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) MOLEBENTS



(2)

(1-1) lioments around thne origin:-

mr(x) = 7 i (ungrouped data)

Bl Bl

MR ( grouped data )

For grouped data X; denote the mid points of The

intervals and f; the corresponding frequencies

(1-2) loments around the mean:-

- 3 o ..3; T o at A
mr(X} = n**-(xi X) (ungrouped data)
= i3 ¢ (x.-x)¥ ( grouped data )
b n.:'.~ i i br p
Vs
Remarks (i) mo(x) = m@(x) =1
/ —
(ii) ml(x) = X = the mean
(31%) ml(x) = 0
::32 = the variance.

(1V) my(x)

(1.3%) Bxpressing mr(x) in terms of m; (x)
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Remark In the case of frequency distributions with equidistant

intervals we replace the mid-points X5

X, - a
di = ———zf--

where "a" is an arbitrary origin

Wﬂ" is the length of the interval

Then

mf(x) = §% mr(d)

(1.4) licasures of sk:iwness

7 2 5
B m. it}
1 5 / 2
ﬂ’ v g
. _ I £
(1= /151
Measure of Kurtosis
: . 2
. = 0, /i
/e i‘d-/ 2
e _ .\_: s g
b2 Tofig.s"

by di where

% Intervals fi di di;_ 615 diq’
10=20 10 | 1 = 1
20-30 18 0 0 0 0

| 50-40 14 1 1 1 1
40=50 8 2 4 8 16

| 50 20 56 72 152

m_(d) Rt P P
= Colt 1.02] 1l.44 3,04
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n,(d) = 1.02 - (0.4)% = 0.86
ms(d) = 1.44 - 3(1.02)(0.4)+2(0.4)> = 0.344
m,(d) = 3.04 - 4(1.44)(0.4)+6(1.02)(0.4)2-3(0.4)% = 1.6394
my (x) =.€_mf (@)' " + a = 10(0.4) + 85 = 29
m,(x) = 8% = 10° (0.86) = 86
n;(x) = 107 (0.344) = 544
m,(x) = 10% (1.6394) = l63%
fi = (344)2/(86)° = 0.1860
11 = /0.1860 = 0.43

& N, = 16394/73% . = 2.22

S Vs = fim3 = 2.22-3 = -0.78

Exercise given the following frequency table, calculate the
meen, the variance and | ; & {75

i Intervals : 4 Intervals i
I
23 = ¥2 5 135 = i3 209
v =90 21 175 - 1% 8l
95 -115 78 195 - 215 21
115 -135 182 215 - 235 5
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(II) FUNDaiNTAL CONCLPTS

OF PRUBABLLISY




e)

(2=1) The Gheory of probability is a branch of spplied mathe-
matics dealing with the effects of chance. If we throw a die
upon a board we are certain that one of the six faces will turn
up, but whether a particular face will show, depends on what we
call chance. Also, if equal numbers of white and black balls
are put in an urn and we draw one of them blindly, we are
certain that its colour will be either white or black, but
whether it will be black, that depends on chance.

The word event which we are going to use frequently is
used to signify sn observation satisfying some specified
conditions. '

Two events are said to be "equally likely" if after -

taking into consideration all relevent evidence one of them
cannot be expected in preference to the other. e.g. in the case
of the urn with equal number of white and black balls, if we
draw a ball, it is equally likely to be either white or black.

In the field of statistical analysis there would seenm

to be two definitions:

(i) Mathematical theory of arrangements which is as old as
gambling & playing cards. The probability (p) of .an event is

the ratio of the no. of ways in which the event may happen
divided by the total no. of ways in which the event may -

or may not happen. This is under the condition that all the
events are egually likely. e.g. in the case of an unbiased coin,
the probability that the head appears uppermost 1is p=k.

Also in throwing a die the probability a particular face will

show is p=1/6.

(ii) Thne frequency theory: If in a series of n independent
trials which are absolutely identical, the event E is found to

occur in m trials, then the probability of B is %




KF)
This gives us a way to0 estimate probabilities from experimental

results in a simple way.

; . I . .
As n lncreuses 3 tends to p, i.e. p = 1lim % .
) i
n =z fa.

(2-2) Definition (1) Fundamental probability set (F.F.8.). is
thet set of individuals or units from which the probability is

calculated.

In the case of die, the F.F.3. given by the mathematical theory
of arrangements would be 6., If the die is biassed in spme way

and it is necessary to estimate a probability from the observa-
tions, then the F.P.5. would be the total nuuber of throws of

a die.

Definition (2) hiutually exclusive: Two events El,Ea are

said to be mutually exclusive if no eleument of the P.F.S5. may
possess 00GL 4 ,&,. In other words the two events do not
occur Gogether.

Remarks (i) pp | E1+E2§ meens the probability of E; or L.

(ii) pp ;3132" means the probability of B, & B..
- Lo ) d

( :
]

(2.3%) Basic theorems:=—

In the following theorems we are going (o assume that
the fundamental probability set N, consists of

Iy elements possessing &y

1 " i
IlZ .E:2
< 1" i B P
a hl & &y

(where L, means the event E. does not occur)

E ther words N = +0~+0- ~+0
In other words N nl ot 5+I
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Theorem (1) If E,, E, are mutually exclusive and the only

possible events, then.
pr_,iEl\+ priﬂa} 5%

Proof:- Since the two events are mutually exclusive then
ny, = 0. Also the two events are the only possible then n = 0.

Thererore
nl + ng = N
n, n,

; e € e Bolilas  Lien Yaa
‘el B *PTWE“P%{%E’;] T | i
) n; + 0, + N,
. N
- S E, + B
e B

Goxr, -If El,Ea are mutually exclusive them

Pr )ia:l + .::.2} = P;{El} + P, in.aj

In general for k mﬁtually exclusive properties we have
k ) k
"'5 > &) = f\ A
m! 2 mi - Z o ()

L. el i i=1 [



€

Definition Conditional probability of an event Ea given
event El is the proba’bility of Ez referred to the F.P.5. for

By end iC is written Pr‘i 11‘2\ -”‘J_j
‘ ) T | g
Theorem (3) pp  HE; j o El} B B | By

: o +n
Proof:- Pr ‘,ﬁll 2 . el dd T 4
PO - il
HE RS T R
“r i
Pr &, &) =
n
- y i
Br’ ] Fi =
3 - a, + 03,
TG T mE R 2 faa T L
s Slag o2 TR = & - =
L ; 2 ! ‘L/;, N Ly + g5 N
é . I ~Ba.® g 812 Hig
Pr {8, K Pr!E \ = 5 % c B e
I Ta e 25 N 0, + 075 N
) N USIERY y 3 3
s e PZ? Pr .[J2 l .E.l --Pr (/J .Ejz) Pr ﬁll [ .L.l2j
n
12 o
a N S LElﬁalj
(2-4) Iaodependence:s B, is independent of &, if

Consequently this implies (theorem 3) taat 8, is lndepen-

dent of Ji]l
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Cor. I1f B, Ea are mutually independent then

T - | 2 -
Proky &) = PrlE|Er s,

Le

In general

et L 5| igl o }L 17}

]
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I1II Random Variables

Discontinuous random

Variables (Binomial distribution)

Centinuous random variables (Normal distribution
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(3.1) OStatistical data consist of values obtained by measure-
ments of a certain character or characters of & number of
individuals. The observed values are not usually all the .sane,
As the number of observations is increased the proportion of
observations less than a fixed number X say become more & more
stable. from the viewpoint of the frequency theory of
probability this defines the probability that the observed
value of the character falls below the number X.

The theoritical concept which we use to correspond with
"observed values" is the random variable. "Xis szid to be a

random variable, if for any number X, there is a probability

M(X) that x is less than or equal to X i.e.

Pr! x g,.Xﬁ = F(X) exists.

Replacing X by x in F(X) we get what is called the cumulative
dgistriocution function of X.

The properties of F(x are
(). 0 . ¥M2)-& 1 .
S " - " e ©
ety 1AE X = Xy then B(xl) = .b(xe)
i.ee F(x) is non-decreasing function.
As an exaiple, let us take an unbiased die.
If x dconobes the number of dots on the upper-most face, then
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F(x) =0 for . ®« 1
Mx) = % for 142L2
F(x) = -J; for 2¢ x <3
F(x) = % for 3$x<4
F(x) =*32~ for 44 x{5
F(x) = 2 for 5L x4.6
A Mkl =1 for X A0
F(x) | S
0.5 PG
j
0 il 2 3 4 5 & X

(5.2) Discontinuous random variables

Random variables that take isolated values as number of
children. in a family are called discontinuous. Their cumula-
tive distribution functions are step-functions and the heights
of the sleps being equal to the corresponding probabilities.
Suppose in general we have k definite values xl< :{2(){5 v
<X and the probabilities of x taking tThese values are Py
Pos Pgs eees Py respectively, i.e. Pr {_x = Xi} = Dy

i 1 i TR

= ~ c g
If % %% < X; ‘Uhen
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Since the events Xx = X; are mutually exclusive then

K
> pp=1
i=l

A disconfinuous random variable may have an infinity of
possible discrete values
o & 8 0 X-z ’ x_l, xo' Xl' x , * o0
If p; be the probability of such a variable taking X; then
the conditions
T~
Pi";f’o
)
—
S P 1

must be satisfied.

