Operate interpretively, using algorithms for each execubtable
comnand, and service routines to assist in executing the algorithms,

Use Information from Symbol and Expression Tables
Create Generated Expression Table
2.3 Symbol Table

The symbol table contéains data on both FORTRAN and
variables, i.e.
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BCD neme
Cheracteristics(e.g.FIN,FUC;atomic,let;dimension,etc.)
Pointer to Expression Table (FORUMAC varigbles only)
Value (FORTRAN values only)

Each entry takes at least 2 words (more if it is a dimensioned
variable). The first word always contains to BCD named'of the
varieble. The second word contains the bits defining the status
and characteristics of a FORUMAC variable, or the current value of
a FORTRAN variable, :

2.4 Expression Table

The expression table contains all expressions which
appear in FORMAC statements; it also contains DEPendence and
PARAI] listse.
Inters«l Representation is Delimiter Polish
Variables are defined by references to the Symbol Table
Bymbols are packed and there is no chaining

2.5. Storage Allocation at Cbject Time

Expressions being created are stored in Delimi ter
Polish with 1 symbol per word.

Symbols in expressions are chained; no sublists sre used.

Storage used by expressions named on left hand side of a
IET or in ERASE is returned to the free list.

Expressions not needed for the specific command being
executed are automatically.put out on tape if space is needed.

Expressions on tape are automatically returned to core
when needed.
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3, Object Time Execution

There are object time routines called command level routines
to correspond to each of the FORMAC e%ecutable statements., There
are also a number of service routines which are used by the command
level routines. These involve dperations on lists, getting
symbols, conversion of arithmetic modes, etc., Each command level
routine calls Automatic Simplification when it is finished, and
souetimes calls it during the execution of the algorithm.

The simplest command is the basic LET, which is always
executed as part of all the other commands. The main service
routine is UNPACK (which in turn calls on other more basic service
routines.) A simplified version of the flow chart for LET is
as followss
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LET

Initialize‘

UNPACK

k]

Automatic Simplification

¥

Get Mode_ Information

oes mode
of RHS

equal mode
of ILHS?

| Store the pointer

to the new expression

Erase o0ld expression)

pointed to
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The service routine UNPACK performs the following operationss

1. Replace let variables which appear in the Bxpression
Table by the expressions which they name. (This is sometimes
referred to as "unravelling" or "re:ducing to atomic level",)
This requires copying the "packed" expression in the Expression
Table on the free list in an "unpacked" form (i.e. one symbol
per word). The new form of the expression is referred to as a
Generated HExpression, and the set of them as the Generated
Expression Table. -

P Replace FORTRAN variesbles by their current valiues.

3. Reduce subscripts of arrays to a single value so as t@.
reference the correct member of the array.

4, DPerform differentiation immedistely upon encountering
the operator FMCDIF i.e. stop copying the remainder of the
expression, and perform the differentiation. Copying of the
expression continues upon completion of the differentistion.

The interplay of the neming and copying process is more easily
understood from the following simple examples

ATOMIC A, B, E
IET C = A + B
LET D= A + C
BT ¢ =D + 1

Symbol Table Compiled Expression Generated Expression
Table | Table

, .
A *”’i::j«A +‘\B

- A + B

r A + .A. + B

(=24 + B)|

L 2A + B + E
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All the lines represent pointers to addresses. The solid
lines are established at compilation time., The dotted line from
C to A + B and the establishment of A + B in the Generated
Expression Table is done as part of the execution of the statment
"IET C = A + B". The dotted line from D and the creation of
A + A + B in the Generated Expression Table is done as part of
the statement
"IET D = A + C", The Automatic Simplification routine transforms
the A + A + B into 2A + B, which is the final form in the Genera-
ted Expression Table. The expression 24 + B + E is established
as part of executing the statement "LET C = D + E"; execution of
this statement also erases the dotted line from C and establishes
the dotdash-line from C. The expression A + B in the Generated
Expression Table is then erased i.e. the space used by this
expression is returned to the free list.

