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Prefacet

Dynamic programming is an approach for analysing
multistage decision processes and finding out the structure
of the optimal policy. This note is a simple introduction %o
this approach. It first gives a general description of the
situations where dynamic programming nay be applied. Then,
s number of examples is given bto jllustrate these situations

snd to classsify the dynamic programming technique.



An Introduction to
Dynamic Programming

e e e e e e e
TR N et e W Sl S Sy ) (L i et e e T MR

What is dynamic programming?

Dynamic programming is an approach for analysing multi-
stage decision vrocesses and finding out the structure of the
"policy" that maximizes (or minimizes) a predefined income (or
cost) function,

Historically, it was developed mainly through Bellman's
papers (1950's) as a pesult of his trails to solve cerbtain kinds
of "programming" problems involving time as a significant element.
However, the dynamic brogramming approach is used for analysing
nany static processes that can be formulated as dynamic programming
processes.

In contrast to linear programming, there is no unique
set up for dynamic programming problems, Yet, there are certain
features common to all problems that can be solved by the dynamic
programming approach,

A general description® of the situation where the dynamic
programming approach can be applied may be presented as follows:

A system may be found in ane of a possible number of states.
At each state there is a number gf possible actions. By choosing
any of these actions, i.e., by making a deeision, the system moves
from one state to another in either a deterministic or a stochastic
way. Consequently, a certain income (or cost) is earned( op paid).
The process continues for either finite op infinite number of times,



The sequence of decisions should be specified in such a
¥ay to maximize (oI minimize) tne total expected income (or cost).
4 discouat factor may be introduced To assure that the total expecled
irncome (or cost) is finite even 1 The process continues infinively.
It may also be ilntroduced in finite processes if decisions are nade
st successive bime periods and the present value ailfers from the
future value.

Ths slements of the dynamic programming problen

S + gset ol states. ' S i ;

A ¢ seb of prossible actions, . i e
Noticethat the action may depend on the state.

q ¢ "the law of mption" of the system. It associabtes with

each pair (s, a) a probability distribution ord: a(./s,a).

In the deterministic case q(s'/(s, a)) equals one for a

specified state 8'= s and equals zero for any other state
Q

gt }E E .

(g,a): %he 1mmedlate veturn function, It determines the incoma

S

(or cost) if the system is in state s and setion a is chosen,
0 <3< 1; the discount factor.

=,

The following definitions will be used:
Mo make a decision: is to choose one of the possible actions.
A policy : is a sequence of decisions.
An optimal policys is a policy that maximizes (or minimizes) the
total expected discounted income (or cost) .

Thus the dynamic programming problem as defined above 1s
solved if the structure of the optimal policy is Known,
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Tne solution procedurs is a direct opplication to the
"optima’ ity principle", This principle, as Bellman defined Lt,
says: "en optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from
the firet decision", Or, in otherwords: given the current state,
an optimal policy for the remalning stages is independent of the
pelicy adopted in previous stvages. The direct result of using
this principle is the development of the functional equation tech-
ngue wnich gives the recurrence relation between the optimal wvalue
of the return function in Successive stages, and thus identifies
the optimal policy for each state with R stages pemaining given
“he optimal policy for each state with (n-1) stages remaining.,

The dynamic programmingapprosch has been suecessfully ap-
plied to g wide variety of problems in different fields. In what
follews, a number of exanples will be discussed. BSome of them are
glven mainly to clarify the dynamic programming formulation and
technique, others are presented to give an idea of some possible
applicaticns,

(=)

Example 1 g

(finite-stage deterministic process,)

A person wants to travel from ¢ity I to city X as fast as
possible. Owing to the long distance between the two cities, he
has to make several stops before reaching his destination, AT
each stop he can choose the route to the next stop as shown in the
diagram :

(2) This example is known in Che literature by: "Statecoach Problem"



IV

The number of hours necessary to go from one stop to the
ext depends on the route he chooses as given in the following tables:

To | - o to
ixo e From L fro VIII IX
I 2 4 Fupn II 7 4 6 v L &
II1I a2 £ 4 " X¥L' 16 5
v 4 1 > YIL 12 2

vWnich poubes should he choose in order To go from I to X

in the minimim number of hours?

Prail and errarmay be used for solving this problem, bub
the dynamic programning approach provides an ensier and more sysbtimatic

solutlion,.
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The dynamic programming formulation of the problems

5 = {., Ly wany Kj y lo€s, each cilby represents a possible
state.
let a(s) denote the action of golng from state s to a new state
a(s), then:
A= [a(s )} 8
For example: a (II) =a {III) = a(IV) = V or VI or VII.
i(s,a) = the immediate "cost" of being in state s and choosing
actlon a(s) (i.e., the member of hours needed to go from
s to a(s)) .
For example : 1(V,IV) = 4,

Taxe = 1!

Hotice that the traveller has to make four successive
decisions, HBach time he is confronted by a decision, will be
called a "stage". BSo vhis problem is a 4-glbage decision problem.