7
]
wxsmple Consider that we havgﬁccins and we throw thew on a
bosrd. The possible outcomes
(F.PeS.) are :- No. of cases | Probability
No head 3 T P T 1 1/8
'y 1 T
One head : 1 i 3 3/8
% 1 i H
¢ H H P
Two heads: { H T H 3 3/8
L T H H
Three heads: H i H i 1/8
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In this case we have n=3 independent trials. I1If x denotes
the number of heads in tossing the taree coins (or Gossing one
coin three times) then

Pr 'x = o | n=3! = 1/8
Pr x'=1| n=3| =3/8
Pr_jx =2 | =3’ =5/8
b 1w 3wl = aA8

It is obvious that - Py

U

1/6 + 3/8 + 3/8 + 1/8

=2 1
Now since the propability that Ghe head occurs in tossing a
sinzgle coin is %, bhen we find that the probabllitics taav
x = 0,1,2,%, are Gheterms in the expansion (% B %)5 respectively
Phis of course is under the assumption that the two faces are
equally likely. On tTue otuner nand if p denotes tae probability
Lhat & nead (H) occurs in tossing a single coin and g = 1-p the
probubility that a tail(T) occurs i.e., p will associated wita
(H) and g with (1), vioen

x P(x)

0 q5

1 3 qa P
2 3 90"
3 0°

5 - —~
p(x) = @ + 3q° + 3qp° + p? =(q+p)® =1
K=0



(1)

In general, suppose the probability of a success in a
trial is "p" and the probability of a failure is q = 1l-p.
Wie can represent these probabilities in a functional form £(X)
where £(/X) = p for (X =1 i.e. a suscess & £(M\) = q for X = o
i.e¢. a failure., The probabilities associated with n trials
which are mutually independent in the probability sense is

£0uhy ) BEORD wans BC0EL)

The probability of x successes & n-x failures in a specified
order is '

éf(l)

P

X ( y =X X n-x
{ £(0) 7’ =P 4q

-

The no. of orders in which x successes & n-x failures can
occur is nCK, These orders are mutually exclusive events,
P R T
waen e n-x

pix) = o » q (1)

This is the general term in the expansion (q+p)n. p(x) is
called the binomial probability distribution

The mean of this distribution is given by

n
k = 5 2 n-x
il SO R
& ODw (2)
Also n
i : ? > g X n-x
Po (x) = 525 X Ce P 4

= n(n—l)pg + np.

; 2
Hence !ua(x) = fua(x) - {/-l;_ (X)}

=  npg.
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i.e. the standard deviation = \/npg.

Exercis¢.
M ocnbahast «f
prove that Pl = Tpq =
[ Gk i 1l- opg
B B B

Relationship between the binomial distribution and the

incomplete beta function.

The complete beva function e
1 n-k /7 (k) /[ (a-k+1)

B(k,n=-k+1l) = < k=l (1-x) d, =oFD)
o -

(k=1)! (n=-k)!

n!
The incomplete beta function
¥ k-1 n=-x
B8 _(k,n-k+l) = = (1-%) ax
P & :
L IQCK,n—K+l) = 5p(K,n-k+l) / B(k,n-k+l)
i &J 1 =
SRR . S— B el T ali
(k~L1)!(a=-k)! o
n! _ A =K el nwx—i(p_y) _
= . X . W = i q" T + ® 8 e 0
(k~1)1(a-x)i k k(k+1)

+

o2 (ne-k)! J
k(k+l) ...(n=1)n
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k n-k k+1 n-k-1
1
” n! p g % nl D q "
k!(n=k)! - (k+1) ! (n=-k=-1)!

CONC B BB BB B +pn

= PK,D f Pk+l’n + see * En’n

where .
Pk,n = Pz {% = K l %}
n
= IP (k,n-k+1) = :E; B €13
X=K

Similarly it can be shown that

]

Ip(K+l,n—k) Pk+l,ﬂ f Pk+2,n + ses ¥ Pn’n

n
g m

Aﬁiﬂ Pﬁ,n (2)

Xx=Kk+1

1

From (1) & (2) we get

L Ip(k,n-k+l) - Ip(k+l,n~k) “ (3)

Fitting a binomial distribution

Mhrowing 5 coins 100 times, the following teble gives the
frequency distribution of the number of coins (x) on which
the head shows uppermost.
e 0 iE 2 2 4 .
£ 2 1% 20 54 22 8
Do fit a binomial distribution we LEE calculate the mean of the

ziven frequency distribution

ie@e X = 2.54
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Then equeting X to the mean of the binomial

i.e. X =np where n =5 we get
5p = 2:84,
cs p = 0.068
S x L B
Sop(E) =(, ) 0.568  (0.432)
3

Wh@.l‘e .o 2031’3,9,4,5.
Values of p(x) are calculated for the corresponding values of
X as given in the table below: '

) (%) Expectea observed

ol frequencies | frequencies
O G.015 248 &
1 V.099 949 14
& OU.200 26,0 20
=) (Ja;‘q‘ﬁ-}. 5452 3“‘
-+ C.225 22.5 22
2 0,059 5.5 8
100.0 100.0

Note: The recurrent relation is

(mal) (=) soier 2 x 5
P . w-i{:lﬂ—-— T p( ) x=0,1,2'0000’n‘_1

S o1}

n -2- (o)

p(2)

f

B -2 »(1)

»
4

p(n) = —F- -B- p(n-1)
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(3-3) Continuous random variables

A continuous random variable (x) is a variable which
may take any real value between certain limits such as age,
height, weight etc. Its cumulative distribution function F(x)
is continuous and differentiable for all values of x. F'(x)

must exist and is called the probability density function of
x and usually denoted by p(x),

i.e. p(X) = F‘(x>o AlSO

p(#:);, 0
& J p(x) dx .—. X
i — 00

As an example, let us consider the normal distribution.
It was discovered by De lioivre in 1733, and at the same time
but independently, Laplace & gauss derived the formula for
this distribution.

The normal curve is a Delt shaped with its ends extending
from ~o2 to + ©@ and has an asympbotic base.

i T .

To construct a mathematical function for this curve,

Q;L_-;O at X ?

0

=0 at y

e B §

= - By(x~ ) (1) B is + ve.
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It is clear that for x /\T,% is + ve and for x>?

%}; is - ve. This means that the function atta ms its maximum
8t x=3 . Solving the differential equation (1) we get

. J%—:—BJ (x- ) ax

i AOE ¥ = =~ -g- (x -T)?’ + log C
-3 =-7)°
y=p(x) =ce : (2)

where C & B are Constants to be determined. We are going to
impose two conditionss~— |

(i) The area below the curve should be equal to unity.
(ii) The variance is 52 ieeo/ta .—.(’52_

The ].-§£ condition implies that

f’a - 33 )%
C e i

ax 1

—_c0 &Q B e,
(- BT
But C & : dx

-

<
no
=3

)

—

B

o G = m' (5

The 229 Condition implies that
| E - 5(x-3)°
3 2
/12-0 g (xnj)_ e :
’
= -g-(x-'f )2

S oo
& j (X;{)a e dx:;a%L &

-

ﬂ

i

i
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Leo B - _6%72' (4)
B > .
b G..«-—----—\fg;_./5 (5)
' 1L 2
= 27,
S p(x) = > e 25"2 (8)
veTy] @

If 2 = -XE}- i.c. the standardized normal variate
then
e
e }2 'ZA
p(z) = == e (7)
VTt

which is the unit normal distribution
Remnarks

(1) Now, if T is known, formula (6) represents a family of
noroal curve.)s having the same mean but differs in their
verlances. IfA is known, the same formula represents a family
of normal curves having the same variance but differs in their
Leans

-
(7 _, . _;\-‘Xl - }é( XC-;_3 )2
2) 1 j e
\ l \’2 ll ]
write 4 = Em—ﬁ-
]
o A B dxIG Zl
: 1§ 1 \ -%2*
- ¢ & X X S Xl - e i [~ az
* { 211 -
” )

= Pr 1z s_izll\J (8)
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Pr thS le is called the cumulative distribution function

denoted by F(x) at x = Xy .

