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Formulation of Some Optimization Problems ir Queueing Theory

1, Intreduction : Here we shall be concerned with the formulation of
cptimization problems for queueing theory-essentially a new and dif-
ficult aspect of the subject . The motivation and justification of

the usefulness of these problems may be found in the following frame=

work .

Virtually all of applied mathematics may be divided into opti-
nization models , deterministic models and probabilistic models with
numerical analysis as a general technique for solution . Schematically

we have a tr{angle

Optimizaticn

Eguations and Preobability and Stochastic

Inequalities processes

By optimization we understand no*t only the thewry of maxima and
minima and the calculus of variations but aiso the theory of games
(minimax) and generalizatiors of these ideazs . In referring to deter-
ministic models one often has in mind equations or irequalities . These
can be ordinary ( algebraic and transcendental ) , differential , dif-
ference , integral , functioral or combirations of them {e.g., recurr-
ent integro~differential , and differential--difference } , The thre=
fields are related by the triangle in the sense that many stechastic
processes can be described by equations e.g., differential , integral ,
integro-differential and differential-~difference . Also the contribution
of probability theory to equations may be exemplified hy those differ-
ential equations in which the right side is a stochastic forcing fun-

ction or by differential equations in randon vwariables . Again
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necessary and sufficient conditions of optimization theory are expre-
ssed in terms of equations and inequalities e.g., the Euler equations
and the Weierstrass inequality condition in the calculus of variations
etc, Conversely , optimization theory imposes a richer structure on
systems of equations and inequalities by intrdducing functions given
in any of the forms listed above e.g., integral , functional , etc.
to be maximized or minimized subject to constrains , given a mixture
of the different types of equations (or inequalities) . For example
dynamic programming optimizes a functional expression subject to or=-
dinary constraints j; ordinary programming optimizes an ordinaky
expression subject to ordinary inequalities whereas in the calculus
of variations the function to be optim%ed is an integral or a fun-
ctional subject to ordinary or to integral equality and inequality
constraints . An area of current interest is control theory in which
an integral is optimized subject to constraints given as the differ~

.ential equations of a dynamical system .

The contribution of probability theory to optimization is exem-
plified by applying probability to maximization problems . There are
areas in which optimization is applied to a probahility problem in a
broad optimization sense . A well known application of optimization
to probability theory is information theory , where it is shown that

the Gaussian distribution has maximum chaos ( entrop ) i.e.

1 xa "
f(x) = =—— exF>[f 57;"%} minimizes
,?_ Mo o &)

00
- S f(x) log £(x)dw.In fact its information content is
—eD

log 1/ [2 me o2

Finally , stochastic linear programming is an example of a union
of all three fields . .
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Queueing theory is a field of probability widely explored in opes=
rations research . However , in its present form it is a descriptive
field i.es, it does not have the "normative" framework of optimization
applied to it . Of course there are queueing problems involving mini-
mization of costs and other economic(therefore extrinsic) measures,
Intrinsically we are interested in optimization problems in queueing
theory whéreby existing results are further exploited, For example ,
under various assumptions on the input distribution to a single serv-
ice~channel queue one often derives expressions for the waiting time
distribution as a function of the service distribution. In many cases
it is desirable to find the service distribution ( appropriately con-
strained and qualified ) which yeilds the minimum expected waiting time,
Then in practice one may attempt to set up the corresponding type of
service which minimizes the expected waiting time . Another example
utilizes the distribution of a busy period : how does one minimize
the expscted idle time of a service channel by fixing the service
distribution and varying the input distribution? To find the combi=
nation of input and service distributions which minimizes the expected
waiting time is yet another problem . To our knowledge no such prob-

lems have yet been attacked

The formal approach of the next section given rise to variational
problems . We will be happy if the reader is sufficiently interested

to contribute to this new chapter in operations research ,

2, Statement &f three problems

(a) Given the conditions in the steady state :
(o 0]

W(t) = S W(x)u(t-x)dx ( Lindley's equation )
Bcﬂ
u(s) = S b(y)a(y-s)dy s £0

(6]
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o0

u(s) = X b(y+s)a(y)dy S =0
[~]

o
k —
oS t a(t)dt -.OLk
[+ 4

ftk b(t)at = B, , k=0 , 1,2
4]

where ¢ = po = 1 and where W(t) is the probability of waiting for
a time of length t in a single channel first come first served queue
with input times density function a(x) and service time density
function b(y) , find a(x) and b(y) which minimize the expect waiting

time .