Tne stages will be numbered in a backward order. 8o
at the first stage the person is either in state VIIT or in state
IX and he should make the declision X, while at the fourth stage,
he 15 in state I and has to choose one of the actlions II or III or
IV,

Now, what is the optimal policy? In other words, what
is the sequence of pyutes that minimizes the tobal "cost"?

The solution :

Let fn{s, a(s )), n=1, 2, 3, 4 denote the total "cost"
of being in state s (at the noh stage), taking action a(s) and
following the optimal policy in the remaining (n-1) stages.
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I f {s) denotes the total "cost" of belng in state s
(at the R Stage), taking the optimal action a{s) and following
the optimal policy from there on, then :

anE, a(s)) =1 (s, a(s)) + 1(EC5)}

£(s) = min Ii(s, a() + £, (a())]

a(s)
For n = 1, the only avallable action is X ands
;l CFEIE) = 3,
fl (IX ) = 4,
with a¥(VIII) = a®( IX ) = X

Suppose now that the traveller is in state VI. If he
decides to go to VIII his total "cost" will be :
fé (Vi, VIII) = i (VI, VIII) + fl (VIII)
= 6 + 5 = 4,
But if be chooses to go to IX, his total cost will be 3
£, (VI, IX) = i{VI, IX) + fl (IX)
=_3+£|-=?!
Thus, £, (VI) =7 and a*(¥I) = IX,

oimilarly, fE (s) and ai(s} can be calculated for every
state in the second stage. The consequent resultsare:

fE(E! ﬂ(ﬂ)}
al s\ ¥
v | 4 8 4 fviIz
VI 9 7 7 X
V1t 6 7 6 |vIiII

With this information about the optimal policy for each
state in the second stage, the optimal decision in each state of
the third stage can be found, For example, in state 11 3
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£5 (XL, V) =41 (II, V) £, (V) = 744 =11

f5 (XX, VL) =3 (IL, VI) & fE (VI) = 447 =11

¥ CIENIDY =04 (TEs NI # f2 (VII) = 646 = 12
s f: CELY = 1T cid® (II) = either ¥V or VI,

3 =

Proceeding similarly for states III and IV yields the fol-
lowing presults for the three-stage problem:

E} (5: a(s))
; (5) g vi o ourz| £5(9) a%(s) &
11 Ll L1 12 11 |V or VI
III 7 9 10 7 v
IV 8 8 Ll 8 V or VI

In exactly the same way, the optimal decision for the only
state in the fourth stage is found; from the following table; to
be either III or IV:

f4 (5,(s))

| Hgﬁii 1. 11z v | 54(8) [8%(e)

I L3 L1 i 2 & 11 IIT or IV

These results show that at the initial state I, the person
should go to either III or 1V, If he chooses III then he shﬂuld £0
from there to V. From V he . <
snould go to VIII and from there to H. HlE ﬂnnal "cast" (i.es, the
total number of hours he spends to get from I to X) if be follows
Ghis policy is 11 and it is the minimum possible cost. There are
two more optimal roubes that be can follow and still spends only 1l
hours. These alternative routes arg:

L e T el ey VIII] —— X ,
I — IV —— Vil —— I — X »

ancd



Example 2 : "Gold-mining"
(Finite stage stochastic process)
There are two gold mines: F and G. The amount of gold in
she first is x and in the second is y. We want to get as much gold
as possible from these two mines. Bubt we have ©nly one gold-mining
machine which has the property that if used to mine gold in F, there
is a grmbability'Pl{D #.qu: 1) that it will mine a fraction QE(Dierq ]
of the gold there and pemain in working order, and a probabllity (l—pl)
that it will mine no gold and be danaged beyond repair, The corres—
ponding probabilities if it is used to mine gold in G are PE and
(1~EEJ with a fraction r, (D-ﬂ,Pé, r, < 3 s A

The process btegains by ﬁﬂiﬂg the machine in either For G,
If the machine is undamaged, another choice for using the machine
i1 either For G is made, The process continueg in this way for N
times if the machine is undamaged, otherwise the process terminates
when the machine is damaged.

What gequence of choices maximizes the amount of gold mined
before the end of the process?

The dynamic programming formulation:

¢ ;
B = t s=(® 4 ) ¢+ K = (1—r1}k Xy, © =(]-"I'E}“:'-'r ¥
k,,f.? = 0y sewy 11 H k +f? = In 3 IL = O, Tivll H"l]

A :{F, GJ} where : a = F means that mine F is to be mined and
a=G means Ghat mine G should be mined,

g 1 aistfliet,yv), E) ={Pl if st = ((l—rljn{,‘ﬁ')
1-P; if ' = (&, ¥)

a(s'/ (%, %), G) . P, if s' = (X, (L-x,) ¥ )
{l"PE if E':{ﬂ{' ,'ﬁ')
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0 with probability lel

To¥ WiGh probability PE

i(=,a) ¢+ i(s,F) = { Ty Wwith probability Py
{ 0 witn provability luPé .
u

I is the number of stages and they are numbered in a

=]

What is the optimal policy? Lies, what is the zecguence
of choices that maximizes the total expected amount of gold mined?