Also ~Zy
R T
' i A e = e
- 8 ‘_ 2T
L e
gl - % 2° |
= —_ e dz =l-PriZ<Z}
Pen g 2
Vem _,

e |

The values of the cumulative distribution function at differeant
values of Z are given in "Tables of the normal probability
function®
mxauples The mean weight of 500 students at a certain college
1s 151 1b. and the standard deviation is 15 lb. Assuming
That tne welghts are normally distributed, find how many
students welight (i) more than 185 1b.

(ii) between 120 & 155 1b.

(i) standardized value of 185 is

g o SO APl PR

I

1- Pr g4 2.5 = 1- .9893
: }

0107

PP L 2F

-

oo The number of students is = 500 X 0.0107 = 5
(ii) stvandardized values

of 120 & 155 are



. L i edsi . E
Zy = = = -2 =-2.0
. S .. S
2, = 5 =1 = 0.3

Pr)i- .0 K 2 go.;}:

= 0.6179 - .0228

The number of students is

Fitting

P

[=%

normal curve

0.5951

il

Pg{zs .3} - E;'gz 5—2.03

= 500 X 0.5951 = 298

given a frequency distribution, it 1s required to fit a

normal curve having the same mean and variance.

(1)

(3)

(2) (%)
Observed | Standarada- - s
Intervals | freguen- ized - Ec.reas ] D:L:gigren- e e
cles values |[pm2€ 2y (&) freq.
o0 =3.00 0.0001
60-' 65 5 -2+ 74 0.0031 0.0050 3.
5= 70 21 -1.83 0.0336 C.0305 20.5
70- 75 150 -0.91 0,1814 0.1478 147.8
75- 80 535 0.01 0.5040 0.3226 322.6
80- 85 226 0.93 0.8238 0.3198 319.8
85- 90 155 1.85 0.9078 O.1440 144.0
90- 95 26 2.77 0.9972 0.0294 29.4
95-100 “+ 3.08 0.9999 0.0027 2e?
1000

The following steps are followed:-
(i) Calculate the mean and the variance for the observed
frequency distribution l.e.,




(i1)

(1331)

(iv)

(v)

(25)
790945
s = 5.445

K
i

Calculate the standardized values for the upper lemits of
the intervals, e.g. the upper limit of the lEE interval
becomes

545

and so on as in column 1)

65-79:945 _ _ 5.4

Calculate the areas below these standardized values e.g.
¢ S

Pr ix;&‘— 2.7% ¢ = 0.0031

Br {xs-—- 1.83}

end so on as in column (2)

0.0336

Calculate the areas corresponding to the intervals .9
by successive subtraction e.g. the area corresponding to
the interval 60-65

= 0,0051 - 0,0001 = 0.0030.

and the area corresponding to the interval
65-70 = 0.0336 - 0.0031 = 0.0305
and so on &s in column (3)

Calculate the expected frequencies N where N is the
total number of frequencies.
e.g. the expected freguency corresponding to the interval

60-65 = 1000 X 0.003 = 3-
the expected frequency corresponding to the interval

65=-70 = 1000 X 0.,0305 = 30.5 and so on as in column (4)
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(IV) Expected Values and Characteristic
Functions
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IV Expected Values and Characteristic functions

(4.1) Expected Values

Suppose N observations each of which may have any one of
k finite number of values X9 X5y seey Ko Suppose further
Ghat i‘l of these observations have the value Xy f have the
value Xy eeo and in general f have the value X5 where Zf =N,

E=%t21; .—2 ( )

=

as D =300, £y / N Ps
K -
.» The guantity X; Py is called the expected value
b

of The discontinucus random variable x which takes the possible
values Xys Xpy eeey X with probabilities Pys PpseeesPy respect-
ively. The expected valug 1is denoted by B(x) fom, =

k
~8(x) = 2 =Py
1=l £
The expected value is a theoritical parameter analogous
to the observed sample mean.

The definition may be extended to discontinous random
velues with an infinite number of possible values, i.e.

o0
T g h
-
For continucus raandom variables

g(x) = x p(x) dx
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Any function of a random variable x, say f(x), is also
a random variable and has an expected value

B o)

random variables and

'é{f(x)}

random variables,

il

Z f(xi) p; for discontinuous

J f(x) p(x) dx for continuous

Note The joint probability density function p(x,y) has
the following properties

(1) pxy) 2 0O g (3
(ii) P,-{o( <K@ X <y<BI} =f p(x,y)axdy
«£ &

o
{111) ff p(x,y) dx-dy=-1 *
—oh

=

(iv) py(x) = J p(x,y) 4.¥
-0
py(y) = f p(x,y) dx

. e
(v) If x,y are independent
P(K,.Y) = Pl(X) ° Pa(y)o

Theorems on expected values

(1) § (4) =4
(44) B lax} =4 FE (=),
(111) E(z+y) = () + { )

Consider the case X;y are continuous random variables then

P e
E(x+y) = J f (x+y) p(x,y) dxdy
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o2 =0

]

X p(x,y)4y dm*-j yj b(x,y)dx"dy
o ,‘

-0 e -
el )

J x p(x) ax +j v p,(y) &y
Zeo
&

—00
x) + &)

i

(iv) If x & y are independent then
5@ 8 )
%0 o®

-é(xy)=J‘( xy p(x,y) dx dy
ot —oP '

oo 5
J J Xy Pl(x)»pa(w ax dy;

m‘
4
L]

-OQ

i

j x py(x) ax f p(¥) 4y

E,<x> £

Remarks _

(i) The moments of a distribution are the expected values
of the powers of the random variable which has the given
distribution. i.e. o

/L(x) =& f « p(x) dx
Y -0
Iy X3 Py

.
}A.r(X) =-é{(x—» ) j (xw}« )F p(x) ax
or = % (Xi‘k) pi

it
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(ii) The variance

2
- Efx- 6o}
(iii) The coefficient of correlation

gzx = g(x)} { y --g(y);l(
‘/E}{x - E,(X)j 26{:{ —Z(y)} ;

Linear functions of random variables

Given g (%) =_Gi y a(xi - 8(}‘1))2. =G'§-_ s bthen the
standard error of any linear function
n _
=2 X X
i=1

of n random variables X1s Xpy eooy X is

Zwls‘lf?ZZrchs* 7

izl J=1i+l

A are constants, Ci 65 are standard errors of X3 5, &

/%3 their correlation coefficient.

a(y)

2 g{y . EmJ :

il

g{-%o(ixi} . iZ:o(iCi

il

9

i=i

?;z'«l z«;‘
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Z{Zo( (x, Z}‘l)}

izi

i

i

n . 5 “

lec;?m Z Z X 6566, py

J=i+l

Examples
(l)_ Ez%zxi n
Here &X =% o a(i) =%; Z'Cl

g
11
;
X!
M
!
A

(3) If y=23% + X, and X, X, are independent then

- 2
Gy = G; +G, :
(4) If the x's are independent and have the same standard

error then - B 52

2 = = —
X n
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(5} I8 El is the mean of n, independent random variables,

each with standard deviation 6';1 and 552 the mean of n, independ-
ent random variables each with standard deviation 62_' , then

G . =Kk -
X x> s s

Quadratic functions of random variables

Given X19Xoy eeey X, are independent random variables,

g (x) =T Bx~0)2 =2 tor 1=1,2,...,0 then

H= we) -8 Tot e T GG

i=1 izl

Let ¥y = z(xi—i)a
Sy = ZEXi-Ci) + (-Gi--:) - (X -:)J ’
« Bt e TG 4 a G2
v 22(x -G - aaE -5)?
«Zxy- TP Ty -T2aE- 5% 22(xy- 51)( 515

5 = 'Z o2+ Z ('Q'i ?)2- n'g(x-ﬁ)z + 0

lml

;Zlcf + é( -0* -éE{Z cx,_-z;pa}
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i

n n S n
Sels T (Bl v ot
1

i=l = i= i=1
7 I
AL TR+ 5 WG
£ 5 3 ]_.,

Lor:- (1) Suppose the x's have the same mean and standard

deviation i.e.