IV, EXAMPLES

1., Mathematical Induction

This FORAC program moves by mathematical induction

thats
n
EEz:_ i = n(n+l)
2

i=1

SYHARG

ATOMIC N

LOGICAL Q

IET SUMN = N=(@ + 1.)/2.
results in UilN-+»Nz(N + 1.)/2.
IET R = EVAL SUMN, (N,1.)
first results in l.x (1. + 1.)/2.
- then R = 1.
IF (R - NE. I.) GO TO 10



=108~

AT THIS FOINT THE ORIGINAL EQUATION HAS BEEN
PROVEN TRUE FOR N = 1 IT IS NOW NECESSARY TO
PROVE IT FOR THE (N + 1) TH CASE
PEPLACE N BY N @ 1 IN ONE EXPRESSION
IET SUMNPT = SUBST SUMN, (N,N+l.)
results in SUMPI—=*(N + 1.,)={ + 2.)/2.
C ADD THE (N + 1) TH TERM TO THE OTHER EXFRESSION
LET PROOF = SUM + N + 1. :
results in PROOEsN=(N + 1.)/2 + N + 1.

C COMPARE THE TWO EXPRESSIONS FOR EQUIVALENCE
LET Q = MATCH EQ, O., PROOF, SUMNPI
results in Q = .TRUE,
IF (Qs EQ. .TRUE.) GO TO 20

10 STOF

20 CONTINUE
STOP
END

2. Series Generation and Error Analysis

This example illustrates first the generation of the terms
of a series from an expression, and then the creation of series
resulting from expanding with respect to error terms. The
resultant series hag eliminated all terms which are considered
to small to be significant in future work.

For the purposes of this example, arbitrary choice were for the
function to be expanded, the values for which it would be evaluated
and the size of the terms which are to be eliminated. The program
as coded will definitely cause an overflow of core for a single
expression, and therefore could not run, but was written this wmay
to illustrate the use of the commands,
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Given

50 . 1
= al i+l xl—-l

t

= at2 + a2t5x + a3t4x2 + see + a50t51x49

create the series, then expand each term with respect to errors
in two of the variables, and remove terms which are too small.

SYUARG
ATOMIC A, T, X, DT, DA
INTEGER A, T, X, DT, DA, SERF, ERSERF, FNSERF
ILET SERF = O
DO 10 I = 1, 50
LET SERF = SERF + (A¥1) = T5(I +1) = X=(I-1)
10 CONTINUE
C THIS DO LOOP RESULDS IN THE CREATION OF THE SERIES SHOWN
ABOVE.
LEQ BRSERF = SUBST SERF, {T,T + DT), (4,A + DA)
results in ERSERF _p
(a +Aa)(t + At)2 +(a +Aa)2(t +At)3x + (a +A 8)5(1: +At)4

- T

IET ERSERF = EXPAND ERSERF

results in ERSERF o—t=

ate 4 2at(AL) + a(Dt)2+ tz(Aa) + 2tpabt +Da(A t)2+....
THE RESULT OF THE SUBST AND EXPAND STATEMENTS IS A SERIES IN
THE

FORM SHOWIN ABOVE,., IF ACTUALLY PROGRAMUMED THIS WAY, THE
VARTABLE ERSERF WILL OVERFLOW CORE WHEN EXPANDED. THE PROPER
WAY TO DO THIS IS TO DO THE SUBSTITUTION AND EXPANSION ON ONE
TERM AT A TIVE,

THE NEXT PART OF THE PROGRAL SEPARATES OUT EACH TERM AND
BVATLUATES.