The solution:

Lt 4 fﬂ{s,a): the total expected amount of gold mined before the
end of the process if the system in state s (at
the n°® stage), action a is taken, and an optinal
policy is followed in the remainign (n-1) stages.

£.0 8 )= the total expected amount of gold mined if the
systen, at the nth stage, is in state s, the optinal
action a™ ig cnosen, and an opbtimal policy is fol-
lowed in the remaining (n-1) stages,

B [ 1iB8) % fn_lﬁs')} 5 and
max E i i{a.a) + fn_l(E')}

i

e £ (s,a)

[ =]

e
1l

L
I

i

o
Eli((u,x}.ﬁ‘} * T (K (1-x,) 0 )}]
max I:Pl{i((“-’: ¥)y F )+ fn_l({l'rl}'x e ¥ )} *

(1—P1}' (0) and, |
Po 3, ¥),6) + £, (e, (1-2) ¥) }+(1-R,)(0) |

Il

I

aax [ By f 400, ¥0,8) + 2, 1 (Qm) 90}, ena
Po {10000, 2, (e ) ]
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By applying this recurrent relation we can find the optimal
poliey and also the expected amount of gold mined 1f this policy
is foll:wed.,

A numerical illustrations

Buppose M = 5
X = 10,0 I = Ad.
Pl = 0,75 Pé = Qx50
r, = 040 r, = 0.60

The states at Ghe three recursive stages are given in
the Tollowing dliagram 3

((ay2)x 3y ) ((1-11)%%,7)
{x1;r)< E((l—rl)x:(l—re) )
(x,(1-1,) ¥ ) (xy (1-2,)° 5 )

Thus in the first stage there are three possible states.

Bince
= iPl i(s,F) if a=F
Pé i(s,3) if a =G
e fl(s) = max [Pl ila 1) aﬂd.PE i(s,&)J .

Therefore, we can find the optimal cholce for each pos-

3lole state in the first stage by calculating flia} and knowing

the corresponding a¥ .

fl(s, a)
\ F G fl(s}_q' a¥
(1-r,)° %,5 . |1.08 3.6 | 3.6 G
(1-ry)x%, (1-r,)y | 1.8 Lodd 1.8 F
x, (1~r,)%y 3.0 0.5 | 3.0 F




T

If the optimal policy is followed in the first stage, the
total expected amount of gold mined in The second stage will be
siven by EE(E,,L:;}:_l For exampie, if 5:({1—r1}x,y) and a=F, then:
£, ((l—rl}x,JJ, F) = Plrlil—rl} X + Pyfy {(1—rl}2x, )

= La8 + (0.75) (3.6)
= 4,5

After calculating fais,a) for all possible combinations
(s,a) the value of fE(s) can be determined, Consequently, the
a* for each possible state in the second stage can be found as
shown belows

fgis,a)
2 F \ o fE(E) El.!
(l"rl)li,:f He5 4,5 4,5 For G
x,(l—ra)y 4,25 2 +95 4.25 F

Proceeding as before, we get the following table for the
third stage!
(For example 3
fﬁ{s,F) = Pyrix 4 Plfz((l—rl} Xy F)

= 3 4 (0.75) (4.5) = 6.375)

fs (s,a)

y F G fﬁ(s} a*

(%X,5) o375 5.725 | 6.375 F




50, bthe optimal policy for the given three-stage probeln
starts with choosing mine F first, and if the machine is undamaged
(the resulting state is {(lurl)x,ﬁ}) the following choice may be
For G, If F is choosen and if the machine is undamaged (this leads
to the state ((lurl}gx,y}), the next choice should be G, On the
other hand, 1f G is choosen on the second stage and if the machine
is undamaged, (the resulting state is {{1—rl}x,(l—r2)y)) then the
following choice should be F.

Thus, there are two optimal polices:
FFGand F G Fo The maximum expected amount of gold mined if any
of these two polices is followed, and if the machine is undamaged,

aquals 6.375.
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Example 3 & "Gold-ming" -~ An infinite case.

Consider example 2 and suppose bthat the process does not
terminete after N stages but continues infinitely often as long
a8 Uhe machine is undamaged. In this case the optimal policy will
consist of an infinite number of choices and we want to use the
dynamic programming opproach in order to find out the structure
of Ghe optimal policy.