371 ;C » 61 =
Z:Ll:ai ]
5o = 6202 = @16
L L gt
1{Famt)- 2o

& 6{;1_—1 Z:. <xi—i>2j = G2

Exercise:s

N
I
B

Show that for two discontinuous random variables x&y

(1) E (x+7) = 6(x) + & ()
(iid) é (xy) -g(x) 6 (y) :i,f x & y are independent

AX\!l o s e e e J e 08080800 é (x_l_,y) Z-ZP (x +y)
P ’.-.‘P > o8 s 0 @ P
e L R _::plaxl+zzJ -L,Pi;iy;i

= tzploxl +§Po jyj

Piqssees Dis eeesce | Ps
Til S1d 1.l 3@ +&»

2 = Remember that for x&y
D qevoes P g cevonce P independent pijzpi.P.J

5 8 s e e |
.
°
°
.
L]
°
L]
°
-
e
.
°
°
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(4.2) Characteristic functions

?x‘(t) is defined as the characteristic function of the random
variable x if

it
?Ilt‘) = 6 (qe X}
This function will always exist since
l eitx\ = I eos?_‘tx + sin‘?’t;x \ -
oo ?x(t) e-:Zeitx p(x) for discontinuous variables

:J g= ok p(x) dx for continuous variables

Properties ¢of characteristic functions

l- If "a" is constant then

Polen) =0 ()

2= If Xi9X5y coey X, 8T€ independent

random variables tinen,

n
‘ (t) = (t)
?zxj\ Zzl (ij

‘ ‘l‘hié‘ is obvious because
. itx itx it
(f ) g(eltzx‘) =g{e ie S e @ %1‘}
= ‘
1tx., itx it
éie e 5(8 ajo,o,g(e xn)
2 () . i SP 5
50xl< ) -Gy () x (0
w7 (t
8;-.;4_, ?Xa

LH

il

i
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Lor (1) If the random variables have the same distribution then

A5 3
t g 3 t

Consequently it follows tThat

) A {fﬁc@} :

Characteristic functions as noment zenerating functions

e
0 = J P p(x) ax
e
- jpaxy Z ) - gy
-90

it
~
e
ot
H
H
F o
¥
L

L. Provided we can expand? (t) we ‘an pick the moments
sround the origin. They are the coefficlents of ( 2
in the expansion of gzx(t)e

Also it can be shown tThat
/

(fx(O)
#

@ (o)

o000 ®e® 00 0a 00

lié)(o)o

|
- N
} -~
Py ™
il il

e o

i

s
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Characteristic functions used for calculating cumulants

The cumulative function is defined as
V() = log {Sﬁx(w}
9 "\!.{(t) log [_l+ % : +£=2—?22 }A _(1_t:_)_5/4_3 + o...]
: / a1 e -’_
51 %?‘l"/uaf%)' § Togean

s 3

‘“ﬁlLli Ag (1t5[‘ +°"°J
*3 L%%/ﬁ%ﬁ/*a S oSO

[}]

o+

. i 5 R y
= itkl"‘ lt“’k +£‘%E)—‘k '|"g£EL kq_'l" 9000

Equating the coefficients of the same power of t on both
sides we get '

/
L }ﬁ 5 iz /"2
ki~ /‘4"3/"22
- 10/&5 /42
Examples

(i) PFor the normal distribution we have
o x-—? 2 .
P (+) = = j e
: . e
- 4
O s

. 2 2
1Tt - R t°G

h.p
N
[}

\n
i

= @
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o ’\.I/;(‘C) = log %(t) = i‘?t 4+ Q—Eﬁﬁ-z
s k, = ?

ol Pai
okt
k?:Ofor r >2

(ii) For the binomial distribution

n
X n
k=0
., X D=X
= Z( o) e g
k=0
it =»
= (g+pe )
it
=(t) = log(ﬁx(t) =nlog (g+pe )

i

n log [l - p(l-eit)‘]

| Y
nlogl}-rp{%ﬁ«s-%-— + ...:5]
511-2 np + {38 n(pépg)

+%—%)—n(p - 3p° + 2p”)

+ %%L n(p-7p° + 12p° - 6p ")

il

+ 0@ 0Ce0 0800 %08 000 C0CSEOSS
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oao kl = Ilp
k, = n(p-p2) =
2 = P=P = 0pg
ky = n(p-3p°+2p°) = np(1-p)(1-2p)
= npg(g-p)
k, = np(l-?p+lapg—6p§)
 =ap l:(l-p)(l'—-ép)%pa(l-p)]
=np(1-p)(1-6p+6p>)
=npq(1-6pg)
' M ££=I
Exercises (1) Given p(x) = =-——=— , the gamma distribut-

(L)

lon with arameter-ﬂg using the cumulant function prove that

2/32“5 L ~6=0
A ;
(2) Given p, = —2§;§—-—— prove that
k

Kl
Y(6) = = AL - 6*%)

The Inverse Theorenm

This theorem states that the characteristic function
uniquely determines the distribution function.

(i) If x is an absolutely continuous random variable ,
p(x) is the p.d.f. amdgﬁk(t) is its characteristic function,

Then
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o

ik EITT- j e TIHX @ (¢) at

—ob
(i1) Iz Py 1s the p.d.f. for a discontinuous random variable,

o
= 2 j TR at
R
Exemple s Given
g
Poi6) = e % 5@ “

then

Then -
p(x) = -é%m J -itx - B t2 5 .
- 00
e 5 M ”5'3’? f BTN
PR W T # -Jg.— then
1 M. 16652

p(x) = =5
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One=-to-one transformation

Given p(x) the probsbility density function of x & y = £(x),
we want p(y) the probability density function of y.

In general, given p(xl, Xy eee s ;n), we want p(yl,yé,...,yn)
we are going to deal with simple types of transformation for all
of which f(x) will be continuous function of x. In most cases
the transformation will be also, one-to-one, i.e., to any value
of x there corresponds one and only one value of, while to any
value of y there corresponds one and only one value of x. Since
y = £(x) is continuous and differentiable, this implies that
£f{(x) must be either & decreasing or an increasing function of
X. This slso implies that x = f‘l{y)

(1) "f(x) is a8 incréésiggqunction of .x

J
\ .

.Pr{d(v(ﬁ}
Pr{f (O <x L™ (B} o

g P t

i.e. j p(y)dy = j p(x) & ;
oL

=1 :

5

-

. -l =1
£ (e il
: ip(::) %} 4 o ®
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ax
LB = T (g 20 (1)
(x= )

(ii) f£(x) is a decreasing function of X

J

P”{”‘<7<(5} y=

= Pr. {f“‘l(p w2 (M)} |
=&

i .
: .@ £ GX) wl(@) fﬁl(“)
il.e.

py) &y = J p (x) &
A
=
- - j{pm &) o
%
Lo =-p@ F (g <o) ()

from (1) & (2) we have

p(y) = px) I%i

x = £73(y)
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The transformation y = x2

- S \

:P,;{\/;<x<m }+n {-B< =R} \
f

@ " -

S p(y)dy = J p(x)dx +J p(x)dx

A ﬁ m i ﬁ,{é’ -{5
= jp(mdx - J p(x)dx
% g : R -
= fp(x) G W +f p(x) o W
3 = {§' o X==fy

(3)

Ope toc one transformations of sets of n random

variables

A set of n variables X9 Xy eso 9 Xy and another set of
the same number of variables Jis Tps ose s Jpe A one-to=one
transformation between these two sets means that each set of
values of the x's corresponds to & unique set of values of the
y's and conversely. ©Such a transformation may be written
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I fi(xlgxa, coe g Xn)

£ x5 = 491(31’3'29 cee 3 Jp)

Now given the joint probability density function of the
x's i.e. pl(xl,xa, L xn) , the joint probability density
-function of the y's will be

4

a(xlﬁxg 3 +9% 3 x]‘l)
I;?;"e(leYEs s "Yn) = Pl( 19 20 *** s Il) b(yl"YZ’ e yn)

where p; ( 19 0 9 oo 3 n) is the Jjoint probability density
function of the xX's expressed in terms of the y's.

Example If X1y X, are two independent normally distributed
variables with expected value zero and standard deviation ’
£ind the distribution of % (xl + xa)

1 a 2
e ¢ T,
P(,x) =—25 26° 1 :
e 2 e '
Let T = R(x + x)
H.=}é(xl='x2)
:xl= T 4+ u
x5 = B -
 § 1
a(xlﬂxg)

I
H
I

o
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9%y 1%p)
DT

il 2
—-EE(T +U2)

o P(TQU) = P{xlsxz)

—rcs"2 ’
(T +U2)/G'
i Pp(B) = J p(T,U) du = —?— '( aau
a 2, 2
- /
= ———————l e i 6 -

Vi G

')é - distribution

Let u. be independent unit normal variates. 'X,z is defined as

J
2 e 2 2 L 2
Xy:ulfuiff”"fuyzz uy BN
J=1
Y R cogu. g (2)
But p(ua._ T e ~o0gu g0
write vj = ug
-R% ~%
2z, p(v - \/_—T-‘ e v 0L v o0 (3)
(l) To get P(‘é} Let Vl =’x§
- BxE - %
oo (xl) fz-J;-ﬁ e 4 (‘x%) Os\xf:s‘ao

(ii) To get p(&é)
i3 : 2
Let ':r%zvli-va:ﬁd»va . yz')L_l
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i

o p6E,v,) = p(xE).p(vy)

pcxg-,y) = PR, v,) gzgz :f-?—
= ziﬁ y % ('x%-y)-}ﬁ e_mé
y _
pCx3) = j p(x5, y) @y
o
-(i11) To get p(x3)