(]

G Qoo
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IT FOR THE DESIRED CONSTANTS AND THEN TESTS THE RESUIT.
TERMS WHICH
HAVE A VAIUE CONSIDERED TOO SMALL ARE DROPFED.
LET FNSERT = O
LET TEST = ERSERF
LET TERM = PART ERSERF, M
results the first time through in TERM —wats
M=4
and the second time through in TERM s 2at (A t)
M=4
THE NEXT TWO STATEMENTS ARE NECESSARY TO
DETERMINE WHEN THE LAST TERM OF THE SERIES IS
REACHED AND TAKE CARE OF IT,
IF (M .EQ, 4) GO TD 7
SET TERM = TEST
LET VALTRM = EVAL TERM, (T,8.), (DT,.Oz) (4,75),(D4, .5),(X,15)
results the first time through in VALTRM = 24
IF(VALTRM IE. 1.) GO TO 9
IET FNSERF = FNSERF + TERM
17 {i .EQ. 4) GO TO 5
THIS IS NECESSARY TO DETERMING WHEN THE END OF THE SERIES
HAS
BEEN REACHED.
STOP
END
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INPUT TO FORMAC PREPROCESSOR
YIBFUMC MATMUL NODECK

QAOQAAQaAQ@OQaAQaQ@aq

(@]

THIS PROGRAM ILLUSTRATES THE USE OF FORMAC TO LULTIPLY

TWO MATRICES WHICH HAVE NON-NUMERIC ELEMENTS.

HOTE THAT THE PROGRAM IS VERY SIMILAR TO THE

FORTRAN PROGRAM NEEDED TO MULTIPLY MATRICES WITH

NUMERIC ELEMENTS. THE MATN DIFFERENCE IS THE

USE OF THE FORMAC KEY WORD LET IN STATEMENTS

88 AND 99 AND THE INITIAL VALUE ASSIGNMENTS, AND THE ADDITIOQON OF
THE FORMAC DECLARATIONS AND CONVERT COMMAND NOTE THAT THE
ELEMENTS OF THE MATRICES BEING MULTIPLIED COULD BE BROUGHT IN FROM
TAPE OR CARDS USING READ AND ALGCON. ALTHOUGH ONLY 2 X 2 MATRICES
WERE USED, OBVIOUSLY THE PROGRAM WILL WORK FOR OTHER SIZES JUST BY
CHANGING THE VALUES OF N AND M.

THE RESULTS ARE PRINTED IN TWO FORMS. ONE HAS

THE ELEMENTS OF THE RESULT IN UNEXPANDED FORM

AND THE OTHER SHOWS THEM EXPANDED AND SIMPLIFIED. THE

DOLLAR BSIGN IS SIMPLY AN END OF EXPRESSION MARKER.

SYMARG
ATOMIC X,Y,Z

DIMENSION C(2,2),ANB(21),EXPANS(21),
A(2,2),B(2,2),EXPNDC(2,2)

DIMENSION BUF(14)

INTEGER 4,B,C,X,Y,ANS,EXPANS,EXPNDC, Z

FUCDMP LATER

N=2
=2
R=0.

LET A(1,1)=X-Y

LET A(2,1)= FMCF

LET A(l,2g_Y+FMGD (X=e3,X,2)

LET A(2.2 _FMCDIE(FMGSIN(ZS+1 7,1
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QQaQ

C
C

THE ELEMENTS OF THE SECOND MATRIX ARE READ IN
READ(5,18)(BUF(I),I=1,14)
FORMAT( 14A6)

THE DATA READIN AND CONVERTED IS AS FOLLOWS
X+Y3 Y-6xXp 3B Ix3P
LET B(1,1)=ALGCON BUF,R
LET B(2, lg_ALGCON BUF R
LET B(1,2)=ALGCON BUF, R
LET B(2,2)=ALGCON BUF,R

INPUT TO FORMAC PREPROCESSOR

QQ

88

99
7

DO 7 I=1,N

DO 7 J=1,M

LET C(I, J) =0

DO 7 K=1

1ET C(I, J)—C(I D+A(T,K)=B(K, J)
CONTINUE

THE SUBROUTINE OUTPUT MERELY CONVERTS EXPRESSIONS AND OUTPUTS THEM
CALL QUTPUT(A,6H A)
CALL OUTPUT(B,6H B)
CALL OUTPUT(C,6H c)