Notlce that the dynamic programming formulation of the
problem is the same as that of example 2 except for having N =65

How, let the expected amount of gold mined from the two
mines, 1f the system starts at (x,y) and an optimal policy is fol-
lowed all the time, be denoted by £(x,y). Then £(x,y), if it
exlcts, should satisfy the functional equatidn @

f(x,y)=max [Pl Erlx-rf{(lnrle,;r}} and P2 Lr23r+ f{}:,{l—rE) ;,r}} ] 5
where O ﬂ'Pl, .Pztr 1 and 0 < ryos rE~< Le

Before using this functional equation to find the structure
oL Uhe optimal policy, we should prove the existence and uniguencess
off £(X,¥). This proof utilizes certain properties of the saquence
f,(x,7) as defined in the finite-stage case (example 2) o

Proof of the existance and uniquencess of Playr)s

I =00

1 .E o :
i+ The seguence {fﬂ(g}} 18 monotone
Il

Proof by induction
fl(s) = 0 :fu(s)
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Assume tnat £ (s) > £ _,(s). Then, we want to prove that £

Inis),

n-1 n+l

(8)>

But {fn+1(3J — fn(EJ) may take any of the following values:
[Pz + Pyfy (Qerpdo, 6D ) = [Bymga + Byt g (Qmyd 3 )] (1)

or
[P2r2~(+ Pt (o, (1-v,) 8 )] = {PEI*EIF + Pof (o, (1-r5) 8 )} (2)
or '

[Brzy %+ Byf (L)) x 7)) '[Pafe‘ﬁ”’ Pyt (K, (-2 7))
or

[PEI-EH' + Pyf (K, (1-2,) ?.TJ] - [Plrlax + Pyf S ((-r)K » 3 a

By the induction hypothesis, it is clear that

(1) 2 0 and (2) z0, If (£ ,(8) = £, (s)) equals (3),
Ghis means 3

,_/Plrlw't Pyfn ((I-ry) ey ¥ )] &szra‘ﬂ' + Pofp(ed s (1-m) )J !
Thus,

(3) _}[PEI:-E]' + Py £, (1-25) ¥ )] 5 [PEI'E a’+P2fn_1(q, (1-r,) ¥ ;]

7 0 by the inductiﬂnrhypathesis,
Similarly, if [fn+l(5} — fﬂﬁal] equals (4), it means :

[PErE Y+ PEfn( Wy (1—-1:2) ] )3 > [Plrlnu: + Plfn((l-rljnt : B )_] i
Consequently, by using the induction hypotheses,

4) = 0O,

S0, [fn+1(s} — fn(sjlgnfﬂr all possible cases.

-

Il =g

Thus -{fn{E}] is a monotone increasing segquence.
0 s o

(3)

(4)
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Il= ¢o
2: The sequence {fﬂ(s)j 18 bounded from above for all s
=0
in any finite rectangle

Fredf by inductions
Since o < Py» Pye Ty, s < 1 then P79 and D, T, ¥ are
tounded for all ( : ¥ ) in any finite reciLangle.,
Let hlax ipl I'l ol » P’g I'2 -H’} 5 M .
Lhen flLE) < /"] a ( 9
assume thav [f.ﬂ {5}_ — fn-l (E)J 5.. pl. pE M - .( + k= nel.
Then we want to prove that i
; o] n i G
[fIHl (8) - fn(E)] < qnﬁ? where q = p; pej, i+j = n.
Consider the values that [fm_l.(ﬂ) - fn(sj] may btoke ana notice
thats
(1”‘1}[f‘( (Tap-)oh.8) = £. [ {lov Y ‘Eﬂ'&lp ‘ilpkﬁj=
=l "n 1455 n=-1 177% 1 2
n
a M -
K+l n é
Plf Pa = a M

< vy [2, CQA-2DRO-£ ) ( (Ar) ] <

Plfﬂ' M = M
) g v, [ £, (%, At )% ) £, («,0r0)]<
€  xe1 n

Py Py M = a M-



B

Thus,)ifn+l (s) - fnﬁﬂil < i?/ﬂ for all s in any finite rectangle

i h
..om e T
o = .[f (s) = £ (E)]E M M=o
= ‘n+l 1 M
g ._"::-_- -‘-':—L-—'-:-E fsince ogq <1 o
¥l
But fia'{fn+l (8) - fn{s} ) = fm(s).
i Bls) e {EI for all s in any finite rectangle.
LI m [ 1 ==
N= o
o's The sequence {fn(a} is bounded from above for all
M=o

s in any finite factangle -

3, fnis) converges uniformly to a finite f(s) which satlsflies

the functional equationt

f(s) =max E { i{s,a) + £ {Q}I -

=

Proof:

Parts 1., and 2, prove that lim fH(E} exists.
N=w

Tn order to show that the convergence is uniform, consider

o i (s) = £ (s) )3

i+ L
Since ( fn+l (8) = fﬂ{s} i G- % qnfﬂ for all s in any finite
_ ‘rectan zle.

= - — —M"—-- for all s in
Then i {fn+1 (s) fn(sj ) ol g any

=g

finite rectanzle,



Rl I

Thus, £_(s) converges uniformly for all s in any finite rectan-
s .
gle, and the uniformty of convergence ensures that f(s) =

lim fj{s} is a solution to the Tunctional equation:

T o=

£(s) =mex B }i(s,a) + £(8)]
a

4, f(s) is the uaique solution for this functional erustion.