., -~k B
s el ('x§ - ¥) e *3
2 V2T
: Z r N .
2 s
p(‘X;) = f P('x3 o ¥) dy
0
T e o
= (’x
T e
°° In general >
¥y =-2) -3 x
px%) = e (w.?fé o 4

3 - - B(x5 + v,)
'é-ﬁ(ldf)}évz ¥ e x% 2
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where c = Y 4
%8 el
By mathematical induction, we proceed to find the p.d.f. of
: ¥ =
hiw G e
write y =’§r?
,,;é ~2 (¥-2)/2 “ %
S 0Ly ¥) = = it -6,
.ﬁ-l’ ﬁ-ﬁ Y+l
xl
s k41!
eoa P(&#l) = J P( y.&,l? y) d'y

o]

p(x; l) 2. Co @"W Y e #x

This is the same as p(ﬁ:?) but with Y+l instead of % which
completes the proof. ‘ '

Another proof

2 %
L , = . :
et 'V'J u:‘j >

We know that p(vj) Py e kv v“’yé

V2T
R
] ? 2 itV g
and%;v(t)- .,_é_]_‘:_ f elv}ﬁv & % av

. Q
(1-2 it)~%

i

-

But va. are independent where ;j-,l a,m,y

?ﬁv;;(t) {(VV(t)}

= (1 - 21t)



S
oo iﬁz) - (1 i alt) /2
This is the ‘characteristic function for [ -function with
parameter % W

: 2 :
2 =% 'x'v %Y =1
| e B(R) = (%)
Note ¢ Given that ud is a normal variate N(0,1) & v.x u§
then W
(v.:) : e_}é 73 i
p v = Vo
J \/27‘ dJ
By definition . TR ;A
gty g B Lo o
~ 321 pu J:l d
where vy are independent variates
Let Fy.=kv
J el
° i T T
* o P yj ‘:,_’ yj
Hence y, = % A is distributed as [~ -variate with param-
eter % 9,

Consequen, ly = appl'ying the additive property of[ -we have

'X,/2 aml yj = & 1-' ~variate wit:; parameter /2
- ~% X ¥-1
(X /2) = FJE s e AT (")Ca/:a)}é
2
%K %Y -1
p(“x,yr> g ity . (x5

2%V yr2)
The Moments of g

The cmmulant function is (t) = =KV log(l=2it)
"f -+ g:u;g y) + it)2 (8y) + git24 (48 Y)toeeso
2T 41
Kr = 2™ (1)1 y |
Hence we have the following relationship 2 (32 -3 (31-6 =0

Remark : It can be shown that

(X )=
Y 2BV =1 ~(ny),

/ ! . ’
Also /‘ék(x—_j}‘ = }"k( '}(.j) |

1 _ X:-l e"% x”ay
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(V) Some Exact Distributions
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A Discontinucus Distributions

1l- Poisson Distribution

It is in & sense a particular limiting form of the
binomial distribution where p—>0, n—5c2 and np remains
constant =) say.

: B nl X n=-x
Ph.x = T (n-x) 1! P 4q
_ B(Bel)ess(peuel) o A = N \n-x
" EELE (L) (- -
A.n
x (1-=)
s Min Kl lie BV (C 7 -
n n n
(1- 2 )%
n
when n ~—pce -
b A
4 —_— e
DoX x3

The Poisson distribution is applicable to problems dealing
with occurreance of events' in a time interval of a given length
such asg3

- emission of rays from radio active substances
- certain traffis problems

- demands for telephone service

- bacteria count in cells

- distribution of bomb fragments in space.

The characteristic funetion

) .

L]O RN ? N é’\ S1tX
el L e =1
x :

o (=3
- .

The cumulant function is
E) = Jog (DIt) = « A{l 0"
Wt = log @ (8) = - X(1-e"")
all cumulants are constant and each = ')\

ffl = :.L/,,\l
iz = 2% §
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The relationship to [ -function .
R L R
[’x(n) =[ v‘“levdv=rvnlevdv- (vnlevdv
o - ® x
1
= (@) + | ¥+ 3(e™%)

: x y 02
=[(n) - 1 X _ (n-1) %22 ¢ Fuln=-1)(n=2) f e~ VvP=33y

B X
1"x(n)/f (n)=l-e X|1+ x + 2‘2/2! il xn-a/(n-a}Hxn-l/(n-l)}

I(n)=1~ /" e x/t!:l-Pr{.rén}

2=The Negative Binomial

It is closely reiated to the Bernoulli binomial distribution
£ we expand,according to the binomial theorem,( q—p)']ﬁvhere
q =1l+p, k>0, pOo,we get the general term in

o | e A il . k(R4L). P 52
q (1= /)= 1+ k(p/9)+ %rl(T)- + erees

) ke x

i.e. - {E+x) ¢ L )
xt (k) 8§

: ( p.J*

Then p{x) = \k»:-xl{ ) X=0 10 X=0°
x{ (k) 4q

is called the negative binomial distribution.

(2.1) The moment generating function

o
el ; Pox B E
(p(t) = q Be ™ = SEHEL (2 3% (q - pe¥)
P e 3T (5) “q
The mean is_ . |
’ ity )y "
6 (x) Dt l t=o kP
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"3« The Sequential Binomial

In this case we are going to fix the number of successes
and vary the number of trials .We want k successes and we
shall stop when they are achieved. The trials are indepen-
dent and p is constant from trial to trial. The result will
be the probability if k-1 achieved successes in the precee-
ding n-1 trials nultiplied by the probability of the nth
trial ,i.e.

kel ek n-l, k n-k

ok GNP @ p= (D P g

O

(5 1) To prove that %E% P,x =L
> bt ok s SHRE R L.

Kk -k
=P Cl =q) =1

(3.2) Moments

¥ () @
A L D ! fid n -l = k/p
/L f__;‘g r‘”(I Do
/ 5D
Mo = Z 270 D5PE = k(er1) /02 - K/p
=
3= k'-Q./P

Exercise Find }43 & /44

Y4 Hyvergecmetric Distribution

Finite populatlion of balls of size N; where there is Np
black belﬁm and Nq white balls. A sample of size n is
drawn without replacement.What is the probability of k
black balls in the sample of n?

{k“c} _ Ng-1 DHNg=2 S B _Ng-n+1
N-1 p§-2 N-n+1

{ v *BD  HNg Ng=1 Ng-n+2 2
PI":‘:: 80 00CeOOOCOSSS
P T N N-a+z — (1)
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o8 88" S0 8= 8

4 8 5 € 6 0 8 €8 S80S S SR O N ST LS OO 0 LSS eSS

s N NE EE-I k,_-ﬁo.-ﬁoﬁQ"’I‘"‘l N N -l e N —I!.+I‘+l
Pri}:_.,.} " N1 N=1 N-r+1 N-r+2 N-r+3 Nen+I
)
N Nal (N-n)! n!
= TNp=2 5? Zﬁq-m-r?‘ r! n—r '
Np! Ng! (N-n)! n!
i ”Ep-ri! n-r)l (Ng-n+r)! - NI

Np
z(r & ’\21\."'" ) / (n:

(4.,1) To prove that the sum of the probabilities =1

e PR
- =%
T=0 _{TT y - Ny~ r=o (r )(n-r )

oY
2

Now sincs {l+x)§p(l+x)ﬂq = (1+x)K
Equating the ceefficiants of ¥ on both sides we get

Na, .
(;Clb % <I¥‘{3\ EQ ) B ek i +(rP) s (g)

For r=n, we have

(éC}sﬁ (NT‘)( Nq )'l‘ esecescnes ‘l'( ) o= (IJ.)

(pep ) = ()

Hence o (N?w N ) nZ
e e b 3 Np
sl - = ( )( ) =1
s .3} @ =
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(4.2)Ehe noments

n
W == & () M/ &

/ l k=0
a
. Np! Ng! n!(N-n)!
€20 (g-1)1(N-p-k)! (n-k)!(Ng-n+k)! N!
n
=m 2 CEDEL/ED
E=0 '
= np
n_
= 2 PEDELE = kCer)+k § GR D /D
2 e o k “*n=k7" *n
. cn..l){m)-._l)]
- N3 .
g }Qb = nﬁq}l - %Lil;L
G L N -1
As —voﬂj/ﬂLa Sansecinirnilly RO

(#.3) Bemerk The problem can be represented in the follow=-
ing table

Sample T n-r n
Remezinder | Np-r Ng-n+r | N-n

Population| Np Ng N

Az we mentioned hefore

Pr)k:r} : Np! Ng! (N-n)in!

(Np=r)! (n~-r)!(Ng-n+r)! N!