<0

S aw
et e= t ——— dt
o

dt

We may simplify the above problem by assuming that the distribution

of input times is known to be poisson i.e., a(x) = ote=®% | Note
that it is essential to prescribe some of the moments of these dig=-
tributions to avoid results which cannot always be easily implemented

in practice such as obtaining a Dirac delta function for an answer.

(b) If we assume a(x) = @e~®X then fortunalety we can obtain an
*
expression for W (s) the Laplace transform of W(t) , using the integro-

differential equation of Takecs . In that case we have

1-p2

k3
N W (s) =
s.E 1-aL1-b gs)]}
s

u
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where P is the utilization factor and W(0) =1 - 2 and p¥ (s) is
the Laplace transform of the service time density function b<{y).
The problem is to find b(y) subject to

o

jtk b(t)at = P 3k =0 ,1,2

o

which using the inverse transform

c+ico

1 *
1 e P A g et W (s) ds ;
2 17 i cmioo
minimizes
o0
: o0 3
5 ¥ 1 5 M T¢ ) e ds at
% R
- 7
e S . S e

S

(¢) Another example uses the generating function ﬁz) of P, the
probability that there are n customers in a single channel first come
first served system in equilibrium . If B(s) is the Laplace Stieltjes

transform of BGt) the cumulative service time distribution i.e.,

&0

B(s) = fe"“ dB(t)

-at

and if a(t) = Qe then it is known that

(1-.2) B [¢ (1-3))
1= {1-3[_’ a (l-zS]T
1-2

P(Z) =

Since P (z) =§_— P "
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the average number waiting in the system is given by

’d;ﬁz)

dz : zZ =1

L =

The problem here is to find B(t) which minimizes L subject to

[va)

Stk dB(t) = B, , k = 0,1

o - k’ - ,"...
3. Remark about the solution

The solution of such problems is often derived from variational
methods applied to integrals subject to contraints . Here however the
task is by fio means easy i.e., the conditions cannot be written down
in a next explicit form and even if this were possible , the result
is likely to be a system of integral equation which is usually solved
by approximation techniques , all indicating that this is a nontrivial

field for investigation .

Necessary conditions for the second problem with Lindley's for-
mulation using the variational approach may be reduced to one of

finding b(t) which renders the following integral stationary .

o0
2

§{t Z:I +%=0 )j(tk b(t) + A() [W(t)-

t 2]
S W(x) Sb(y—x+t)a(y) dx
0 o

L (g P
e s e
. w(x) 50 b(y) a(y+x t)dyd@}c]t %‘—:O k Pk

where de_dt with the appropriate argument is used for a(t). Here
lk,k = 0,1,2 and k(t) are the usual Lagrange multipliers used in

variational problems .
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Actually we begin by finding an expression for the integral % in

terms of the function b . Inserting the expression for a(y) in the
expression for u(s) , changing variable , etc. we obtain®

" ol
gb(Y)e Y 4y, s Do,

s

u(s) = Né B(s), B(s) = (1)

- 2]
&}(y)e_ay dy, s £ 0.

Thus W satisfies
(v ]

W(t) = S W(x) Qe B(twx) dx , or
0> % (2)
REE)T =10 S R(x) _B'(t-x)dx, RGBS = e"'{""’t W(t)e
0
We note that 00
R(0) = o/.B(0) S R(x)dx (since B(s) = B(0) for séO)' (3)
0
Setting
V(t) = R(t) - R(0) (4)
We see that lusing (3)) o
R(t) - R(0) = o R(x) [ B(t-x) - B(0) ] ax. (5)
0
Since B(s) = B(0) for s £0 , we see that V satisfies
V(t) =QR(0) St C(t-x)dx + ¢ St V(x)C(+-x)dx3;C(s) = B(s)=B(0).

(6)

Solving this for V by successive approximations , we obtain

t
V(t) = R(O){d S C(t=x)dx + a2 S C(t=-x) [fz C(x—y)dy] dx
0 0]

+
0
g 0{,3 St C(bx) [Sx C(x=y) \‘Sy C(y_z)dz} dyj dx + ..-}
0 0

0
(7

* 1 em grat®iul to professor C.B., Morrey for suggesting this approach
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so that ]

t X
R(t) = R(0) {1 + o S C(t=x) dx + ua S' C(t=-x) [ g C(xry)d%] dx+...}
0 0 0

s (8)
C(s) = = S ‘b(y)e_dy dy , C'(s) = -b(s)edds

0
W) = o™ R(t)

Clearly if the function b is uniformly bounded,so is C .
In this case it is easy to show the convergence of the series for R(t)
for each tjio. However we need to know more about the behaviour of
R(t) for large t.