Proofy

o

Let F.s) be any other solution that is bounded for all

57 in gy Tinlte pectangle . Thent

Eﬁ{s) - fﬂ(é}]_g ﬁf for all 3 in any finite rectangle

: n-1 : i T
Assune that\F(s) ~ fp_l(s)fﬂ'q M for gll s 1n any
finite rectangle ., Proceeding in a way similar To that used 1n

wert 2., We can show That
IF{E} - P QEJJ:E qF;ﬁf for all .8 in any finite rectangle
o 3 ' g
b4 EE.[F(S) - fr(si] converges absolutly and uniformly .
A =0 dlm
bt fﬂ(s} converges uniformly to F(s).

‘s F(s) = f(s) for all s in any finite rectangle.

The structure of the optimal pollty:

ter proving the existance and uniqueness of f(s) (for

‘ T 0] 1 ] v l e Lons
O <Pys Py T T5 < 1 ) we will use the functional equation

f(s) = max E{i(s, a) + f(ﬂ’)‘} to find the structure of the

L=

b
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optimal policy in the infinite state gold-mining problem,

It is clearly noticed that if x is much bigger than ¥,
¥ will be the optimal cholce. But each time F is used, the amount
of gold left in it ﬂecreasaé till it reachs a certain level
where the expected amonnt of gold mined if F is chosen once more
equals the expected ampunt of gold mined if (3 is chosen instezad.
Similarly, if ¥ is much bigger than x , G will be the optimal
choice and mining it repeatedly will decrease the amount of
gold in it till it reachs a level where the choice of F is
"eguivelant™ to the choice of § . J

S0, if we consider the positive (x,y) quadrent| ¢
we expect it to be devided into two regions: F and .
(Region F is the region where F is the optimal F
choice., Simelarly for region G , )

The points (x,y) on the deviding line L should satisfy
the equality:

T, + Py fﬁl—rlj X3¥ ) = b, T,¥ + Py f(x, (l-ra} ¥

We notice also that if (x,y) is on L and action F is
taken, the new state will be ( (l-r,)X,y) which is in Psgion
G. Consequently the optimal action & will lead the system to the
state ( (l—rI) X (l—rE} ¥) and the expected amount of gold
mined ( if an optimal policy if followed from there on ) will bet

PIrl ]E + Pl (PEI'E g + f( (1"1'1)3: (l-ra} & ) )-
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But if at (x,y) , on L, action G is taken moving the system
to state (x, (l—ra) ¥) which is in segion F, it should be followed
vy action ¥, the system will move to stabte ( (l—rl) Ty {l—rg) )
and the expected amount of gold mined will be:

(X p,f ( (l—rl} xy, (1-r,) ¥)).

P2 T2 7 ¥ Pol p
It is clear that starting at (x,y) on L, the expected
anount of gold mined should be the same whether I is chosen first
then followed by G , or G is chosen first and then followed by
F, 1se., for every point (x,y) on L, the following equality
holds:

Py Ty X + Py {:PE r, ¥+ py £ ( (1-r))x, (1-7,) y)]

= Py T, ¥ + D, [:Pl r, X+ py £ ( (1—rl)K: (1-3233}]

r 0 i = PL.Y
Thid yeildss Sl o B

Bince this equclity defines L, then any point (x,y) that
satisfies the inequality:
P53 &

:;, o
1l - Pl 1l - Py

lies in the F region and the optimal choice there is F. If the
lnverse inequality holds, then the optimal choice will be G.

S50, the structure of the optimal policy in the infinite-
stage gold mining problem is given by:

Par, X PTh ¥
Choose F B i ! /?.#' 22 and
1l - py L - Py ,
Choose © if ”Plrl 2 o PEarEF



Example 4 i

A producer of a certain commodity wants to maximize
his expected profit over a certain number of months, Every
month he may be in either of two states. He is in the firat
state, Sy if ths commodity currentlyproduced is successful,
He ie in the second state, S5y 1T the commodity is not success-
ful. Each monch at any state, he has to choose one of two act-
lons., I f in state 8, he chooses action a, (s;) [ad?artising

to increase the possibility of continous success | he moves,
in the following month, to state 8, with probability 0.8 and

profit 43 and to state s. with probability 0.2 and profit &4,

2
Choosing action ay (sl} ZTHQ advertising] leads to state S84
with probability 0.5 and profit 93 and to state S, With prob-
ability 0.5 and profit 3., On the other hand, if in state Sq
he chooses action ay {EE} [mﬂre research to improve the pro-

ductian{] he moves v¢ svate 8, with probability 0.7 and profit
13 and to state S5 witih probability 0.3 and profit -19, Cho-

osing action a, (s,) [na research | leads to state s, with pro--

bability O.4 and profit 3; and to state with probability

S2
0.6 and profit - 7.
What is the optimal policy that he should follow in

order to maximize his expected profit over four months?