THIS LOQP EXPANDS,EACH.ELEMENT OF THE MATRIX C
BOQ 9 I=1, N

DO 9 &=1,M

LET EXPNEC[I J)=EXPAND C(I, J)

CONTINUE

CALL QUTPUT(EXPNDC,6HEXPNDC )

THE NEXT STATEMENT GET THE DETERMINENT OF THE MATRIX C
LET KDETR=EVAL C(1, l)iﬂ(& 2)-c(1,2)=C(2,1),(2,0),(X,3/2),(Y;FUCFAC

1(M/N))

WRITE(6 ,25)KDETR

25 FORMAT( ///15X33H THE VALUE OF THE DETERMINENT IS ,I5)

FMCDMP %
STOP
END N ﬁ
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MATMUL
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL, FORMULA NU

FORTRAN PROGRAL PRODUCED BY PREPROCESSOR

THTS PROGRAM ILLUSTRATES THE USE OF FORMAC TO MULTIPLY

TWO MATRICES WHICH HAVE NON-NUMERIC ELEMENTS.

NOTE THAT THE PROGRAM IS VERY SIMILAR TO THE

FORTRAN PROGRAINM NEEDED TO MULTIPLY MATRICES WITH

NUMERIC BELEMENTS, THE MAIN DIFFERENCE IS THE

USE OF THE FORMAC KEY WORD LET IN STATEMENTS

88 AND 99 AND INITIAL VALUE ASSIGNMENTS, AND THE ADDITION OF

THE FORMAC DECLARATIONS AND CONVERT COMMAND. NOTE THAT THE
DLEMENTS OF THE MATRICES BEING MULTIPLIED COULD BE BROUGHT IN FROM
TAPE. OR CARDS USING READ AND ATGCON. ALTHOUGH ONLY 2 X 2 MATRICES
WERF USED, OBVIOQUSLY THE PROGRAM WILL WORK FOR OTHER . SIZES JUST BY
CHANGING THE VALUES OF N AND il

THE RESULTS ARE PRINTED IN TWO FORMS. ONE HAS

THE ELEMENTS OF THE RESULT IN UNEXPANDED FORM

AND THE OTHER SHOWS THEM EXPANDED AND SIMPLIFIED. THE

DOLLAR SIGN IS SIMPLY AN END OF EXPRESSION MARKER.

SYMARG INTERNAL FORMULA NOS.
THE FOLLOWING STATEMENTS WERE ADDED BY FORMAC (pul in by hand because
DIMENSION FMCSTB(1l), FUCETB(1) of width of -printout

CALL FMCUSE(FMCSTB(1),FMCETB(1))
ATOMIC X,Y,Z

DIMENSION C(2,2),ANS(21),EXPANS(21),
i A(2,2),B(2,2),EXPNDC(2,2)
DIMENSION BUF(14) e
INTEGER A,B,C,X,Y,ANS,EXPANS,EXPNDC,Z

FECDMP LATER
CALL FHCDMP(002040000000,0,0,FMCSTR)

N=2
M=2
R=0.

|

FWwn
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QaaaQ (e o e (e Bl & RS & (BN (>

CONCTIR G G ()
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88

22
99

LET A(l,1)=X-Y

CALL LET( A(1,1),FMCETB(2))

LET A(2,1)= FUCFAC(3)

CALL TET( A(2,1) FMCBTB(4))

LET A(1,2)=Y+PMCDIF(Xzx3,X,2

cari 1ET( A(L,2) FMCETB(e)S

LET A(2,2)=FMCDIF(FMCSIN(Z)+1,%,1)
CALL LET( A(2,2),FMCETB(11))

THE BLEMENTS OF THE SECOND MATRIX ARE READ IN

READ(S5,18) (BUF(I), I=1,14)
FORMAT(1446)