By making the changes of variable (for each fixed t >0)

=y

=z

in the various multiple integrals , we may obtain

4 X N
R(t) = R(o)tlm S C(x')dx"' + q‘ﬁ C(x*)C(y*)da_,

x' = t-x § x' = t-x , ¥!

x' wt-x ;3 y'=x-y, 2"

‘ ¥t
0 (t)
8 * opggg C(x")C(y")C(zN)dVgryrzr  + } (9
(t)
&L= >0, ¥ 50, 0z 1y St
AB('E)SIZO,}’ZOg 220y Oi_ﬁ_){-l-y-{-Zé't;.:.
This can be put in the form
- 5 t t-x
R(t) = R(0) {1+a5 C(x)dx + o g S C(x)C(y)dydx
0 0 0

tex t=xX—

t y
+ d; S S S C(x)C(y)C(z) dzdydx + ....} . (10)
0 0 0
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If we now suppose that a given function b(y) minimizes I as

desired , we can find the conditions on b by replacing

b(y) by b(y,A ) = b(y) +A5(y)63(y) = §b(y))

Then C(s) , R(t) , and W(t) are replaced by

S
ciss A) =c(s) + Al , [(s) =- g Be™ ay
0

R(t3A ) = R(O3 A ){1+d S Clx,A ) dx + a?jé Clx, A)C(ys A LT _}
0 2(t)
Wty A) = &2 R(EgA ), Wy (b5 A) = e [R (53R ) + GR(E3 )]
0
ICA) = Jte“t[(Rt(t;A) + 0R(t: N ) Jat
0

(11

The derivative

W mrr a3 v~
HUWgOLLILT

we must have

I9:(@) =0

Rt can be found by using the form (10).

b(37;0) =b{y) minimizes the integral I, if follows that

for every admissible function E(y) 5

Thus the condition on b is gound by differentiating (11) with respect
to A,and setting }, =05

Now,from (3),(8), etc. it seems that R, and hence W is determined

only up to a factor R(0) = W(0) so that the integral I has that fac-

tor also , so perhaps we must require

W(O;R) =R (0,‘/\.) =1 for all l near 0 .



Then RCt;kJ will be given by the series in the brace in (LAY
But then, from(3) , the function b(y;}s) must be such that

B0
1 = o(.E(O;X) R(x;k )dx , where
: 0 0 (12)
B(O; A ) =B(0) + A S E(y)e'ay
0
As an aid in carrying out the differentiationy
suppose
: t t

£ (el . Crsh ICri \ gy = f (™ ctadotid dayex
i %(t) 0 <0

= gtc(xﬂ\) '@(t-x:l)dx. ff(sw\) = Ss C(y\) dy

0 0

E
sl

- a’

C(x’j\)ﬁ(t—x;f Jdx

ki (T3 =
2t W ‘JD
fz)‘ (t;).) = SS C(x’ )&,)c (y3A) + C (x )L)c(y:)\ )] dAxy
S’S L t-x
=2 )N C(x ?L)c(y,?&)dA i 2 S S r‘(x)c(y;?\)dydx
2() N 0" o

usang the symmetry of A32(1:) in x and y « The higher integrals in (11)

can be differentiated in like manner .

Thus Rt g , and R may be found as infinite series,

tA A
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Differentiating (12) , we get

o
]

oo co
oteB(0: A)e JO R)Ex,'h.)dx +a§>\ (O;X). SO R{xs A )dx

By (03 o &2 :
= _}( R) +dB(0;K) . j R(x;)k) dx (14)
E (05 A) 0 A
Setting }\ - 0 will lead to a condition of the form
co
g A(x) B(x) dx = O (15)
0

The other conditions on E will be

&0
Stk B(t)dt = 0, ' (16)
0

All admissible é' must satisfy (15) and (16). Then the Lagrange mul-
tiplier rule will yield some condition on b{y) which appears to be

expressible only in infinite series form.

Thus we have a procedure for the numerical calculation of bt =

The foregoing example serves to illustrate a possible method of
attack on the suggested problems . It seems clear that in most cases
the use of a computer would be required using numerical methods for
solving integral equations [%Q] °

These problems in which greater opportunity for controlling the
queue is seen , bring queueing theory closer to one of the basic

interests of operations research—optimization .
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