The dynamic programming formulations:
S::EE:L,EE]

R This example is known in the literature by:
Toy laker example.,
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A= Jay(s), a0 ¢ 3=1,2]

q. q (Sl 4 El, 3.1::’ = 0,8 qfﬂl / EE 3 3—1.} = 0.%
q {EE / sl,_al) = 0,2 q(sE / Sy alj = 0.3
q (51 / 8y a5) = 0.5 q’sy / S5 aE) = 0.4
q [EE / 514 aE} = 0,5 q(sa 2 S aEJ = 0,6
L £8; a) 2
i(s; , a;) = ,4 with probability 0.8
4 » " 0.2
i{sl : aa) :E g " 0.5
5 T - ]| 0.5
i(s2 ; alJ =2 1l M H 0.7
-19 " I 0.3
i(sE 1 aE) =2 z 0w 1 0.4
-7 n 1" 062

=1, N=4, and the months are numbered in a ba3kward
order,

The solution :
let £ (s, a) = the total expected profit on the 7 o1

month if the producer is in state s, chooses action a y and
follows an optimal policy in the remaining (n-1) months.

th

Let £ _(8) = the total expeclted profit on the n month if

the producer is in state s , chooses the optimal action
o (s), and follows an optimal policy in the remaining (n-1)

mecnths,
o fn (Ej ,8) = E i i {sj,a} + fn—l (Eﬁ:}-} , and
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fﬂ (sj} = max E 11(5:] y a) + fn—l (Ek}}

a

a
Wheres

Bi (s, alJ = 4

E i (El., 32} =G

E 1 (52 y al} = =5

El(sa’aejz-‘ar

Fornwml: f (8

,a):Ei(Ej,a).

= max ]:E i(sj,a)+ %q (Bl: / sj,a) fh_l(sk}j[ .

L
£,(s,2) £,(s) a¥(s)
a, (8) 65(8)
4 5 6 ay(8,)
_5 “3 —5 aE{EEJ

2
For n=2 3 fE (aj,a} = B i {EJ,aJ+£— q(skfsj,a) fl(Sk)

e £p(8y,a)) = 4+ [(6)(0.8) + (-3)(0.2)] =

£2(81085) = 6 + [(6)(0:5) + (-3)(0.5)] =

e fE(sl}

= 8,2 and a.I(El) = a8y (8y)e

8.2
5.5



similarily for 8y s Thus

T

a fa(s,a) £5(8) a* (s)
. a.(8) | ax(8) |
51 8.2 5@5 8.2 al(El)
S, -1,7 -2,.4 -1,7 a,(s5)
2
For n = % ¢ f§ (Ej,aJ+é§I qﬁsK / Ej’a)fE (ak}, Then
a M £,(a) | a%(s)
a a,(8)} a5(s)
5 10.22 | 9.22 | 10.22 a,(s;)
S5 Q.25 | 0,74 0.2% al(sa)

T 5 .2 [ ]
For n = 4 fq(sj,a} = E 1(sj,a} + ff{ q(ﬁkfﬂj,ﬂ}f5(5k)c Thus:

8 £gBen) £,(s8)  |a¥(s)

S a,(s8) = | a,(8)
8y 12,222 | 11,275 | 12.222 | a,(s,)
S, 2,226 1.226 | 2,226 | ay(s,)




=Dl

50, the optimal policy <for the 4- stage problem is given by:
| Choose action ay (whether in state 8, or EE} in all
months except the last one where action a, should be choosen.,

I £ this policy is followed, the expected income will be .

12,222 if the producer starts at state 8y, and 2,226 if he

starts at state 52.
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Example 5 1 ( Seagonal emvloyment),

In sesasonal industries the work load for certain Jjobs
is suoject to considerable s=2asonal fluctuations. Suppose
that the minimum requerments for manpower in a certain job
during the four reasons of The year are as follows:

Sgason Summer  Autum Winter Spring
Requerments 220 240 200 255.

Suppose also that any employment above these levels
18 wasted at an approximate cost of $100 per man per reasocn,
On the other hand, the estimate of hiring and firing costs is
such that the Uotael cost of changing the level of employment
from one season to the other is $10 times the square of the
difference in employment levels, ]:Fractiﬂnal levels of em-
ployment , i.e., part time employments , are passible{]

What should be the employment level in each season
that minimizes total costs over successive years?

Dynamic programming rormulation:

It is clear that the employment level at the spring
season should be 255 since this is the peak season. So,
spring will be considered as stage 1, winter as stage 2,
auwtum as stage 3, and summer as stage 4. At each season,the
employment level in the previous season represents a state
and the employment level chosen for the current season repre-
sents an action.

S0, we have a deterministic process with an infinit
numper of possible states and an infinit number of possible
actions



e

5 = [ 8.3, 0 .= 8 = 25 j y
A={ay o < a = 255% .