THE DATA READIN. AND CONVERTED IS AS FOLLOWS

X+Y3 Y-6xX P 3%  Yx3

LET B(1l,1)=ATGCON BUF,R

CALL ALGCON( B(1,l), BUF,R ,FMCSTB)

LET B(2,1)=ALGCON BUF,R

CALL ATGCON( B(2,1), BUF,R ,FMCSTB)

LET B(1,2)=ALGCON BUF,R

CALL ALGCON( B(1,2), BUF ,R ,FMCSTB)
LET B(2,2)=ALGCON BUF,R

CALL ALGCON( B(2,2), BUF,R ,FMCSTB)

1
50, 7 U
LT C(I, ) =0

CALL 1ET( C(I,J),FMCETB(16))

DO 7 K=1,N

LED QL H)= O(LDACE) =8 (K,0)
CALL LER( C(I,d,  FUCETB(18))
CONTINUE

| '

e

0 =~ O \n

9
10,11,12,13,14

15
16
17
18
19
20

22
23
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25

THE SUBROUTINE OUTPUT MERELY CONVERTS EXPRESSIONS AND OUTPUTS THEM
CALL OUTPUT (A,6H  A)
CALL OUTPUT (B,6H  B)
CALL OUTPUT (C,6H  C)

THIS LOOP EXPANDS EACH ELEMENT OF THE MATRIX C
DO 9 I=1.N

DO 9 J=1,M

LET EXPNDC(I, J)=EXPAND C(I,d)

CATIL EXPAND( EXPNDC(I, dJ),FMCETB(25),0)
CONTINUE

CALL OUTPUT(EXPNDC,6HEXPNDC)

THE NEXT STATEMENT GET THE DETERMINENT OF THE MATRIX C

LET KDETR=EVAL C(1,1)=®C(2,2)-C(1,2)=C(2,1),(%,0),(X,3/2), (Y, PMCFAC) -

L(M/N))
GALL B®VAL( KDETR,O,FMCETB(27),FMCETB(40))

WRITE(6,25)KDETR
FORMAT( ///15X33H THE VALUE OF THE DETERMINENT IS , I5)

FHCDIMP

CATI FMCDMP(000040000000,0,0,FICSTB)

STOP |

EQUIVALENCE (EMCFST(1),FMCSTB(1)), (FUCFET(1),FMCETB(}))

DIMENSION FUCFST( 48) ,FMCFET( 50)

DATA(FMCFST(IMCZ),IMCZ = 1,  48)70000017000020,1HI,0,1HJ,0,1H
1K, 0, SHKDETR, O, 1Hii, 0, 1HI, 0, 1HR, 0, 0000000000001 , 0000000000037, 1HA, 02
100002200004 , 4x6H000+00 , 1HB, 0200002200004 , 4£6H000+00, 1HC , 0200002200
1004 , 4%6H000+00,, GHEXPNDC , 0200002200004, 426H000+00, 1HX, 0000000100000
1,1HY, 0000000100000, 1HZ, 0000000100000, 0004000000000/

DATA(FMCFET(IMCZ),INMCZ = 1, 50)/0000000000062,0500001252400,
10026214000000, 0711000000000, 0001600000000, 0500001317256 , 0000124400
1000, 0000000600012 , 0440000000000, 0050614000000, 0752462000027 , 010000
10000000, 0061000056200, 0000000000143 , 0000000000000 , 0200000000000, 00
140000000000, 0511000017440, 0000420000443 ,032200002 3100, 000104000150
16, 0200003110000, 0304000110614, 0300000000000, 0440000762000, 00210000