S

a =r c=n=I n
b=Np-r  d=Ng-n+r | m=N-n

In a 2¥2 corresponding
table ,we have

o=Ng ®
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r! s! m! n!
Then Pr{%=r} becomes Pr{ zr} =
al b! ¢! 4! N!
Also
Hhe meal = np m B bz i
N N
%  the variance =npq( -n_,
=np(1-p) ( =2
o nlp N-Np N-n
N N =1
- Brsm
NZ(H-l)

{(4,4) To test the zignificance of the difference between
+we trestments sfter being randomly assigned tc a group of

N=n+m individuvals

We are observing the abscence or presence of reaction
Z «The lst treatment Tl is applied te¢ n individuals & the
2nd treatment T. to m — individuals . As a result a/n,b/m
show reaction ¥.The random process has been applied within
“he group of W individuals & its repetition would simply
involve other random reassignnments of the two treatments
among the N. No assumption is made as to how the N indiv-
iduals were selected from some large universe .On the null
hypothesis there are ,P=a+b individuals who will react &
s=o4+d who do not react,whatever the arrangsment of the
treatnents. ;
The chance thst '"a' will react

in n & 'b' inm , if the null X 4
hypothesiz is true , will be
?rg alN, P2t = rinimis! 1
) aibieldlNy iz;nz b a n
The mesn of 'a' = rn/N and e - N
¢ - no
the wariance 2 e
T (N--1)
Bxsmple 3
-_z", o - .T D-
Mean = /N = 6 Survive ki
Tariance = = 1.5 Tl Pl 8 10
svfio = 10224 Tg 13 2 15
Using the zpproximation of the 15 10 25
normal for the chance that

'al = 2 or less we get u =(2+40.5=6)/1.224 = =2.857
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From the table of the normal probability integral we get
the probability of obtaining as large as a —ve deviation
by chance is 0.002135, It is significantly small & it
would be reasonable to suppcse that Tals more effective
than T,.

We can~also use the hypergeometric

Pr 322}= 101151151101 = 0.001445
2181131 21 251

Pria<l] = 42L2LLOLLD = 0,0000458
1! 91241 1! 251
10115115110!
0! 10% 151 0! 25!
Pri a2 =0, 001445+0.,0000458+0,000003 = 0,0015
which is significant.

= 0,000003%

Pvao]s

B Continuous Distributions

J~ Gammea distribution

A continuous variable x is called a Gamma variate , if
distributed with probability density function

My, 25 -1
p(x) = (1
P(b ‘
throvghout the range of values of x from 0 —> 00
The Characteristic function is given as
® -x (=1 itx -f
R
u?x(t) = f i = dx = (1 - it) (2)
! reh

o

\lfx”') = [ 1og(1-1%) -fELt !_). L_)_+ i
}l_ '5/[2"[' /"-5_2ﬁ /"z,—l’*[(ﬁ-l-a)

Theorem(l) If x is normally distributed with mean ‘'a' &
Sels =Q then 2

(x=a) /2(3’
is & ganms variate with parameter %

i
Shak exr
2Tl 6

p(x) =
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2
X~3 » X
et 7= HWED , .. —@L=—2ﬂ
dx

< B =[p<x> + p(x) ¥
X=-a=+0y2F x—a--GVT§
1 -y =%
= e
7??‘ J
Hence y is a gamma variate with parameter % .

Theoren (2) The sum of two independent gamma variates with
parameters | & m is a gamma variate with parameter { +m.

Ilet p(xi= e 9_1/, I'(U , ()= eI/ (m)

.wkxa{.w)r} ,E... 1.

Sty o) o 8 ¥
- rd)rw
Write  w=x+y , v=x ; then =x=v , y=w-X &‘a(x,y)/a(w,vﬂ =1
=7 A=l B=1
p(Wwy7) = e )
wi ) (@)
o*e plW) z‘[~ plw,v) &v = e % wl*m_l/j‘(f+m)

)
Hence w is a gomms variate with parameter {+m

We can proceed in a;other Way 3=

{ \ g ¢ .
Fult) = (1-16) 5 P (1) = (1-1%)

=

Since z,y are independent then

P -0 +m)

& i
which is ﬁke characteristic funetion of a gamma variate
with parameter [ +m

2= Beta Distribution
If x is 2 conbtinuous variabe distributed with probability
density function

-1 me=1
{X} - X (l-§)_
B( £ s}
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throughout the range of values of x=0 to l; then x is a
Beta variate of the lst kind with parameters ,m
The characteristic function is given as

1 0 m-1 itx
Gy =[ = G e /B(Lam) ex
L 4]

s LB
= —2—tB({,m)+ =¥ B(l41,m)+ GE) 3 +2,m)
B(ftm).. el

+ ouoooocoo]

The R moment is
/l»x, & B( »g +r,m)
£ B(,E s

In particular
;
/lA g ® ',Zf— b= i
e (Lm)2(f +me1)
Theoren If x,y are independent gamma variates with param-

eters 1 ,m respectively, the quotient x/(x+y) is a Beta
variate with parameters f,m of the lst kind

Since %,y are independent ,then
@—(x-fy) x—f—l j}n—l
£ [(m)

Write w= x/(x+y) , v=x jthen x=v , ¥ = v(1-w)/w and
|0 (x,57)/ C(wyv)|= v/

p(x,y) =

-V/W { +m-1 m=1  =m=l
e Blw,w) m 8 v (1-w) W
r Or(m
ol =1 E-l
o*s plw) ::Ofp(w,v) dv = Q"W)B([,:) = Bl( ,f g W)

Definition 3 A Beta variate of the 2nd type with +ve
parameters J,m is defined as a continuous variate x which
is distributed with probability density function
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Laa ~(L+m)

x  (1+x)

B( P_ sm)
throughout the range of values of x=0 to X= o0 and denoted
by BQ(E sI) .

6w = f x p(x) dx = —> fl ' <1+x)_d+m) ax
A

p(x) =

" B(ﬂfm) o
Write yv= x/(x+1)
() « L f e &y = —p
oo X) 5 S vy (iI-y = -
B(L,m) i

AISO f,!; - 'l;.-({-\{*l:)
= (m=1)(m=2)

e Var(z) = ..:é_g.‘é”;ni‘.‘.l.l

(m-1)2(m-2)

Theorem : If x is a Beta variate of 2°% kind s i%s recipr-
ocal is =z variate of the same kind with parameters inter-
changed. 5
{ =1
w f]
p(x) = = Bz(k,m)

B({ ym) (14x) **2
Wpite 7y = 1/x wik

e (@ = p@ @z /7)) = = By(m,1)
B({,m)(14y) "

EXERCISES
1=-If %.(i=1,2;.00yn)are n independent variates normally
distPibuted abautaa common mean o,with s.d. Giand ~*
:zngg;i?; then % ¥© is a gamma variate with pai‘ameter n/2
2-Prove that a product of a Blg m) variate and an indepen=-
dent ¥ ({+m) wariate is a ¥ ({) variate.

3—- Prove that the guobtient of two independent gamma variates
with parameters | ,m is a Bz(t,m) variate.
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(VI)Bivariate Normal & Binomial Distributions
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1l- Bivariate Normal Distribution

(1-1) To build a mathematical equation of the surface represent-
ing the joint distribution of x,y. Take the origin at (x,y) and
assume that:-

(i) The marginal distribution of x is normal with 8.d.=
(ii1i) The regression of y on x is linear
(iii) For given x, y varies normally

(IV) Common array with $.d. = 6} 1-p

X

From (i); if n_ is the frequency in the small interval 5;{

.
: o 2 6% _ "
i le - ;/_é—]'[—G' =) = {i)
Feom (ii); ¥y = ﬂ% X (2)

From (iii),(div)

Doy = oY
Xy
VZT 6, Y1-f?
; ;[ e W
2 2 .
2 N G}Zc Gy(l—/oa 3§
= e ExBy 3
21 GG V1i-p?
Substituting from (2) in (3) we get
2 2
L X ’
i | X ap XL, y_]
2(1-7) [62 6% o2
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If »x,>»y each =50, we can say
an =4 X DY

and if the volume under the surface is 1, then

2 2
L X
- , —ofEL 4 L
3 g 2)[6‘}% A 53,2]
Z = £(x,y) = ' = ' (&)
2T, &, J1-2

(1-2) Contours of the surface

; 2
4 X 5
e -2
g 2(1-pF) oz otz
4 = f(Xay) = ‘
26 G Vit

4 1s constant when

i _
SR W G s
5,2 2ﬁc~1’6‘ T o2 = %

which is the equation of an ellipse. If we change k, we get a
family of coaXal similar ellipses. The regression line y on x
is the diameter of the ellipse conjugate to y- eXis also the
regression line ¢f x on y is conjugate to x- axis.
(1) To get the slopecf major aXis:-
The equation of the ellipse is
<2 2

X Xy 2
-fz— A/Q o 4 c72 = k

This can be written in the erm
AX? - 2 Hxy + Bya = kd

If the angle of rotation of -axis is 6}, then é}iﬁ given by
on 2G9S
tan 2§ = 75 = =55
- Gi-.Ga
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(ii) The area of the ellipses=

Agein the equation of the ellipse is
Q}

2 2
X 2
55 -t A= k (1)
ez et mt
Consider the concentric cricle
Kz + Ya = 32 (2)
o X£(J‘_-ﬁ)_2ﬁ-&+y2(_'].'__ka)=o (3)
62 "2’ T eE T2 T2
This equation has equal roots if
: 2 2
By ook 2ok 2

= T Tad * Geg ™
@8 G » &=

) i
fomy ?l:—%r4m(§2~+—l§)k2r2+k4.—_o
I 3 .-

&

o~ The area is TJr r; r, where

. telgl
= 1. O
1 2= >
il G/O_
)
) et G, G,

o's The area is

Vi-p?