Let ¥ denote the minimum requerments of manpower at season
Mo

e'e 1 (8, & n) = 100 (an - rn) + 10 (an - 5)2'

The solution:

Let fn(s, a) = the tobtal expected cost in season n if s
is the employment level in the preceeding
season, a is the employment level chosen
for the current season, and an optimal po-
licy is followed in the remaining (n-1)

seasons,
fn(E} = :Eﬂ fn(E,a)
. 4% (s,aﬂ) = 1D(aﬂ55J2+lﬂﬂ(anfrn} + fn_l{an) s and
£ (8) = min { 10(a_ -8)2+100(a_-r )+f_ - (a }}.r
n _a.ar " an~Tn n-1""n

Since the nuntar of states and the number of possible
actions are infinit , caleulus will be used, in stead of dir-
ect enumeration, in order to find the valus of a that minim-

izes fn (s, an).

Note: It is enough to consider one year since successive yearrs
are identical, Notice also that at the end of any year, 1l.e.




L

after the last stage of that year, the total cost of the opl-
imal policy in the following years is a fixed constant and
therefore can be omitted from consideration., Thus, £y (s,ay)

is given by @

f1(s1al} Skl | 2 (al - E}E + 100 (al - rl).

Tor. n = 1 1%

It is clear that af = Iy = 255, then :

S fl(sJ a

H

<255 | 10(255-3)2| 255

£, (8,3,) = 10 (a, - 8)% + 100 (ay- Tp) + £y (ay)

110 (a, - 8)% 4 100 (a5-200) + 10 (255-a,)°

¥ = mi o
5 (8) M, 13 (8, 85)
2
L £5(s, aE} = 40 a, =20 8 - 5000

2%
3

@ £, (s, a,) =40 > o
g O



o "o Iy (a5 aEJ reachs its minimum if ?rz. fe(s, aEJ = 0,
= _8 + 250 2
2

Yls 3F ag

But, since a, > 200 , then a3 equals s : 250 if this

value is ;; 200 , ls8, if 8 = 150 ; and az = 200

othervise .

o’ s a; = {-5 +22§D 1f s = 150
200 if s < 150.

Ao 2508) ={—% (250-5)%+-£(260-8)%+50(5-150) if &8 = 150

10 (200-5)2 + 30250 if s < 150,

50, the results for une two-sbage problem are:

5 £,(8) | a5
s < .150 | 10( 200 - s}E + 30250 200
150 < s < 255 7 (?5ﬂ~-s)2+§(26{1—5)2+50(5—150) S + 250
2
Forn = 3 3
o 83 2 240 ( = 150) , then

fﬁ (s, ag) = 10 (a5 - s)% 4+ 100 (a5-240) + £, (a3)
= 1D{a§—s}a + 10&(35—24DJ+g(E5D~a§}a+g(260-aa}2
+ 5O(a3—15ﬂ)



T i

£, (#) = min { £, (8, aﬂ,})}

4o €€ 155

2 f5 (8. az) = 30 ag - 205 - 2400

R

e f5 (s, ;13)::5{] T

aat

o s fi,}( S, E‘_?;.) reachs its minimum if "o fﬁ{a,aﬁ)zﬂ, Ll

a4,

irf 5.3 = Ei + E‘[}Q
3

R F : s ;
"o 8y =¢ 25 3 240 if s z 240 Ef 25;24{:: > aunj

240 if 8 < 240

and

£5(8)= g;g (240-5)°+(255-8)2+(270-8)° +100(8-195) if s 240

10 (240-8)% + 5750 if s < 240,

220

£
W

e Ty (8y8,) = 10 (5-8)% + 100y~ Ky) + £5(a,)

=(10(a,,~8)7+100(a, ~220)+10(240-a, )2 +5750
2 a, < 240

LlD{a us)2+1DG(ﬂ -220)+10 [ (240-a, )2+(255~a, 2

i i 10 " 55=ay, .

¥ {E?Dwaq)z + 100(5.4-1951-' if 8, > 240 .



In the region where a, < 240 3

i fll- (E, E.lI_J P
oa, =20 (2 g - 8 = 235)

But , it is known that s = 225 (spring employment ) .

ey £,(8,3,) = 40 (a,-245) <o for all a, = 240.
'E’ﬁ-r.r

»"« 1in this region fq{s,aq) reachs its minimum at a42240.

In the region where 240 = a, < 255

K £,(s, 3,)

2a, Z%giu a, - 3§-225] .
Z

2 £, (88 )= BO O,
Al i

.'s f,(s,8,) reachs its minimum if L) f. (8,8, ) =0; 1.8,
i 4 b~ & I
if 8, = 35 + 225 u
i
Since s = 255, then fnis, aq) reachs its minimum in this regicn
at a, = 247.5. Since this region includes a, = 240, then
g, = 247,.5 minimizes f, (s, a,) over all the region 220 € &,%
255.