24,25 ,26,27
28
&3
30
31
32

a5
34435,36

37

58
39,40,41

42
43
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INPUT

122140, 0513220000372 , 0000000000001 , 0200000000000, 0143100001750, 0000
1000000011, 0000000000001 , 0214326644000, 0076400000000 , 0000240005000,
10000050620000, 0372000000000, 0002200000000, 000014306 +00, 0000056200
1000, 0000000046000, 0125310000000, 0000016720000, 0000000022400 , 000000
100014 31, 0400026 545 304, 000025 3440003 , 0050000000000, 0030600000000, 06
100000000000/ '

EQUIVALENCE (FMCFST(3),1),(FMCFST(5),J),(FUCFST(7),K), (FNCFST(9),K
1DETR), (FMCFST(11),M), (FMCFST(13),N), (FUCFST(15),R), (FUCFST(20).4),
1(FMCFST(26),B), (FMCFST(32),C) , (FUCFST(38) ,EXPNDC) , (FUCFST(43),%) )
1FMCFST(45),Y), (FUICFST(47), 2)

END

TO FORMAC PREPROCESSOR
BSIBFMC PRNT NODECK
SUBROUTINE OUTPUT(EXP,NME)
C BE.R.BOND - BAP DEPT,
C THIS ROUTINE CONVERTS AND PRINTS OUT EXPRESSIONS
DIMENSION BUF(21),NME(2),EXP(2,2)
SYMARG EXP
DO 10 I=1,2
BOM6 BT, P
TELL=0.
20 LET TELL = BCDCON EXP(I,J),BUF,21

WRITE (6,22) NME(1),I,J,(BUF(M),M=2,13)
22 FORMAT(/15XA6,1H(,I1,1H,I1,2H)=,2X1246)
10 CONTINUE g

RETURN

END
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- —FPRNT
EXTERNAL FORVULA NUMBER = SOURCE STATEMENT - INTERNAL FORMULA. N -

SUBROUTINE OUTPUT(EXP,NME)

E.R.BOND - BAP DEPT.

THIS ROUTINE CONVERTS AND PRINTS OUT EXPRESSIONS
' DIMENSION BUF(21),NME(2),EXP(2,2)

SYMARG EXP

THE FOLLOWING STATEMENTS WERE ADDED BY FORMAC
DIMENSION FMCSTB(1),FMCETB(1)

GALL PMCUSE(FMCSTB(1),FMCETB(1)) 1
CALL FUCUPD (FMCETB(2), EXP ) 2
DO 10 I=1,2 3
DO 10 J=1,2 4
TELL=0.
LET TELL = BCDCON EXP(I, J),BUF,21 5
CALI, BCDCON( TELL ,FMCETB(3),BUF,21 )

6
WRITE (6,22) NME(1),I,Jd,(BUF(M),M=2,13) 7,8,9,10,11,12
FORMAT(,/15%A6,1H(,11,1H,I1,2H)=,2X1246)
CONTINUE 13,14,15
RETURN 16
EQUIVALENCE (FMCFST(1),FMCSTB(1)),(FMCFET(1),FMCETB(1))
DIMENSION FMCFST(  12),FMCFET( 5)
DATA(FMCFST(IMCZ),IMCZ = 1, 129/0000007000010,1HI,0,1HJ,0,4H
1TELL, O, 00000000000010000000000005 3HEXP, 0, 0100000000000/
DATA(FUCFET(IMCZ),IMCZ = = 1, 5) /0000000000005 , 0000012400000,

10440000242000, 0021000022140 0600000000000/

E%gIVALENCE (FMCFST(E) I, (FMCFS‘I‘(S) J) , (FMCFST(?7),TELL) 19
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FUCDMP CALLED FROM STATEMENT NUMBER 2 IN DECK "MATMUL"

A(1,1)=
A(1,2)=
A(2,1)=
A(2,2)=
B(1,1)=
B(1,2)=
B(2,1)=
B(2,2)=
c(1,1)=
c(1,2)=
c(2,1)=
c(2,2)=
EXPNDC(1,1)=
EXPNDC(1,2)=
EXPNDC(2,1)=
EXPNDC(2,2)=