Also, for the ellipse

2 2
L v X, I o (k+ 8k)3
G2 ,2/416555 + Gég (k+8k)" ,

The area 1is

TP (k+ Bk)2 G, %,

Vi-pf

Hence, the area between the two ellipses is

2k(5k)6‘i6:2'
dx dy = = <
; 1»/-:_'
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. The probability eof & point to fall between the two ellipses is

w}____é_, K2
Gl o e S
2TTG G Y1-p°
& ke
N ]
_ k (Dk) s 20197
1=p2

.. The probability that the point will fall inside the ellipse
k is

k 1
s J o 20 &
] ~
1-f
2
- -u—af:-ﬂ'fmfé-
z 1 e ;i;:, .

1 2
ak wm‘—,ﬂﬁ\ k
=1~ & 2(1-07) = 0,95
o 2 o
i k© = 0,05 from which we get k.
(1)
- 2.\...1 P 7
i.e. &

(1-3) The Marginal & Conditional distributions

If the mesan of the x's is "a" and that of the y's is b and
if we write

X = & . ¥ =D
ool - o 9 y =
©1 =7

then the equation for the bivariate normal can be written in the

rorm ! % - 2
2(11@2)[X 2/9xy + 3 ]

£(x,y) = %
2Ti6) Gof 1.0

e
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Integrating out y we get

o0 " 2 xa. s
ef e— 2(1__/,2‘)[0‘1? flc‘ G“']d;Y

fl(x) =
s = = __(uﬁ
2 - I
1 2@ . 1 . 26;

:—.amﬁ]:{qe - zﬁ:ﬁie

This is the marginal distribution of X.

Similarly we can get the marginal distribution of y

o (=)=
1 26,2

o 2
£,(y) = —mm———
2
Ll
Now the conditional probability function for y given x is

£lyle) = £(%5) / £,(x)

b SR TES

V 11 V
This means that for flxed X, ¥y is distributed normally with
5 s 2
(1) 5G@Ix) =b + f== (z-a)
| fafﬁi
So the regression function of y on x is linear

(ii) vVar (ylx) = 32 (1-P%)

Then the nearer ﬁa is to 1, the smaller is the variance. If
P =0, y does not depend on x and the two variates are independant

Similarly

= : (5;'12(1—]72) [x-—-amf’aé (y—b)]

£(xly) = —m= e
VT G fip?
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and

L) By = +{3 ZL (y-b)
(i1) Vear(x|y) = Gi, (1- P2)
The Characteristic function.

.- +itx
B (6.1) = fT VAT2%2 p(x,7)ax ay

2 e 6 2
(x8,)% o it; 1% (1t,)
-1 6,° + 7t 55 6,0, +—% 6,

<

s e ' ey

(it ) (it,)
a £ 4 % 2 __:ﬂ 1 2 2
NG (e = S O+ 1P L 1306, 6, + 5F- G,

) e G = il
S Ky =G 5 Ky =6 2P°K02‘5'2

s am e mATAYA ] e wem ———— -

T UL IR TR e a) . X bsimcers pos s
Nd Si4 CULRST CUNLDULELTS L ®L8 = \ae ih other words

Mo=0 » f=G? '/L'tlo
M=o fop= &2 ;}%4=3524

J-aesp. [ - anphoie

Sis = s
/"3.1.. 5{0 G'f Ga

Note:The bivariate normal distribution function contains five
parameters. Four of them (a,01),(b,00) characterize the two
marginal dlﬁtributlonsgwhlle the fif% h, ,characterizes the rel-
ationehip between the two variables.It can be shown that the
parameter is equal to the mean value of the product of the
stanﬁard§z~d.vnrlablesg As an estimate ,r,of the parameter we
conpute = 8 where 510 denotes the estimate of the
covariance. The pa%ém %eg is the™"correlation coefficient and
r ig its best esztimate,

1
W
o)

=
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2- BRivariate Binomial Distribution

(2.1) 1In generalization to the binomial, consider the drawing of
a2 sample of n from a population where the individuals may or may
not have two attributes A & K, B & B, Suppose the proportions of
the irndividuals with attributes AB, AB, A%? EE are P19P;sP3sPy

regpectively where pl+p2+p5+p4=l

A K Al X
Bl » Py |By*Ps | B | h| k x,
Bl », D, | Pothy B J £ ~| n-x,
P1+P, | PxtPy 1 _ By ) By o

In exactly the same way as for the binomial, it is seen that
the proportion of samples with h of the attribyte (A By 3 of
t%% attribnte (4B), k of the attribute (EB) & £ of the attribute
(AB), 1is

n! Bk of
P, P5 Pz B
h! §! k! 1! el

and the distribution of samples is given by the expansion of the

multinomial form
n
(P1+P2+P3+P;+)

The distribution given by this form is bivariate, one variate
being the number of the A's l.e. (xl) and the other being the
number of the B's i.e. (xa)

{(2.2) The charachteristic function

3 B, o
=2e RI;IEILT P1 P2 P3 Py



e

Z

h!

o
3

Bl3IkILT

:{ple

. —“éi,xa(gl’ﬁzj

ilehfg)fita(hfk)

n!

itl+it

J

\

il

b

n log[:

(1t )2

Pl+ aoo.---}
rit
= n

{P1+P2 (pl+p2)2

?

{1-Gye))

11 (p1+25) }

n log { p;e
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nl

R S B
Py DY Pz Dy

(it,)2

it

33$ (plfpa) + ITg (p1+p3)

(it, )=

'_z'l_"" P1+P5 (Pl

e {pw (P1+Pa)(Pl+P5)}

it
+j=*a‘é
itl 1t2
1T 0
it e
+‘_-
44
o B
i
180 e ITg
2 Klo = n{plfpa)
Ky = 0(Py*Py)
Kys = nupl+p5)
: o
If we

K01.= R(Pl f P5)

spl+p5)+ “ET“” o TR e AR

1
(p1+2*05*P,y) + I (p+py)

; i(t,+5,)) b . . ity Kk
o 2} {Paeltl}‘]{l’ae o o

+p5)%}

ipl - (Plfpa)(Pl*Ps)} + ..,..........:]

transfer the origin to the mean of the varlates we



—

2615, { plw~(151fpz)(plfp3)}] + 0(a)

(68)

log (F

I

2 [‘Gf(Pl*Pz) {1~ Gyrep) + “Eerpy)

1= (Pl+p5)J

The spproximation of Biv.Binomial to the bivariate normal

(2=3)
When the distribution is expressed in standard measure
we have
o 1tlLle»Klo)+it2(x2-—KOl)
()0 (tl,ta)- e
X1 —~K100X¥7R0;
_ - -(it% K10+1t2K01) 50 e
o 3
i (B st
i ¥ e
(P_,_XJ,“KJ 0 et 1) :
-
w20 02 :
s (lthlO :LtaKOl)
G20 oz
= 8 (%
i S
log ‘ (61565)
i 1 S . .
G20 Coz
A2 ; 2 ; y
) (l‘tl) . (J,t?_;‘ 3 1t :1.1!:2 Kll B ( )
21 2,1 1L 1Y Gop6os
i 431(1’2+1';2+2 ) as n Ll
=2 LE T % - = .
where
f’ E Kqq Pp- (pl+p2)(pl+p5)
820602

j[fpl+p2)fl 5779,) | [ (py+p5) (1-577254 )]
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: (f e % (ti+2ptlt2+t§)
o' & e
x40 9 Bgllgy ~ kA

G20 502

which is the characteristic of the bivariate normal surface with
zero mean, unit standard deviation and coefficient of correlation

(J i.e. 0f the form

4 2 2
(xl-z p xlx2-§-x2)

T 201
P(Xlsx2.) = iﬂff-ﬁz_ e -fa (2)

In other words the standardized bivariate binomial distribution
tends to the bivariate normal distribution (2) as n —> oo .
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(ViI) Sampling and Sampling Distributions
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Sampling and Sampling distributions

5=1 -Basic definitions

Population is a totality of objects under Consideration
it refers not alone to persons but to physical objects and
operations as well.