1‘-5 E.: = 24?.5 3 and

fq' (255) = 9250 .0



Bl

Therefore, the optimal policy 1s 3

x x E 3 E .
dy = 247 .5 35 = 245 , a5 = 247.5 4 &y = 255, with a

total estimated cost per year of $9250.
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hxample 6_:  Inventory problem - finite-stage case 1

In spite of the storage cost and the tying up of cap-
ital, keeping inventories is a common practice in the business
world for different reasons, such as : the uncertainity of
future demands, the flcutuations of prices, and the economics
of scale in production,

In the case considered here, we will assume that orders
to increase the stock level are made at the begining of each
of a finite number of equally spaced periods , at a certain
cost, Orders are assumed to be fulfilled immediatly . During
every period , demand decreases the inventory level. Demand
1s a random variable with a known densiiy function, and de-
mands in successive periods are independant and identially
distributed . If demand happens Lo be greater than the ava-
ilable stock , it should be satisfied at the following pericds,
and a penalty cost should be paid., In addition, there is the
cost of holding inventories,which includes the apportunity
cost,

The question Ghat needs to be answered is : " How
much Go order at the begining of each period in order to min-
imize the expected total costs 7 "

Notation 1@

X, : The stock level at the begining of period n , before
ordering,

Y. =X & The stock level at the begining of period n |,
after ordering,

+"o ¥, =X, Z 0 18 the quantity ordered at the begining of
Periﬂd Il



L v =
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— 55

o : Holding cost (per unit, per period).

Penalty (or shortage) costs, (per unit, per period),

¢ t Ordering costs (per units).

L]

Demand, it is a random variable with probabllity

density ¢ (d)!‘) 5

L(yﬁ) :  The expected holding and penalty costs in period n.

L
o &

50,
+ L

i, -
1) = (5 @) (R g2 v @@ g it
& J

n -:1;1 o

[Gv,) @ () dg if ¥, <0,
<]
the expected cost in the nth period equals c{yn-xn}

(¥,

Dynemic Programming formulation :

8 =

o

-
LR

(>

{ Xy —m <& X oo } , X is the stock level before
ordering.,

{3‘ 9 X Yy oo j , ¥ is the stock level after

crdering.
(8,2) =c(y-x) + L (7).
?(ET / s?a}.z l qul) where 8' = 31}_

O otherwvise |

= 1 , and the periods are numbered in a backword order.
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The solution

Let fn(x,y) = expected total cost for n period process
starting with an initial stock level x , in-
creasing it up to y , and following an opt-
imal ordering policy in the remaining (n-1)
periods.

fn(x) = expected Total cost for n- period process
starting with an initial stock level x, and
following an optimal ordering policy.

Then 3

fn(x) = min fIl (y,x)

=X

=mwin {e(rxsnmr [ £ G0 G

Yzx
and
fl(x} = min { e(y-x) + L (F):]
IZA
= min | £,630]

Forn =1 g
Since holding and shortage costs are linear, then L(y)
is convex . Consegue.btly fl(x,y) is convex and reachs its

bnique minimum at 7, which is defined by :

d fl(x,yj = ‘o at yzfi :
dy

50, the optimal policy is to order up to the level §i y LaBa,
to order max [j(Elhx) ] G] ;



For n = 2 s
fE(:{} - D;E; I c(y-x)+ L(y) +,;/ fl(:'h;'t) @ {91) d'aa'}
= min £ x5
A

It has been proved that if a function G (x) is convex,

then the function g(y) = min G (x) is also convex, Using
; JzX

this result shows that fl(x) is convex and conseguently fE(I,H}
is convex, So, 1 reaches its unique minimum at'fz which is

dafined by :

d fa(}:.:-:fj = 0 at Yy = ::,TE

Thus the optimal policy at the begining of the second
period is given by : order max [T (7, =~ ¥ q]

Foxr n s 2 3
Repeating the sames argument for any n > 2 , we reach
the conclusion that the optimal policy at the begining of

period 3 1s given by: order max:[(y —E),Dr] , Whers yn

is defined by :

d f (x.y) =0 aty=73_s
day i
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Lxample 7 ¢ Inventory problem , Infinite - gstage case,

If instead of having a finite number of periods we have
an ifinite horizon , we still can analyze the inventory pro-
blem under the same assumptions of the previous example except
that we should have S« 1 in order to avoid infinite costs,
Let £(x) = expected total discounted costs, starting with an

initial stock level x and using an optimal ordering
policy.

Then , £f(x) should satisfy the functigfal equation
f(x) = min [ c(y-x)+L(y)+ 3 [f{;r—i) c@{;\) dj&j ‘
yzZx | s
It has been proved that if fn(xJ is radefined to be :

2,60 = min {eRamt p [T G-Dep ),

Yz i e

then ,-[fn{x}} is a monotone increasing sequence , bounded

n=p
from above | because (3 ‘:’.] , =.3d converges uniformly for

all x in any finite interval., The limit function f(x) is
convex and is the unique solution to the functional egqguation 1

&
£(x) = min { e (/-2 )+L(y)+ > f f(:,r—j\} ug{l) d} } .
H‘.;K (¥
It has also been proved that the optimal policy for

the infinite period process is given by @

order max [(?Lx),ﬁj' 3t the begining of every period, with
— :
Yy defined by 1@

c(l- )+ d I(y) =o0 at Y=Y o

g
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