X-Yp

X=6+Y 3

65

FMCCOS(Z)p

X+Y5

3%

X=(-6)+Y3

Y=39%
(X+Y)=(X-Y )+ (Xx(~-6)+Y ) =(Xx6+Y ) B
(X=Y) =5+ ( X=6+Y ) 575 §

(X+Y) =6+ (Xx(-6)+Y ) =FMCCOS(Z) B
YxFMCCOS(Z)=5+18%

Xzm2x(-55)%

X=Vx]18+Xx3+Yx(~3) +TEx2%39
XxFUCCOS(Z)=(-6)+Xx0+YxFMCCOS(Z)+Yx65
Y=FMCCOS(Z)x3+18%

THE VALUE OF THE DETERMINENT IS  -882



THIS IS A FORMAG. DULP OF ROUTINE “PRNTY

FORTRAN VALUES ,
ADDRES SYWBOL ~ SUBSCRIPTS —  TYPE VALUE

15135 1 INTGZNUILB =
15326 F INTG-NUKB 2
15140 DELL REAL-NUMB = O. :
FORMAC VARTABLES
ADDRES SYHMBOL  SUBSCRIPTS TYPE VALUE EXPRESSION
13144 EXp ~  THIS SYMBOL IS A FORMAGC DUMMY - IT REPRESENTS THE SYMBOL BELOW FROM DECK" ATl

i
i 12004 EXPNDC Ly 1 . . INTG-SET . 000000262320 Xxx2x(—55)$
y AT y - , AT A



CDIMP CAILED FROM STATEMENT NUMBER 42 IN DECK "MATMULM
'HIS IS A FORMAC DUMP OF ROUTINE A TMUL"

'ORTRAN VALUES

ADDRES SYMBOL SUBSCRIPTS TYPE VALUE

12541 1 INTG~NUWB 2

12543 J INTG-NUMB 2

12545 K INTG-NUMB 2

12547 KDETR INTG-NUMB -882

12551 i INTG-NUMB 2

12553 N INTG~NUMB 2

12555 R REAL~NUMB 0.17251441E-39

FORMAC VARTIABLES

ADDRES SYMBOL SUBSCRIPTS TYPE VALUE EXPRESSION

12562 A L 1 INTG-SET 000000262067  X-Y3

12563 A 2 1 INTG-SET 000000262076 68

12564 A 1 2 INTG-SET 000000262071  Xx6+YP

12565 A 2 2 INTG-SET 000000262131  FuCCOS(Z)3

12570 B 1 1 INTG-S KT 000000262135  X+Y3

12571 B 2 11 INTG-SET 000000262156  Xx(~-6)+Y3

12572 B 1 2 INTG-SBT 000000262155  3&

12573 B 2 2 INTG-SET 000000262147  Y=38

12576 C 1 1 INTG-SEL 000000262155  (X+¥)x(X=Y)+(Xx(-6)+Y)E(Xx6+Y);
12577 C 2 1 INTG-SET 000000262142  (X+Y)x6+(X%x(~6)+Y)%FUCCOS(Z)J
12600 C 1 2 INTG-SET 000000262146  (X-Y)z3+(Xx6+Y )Y %3

12601 C 2 2 INTG-SET 000000262247  Y=FUCCOS(Z)x3+183

12604 EXPNDC i 1 INTG-SET 000000262320  Xxx2x(-35)#

12605 EXPNDG - 2 1 INTG-SET 000000262306  X=EFMCCOS(Z)%(=6)+Xx6+YxFUCCOS (!
12606 BXPNDGC 1 2 INTG~-SET 000000262375  XxY=L8+Xx3+Yx(~5)+ ¥x2%58
12607 EXPNDC 2 2 INTG-SET 000000262272  X=FUCCOS(Z)=%3+188

12611 X : : INTG-ATOM 000000100000

12613 1 INTG-ATOM 000000100000

12615 2 INTG-ATOM 000000100000