A real population is one which actually exists in the form
of specific population objects.

A hypothetical population is one which the statistician
immagines to exist.

A finite population is one in which the number of popula-
tion objects is countable and definitely limited in number.

An infinite population is one in which the number of
objects or operations is unlimited or cannot be counted.

Sample is a part selected or drawn from a statistical
population which is used as a basis of making estimates and
inferences about the population.

1f the selection takes place so that every unit has an™
equal chance of being selected, the sample is called random
sample. *

A small sample usually refers to one which has fewer than
50 sampling units. The value of the distinction between small
and large samples lies in the fact that, although certain
statistical operations can be applied to large random samples,
they cannot be applied to small samples.

Statistic (8):— it refers to a value based on sample
values and sometimes kKnown as an estimate. It varies from one
sample to another.

Parameter (P): it refers to a value calculated from the
population. It is constant for this population.
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Sampling error (E):s it is the difference between the

statistic and the corresponding parameter i.e. E = 5-P.

If the expected value of the statistic (or the estimate) is
equal to the corresponding parameter, the statistic is unblased.
Otherwise it is biased.

Sampling distribution: The frequency distribution of a
statistic (an estimate) derived from an indefinitely learge number
of random samples each of size n is called a sampling distribut-

ion.

The standard deviation of this distribution is the standard
error of the estimate. The less the variance of this distribut-
ion, the greater the precision of the estimate. The variance of
a sampling distribution can be reduced by increasing the size of
the sample or by using a more efficient sample design.

(5-2) Estimation: assume that the parent population ig dist-
ributed in a form which world be completely determinate if we
knew the value of some parameter 6%. We are given a sample of

values Xis Xoy ooey Xjo

We require to determine with the aid of the x's, a number which
can be taken o be the value of‘é}y or a range of numbers which
can be taken to include that value. We cannot expect to find
any method of estimation which can be generated to give a close
estimate ofC}'on every occasion and for eVerymsample. We must
derive a rule,-a method or a formula which will give good
results "in the long run" or on the average. The method or

rule of estimation is called an Hstimator and the value to which
it gives rise in particular cases, the Bstimate. It is itself

a random variable and has a distribution.
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In general:-—

A population with a density function f(x; 91, 9’2,.. iy 8’1{)
where x is the variate and B'l, 8’2,..,, 81; are parameters. On

the basis of a random sample of observations say X1 X5y ooy Xy
wish to estimate one or more of the parameters 9’1, 9’2,... ,912.
The gquestion is Lo find fuanctions of the observations which may
be represented by

é} PaN
1(X1?X230009xn), 62(Xl’X2’°ﬂﬂ’xn)”.‘.'.-.I..'Q..

such that the distribution of these of functions will be concent-
rated as closely as pcssible near the true values of the parameters.
The properties of good estimators are :=-
(1) Consistent "t 1s a consistent estimator of Q’if it converges

o 9’.&1 prebability" =

ieeo Prt——?@ﬁ—)l as n - oo.

(2) uabiaseds ™ t is said to be an unbiased estimator of &if

‘g (13) :@vo 12
(3) efficientis If for two consistent estimators t;,t,, we have

var (tl)< var (‘cz) for all n, then t, is more efficient than

t2 for all sanmple.sizes.

(4) sufficient: If the joint density of the sample is expressible
in the form

L{Xlaxaw"'oaxns e') THT' f(xiv@)
. b 78 8
- Ll(t’ G—)an(xl,xz’o-o,xn)

where Ll does no% contain the x's and 1’2 is independent of 9",
then t is said to be a sufficient estimator of B‘.
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(5-3) Testing statistical hypotheses

An inference: is any conclusion made on the basis of
experience.

Hypothesis: refers to the more systematic and formal
statement of an inference usually in the form of a proposition

Statistical hypotheses: are usually classified into null
and alternative hypotheses. A test of a such a hypothesis is
consisting of testing the null hypothesis against the alternatives.
In other words, the testing of a statistical hypothesis consists
of formulating and applying an objective eriterion for the
purpose of accepting or rejecting the hypothesis. This criterion
(test-statistic) will have a sampling distribution which indicated
the probability of obbtaining a value larger than the one obtained.
If the obtained value of the test statistie is very likely value,
then this is teken to be statistical evidence that the hypothesis
is a plausible one. This process consists of selecting a critical
region (a portion or portions of the sampling distribution of the
statistic being used) and agreeing to reject the hypothesis under
test whenever a random sample gives rise %o a value of the statis-
tic which falls in this critical region. Hence the sampling
distribution of the test statistic must be known when the hypo-

thesis is true
] [J\
: /\W’ ;
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In some problems, the critical region will be only at one end
either the upper or the lower and the test in such case is called
a one-tailed test. In other problems, the critical region
(regicas of rejection) will be at both ends and the test is
called a two-tailed test. This will depend upon whether we have
one alternative hypothesis or two respectively.

The proportion of the probablility distribution contained in
the critical region is the level of significance of the test.
In practice two levels are commonly used 1% or 5%

The size of the critical region is related to the risk one
wantge to accept in testing a statistical hypothesis. If the
region is mede too large, we reject too many true hypotheses.

Rejecting true hypothesis is called an error of the 128 xing or

Iype I error. If the xregion is too small, we accept too many
false hypotheses. :

Accepting false hypotheses is called an error of the ZEQ kind or
Type IIL error

Now for testing a statistical hypotheses H = Ho the procedure
is summerized as follows:-

(1) Bull hypothesis H = Ho

A.'L_,ternative hypotheses H#: Ho
(2) Calculate the corresponding statistic S
(3) Discrepaney = 8 - HO

(4) From the sampling distribution of S we get the standard error
of 8, i.e. (5’5
(5) Form the test criterion T = ——e—
, Cs
(6) Choose the level of significancé'« and from the tables find
i
{7 déhpare T & T o

6 iy Tex, reject the null hypothesis
o o Tﬁs accept the null hypothesis
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(5.4) Sampling Distributions

(1) Sampling distribution of the mean X

A random sample of n independent values Xy 9XgpoeegXy is
drawn from a normal population with mea.n} and variance 6-2.

The characteristic func’cipn for the normal distribution is

_ (i8)° __ 2
1t + (2B G
Sax(t) ol 3 2 '

(%) =iﬁ<§“?’}n ={e =3 2 n?-f

X

Tead 2
: (it)- &
1t-f+ > 3

= (=
=

This is whe characteristic funection of a normal distribution

with mean}'and variance E_'.-, =
a a
»

o» The sampling distribution of the means of, random samples
of size n drawn from a normal population with mean and variance
62 is also a normal distribution with the same mean and

variance & B .
n

(2) [The sampling distribution of 82

If x. are n independent normal variates with mean—; and

. 1
varianceg‘?' then }, ’
X -

— 2 iy
is a uwnit normal variate.
~ 2

0. n (x.-?)
Consequently 131 = Z uf = = __!-_;_.

1=l i=1 O
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If we replace 'Eby X then we get 11%—1

T

1.8, 111“1 = 62
>
= -I—‘—s-é- (2)
G
where
12 l = 2
& =5 Z(Xi X)

: S
o p(e®) = p(E2)) j et |
But E
) v a3
pOa,_ ) = RS ik a-1)
N 2.2
2
| n-l ns n—
2 pla®) & ﬁ-ﬂzﬁg) g 25 (%) (3)
252
To get p(s)
Let y =8 = Vsz il.e. y2 = 32
n-1 o gﬁg -
et R R e (4)

Jo p(B) = ~(§_§_3_») 2@?
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2

To prove that ¥ & s° are independent

Normal variates X

and sS.G.(G . 1
2
1 n G
L] P(X ,X 92c0 3 )—'(.-— ) e
S XD. Vaﬁ'd
But

) el
> (-7 = as° + nEPH?

d=1

}_{ = ‘é s S? = % Z(Xl“‘i)a

n
2 nsz
22
° 3 l b o 8 7
o's P(X,9X 900e9X )= ( ) e :
e "n LG
To use a trasnsformation

Xi = X + ai2ya + a15y5 + sos T ainyn

sX55000,%, s each has expected value ?

B g a2
_263 (x?)
e :

(izl,Z, eoe ,Il)

where Zaia.::o ’ Eai,jaik =0, Zaﬁk T

e Rdsis 2l J¥k
xl=32+ 2-!-‘_1 Fordh. aas ¥ 1 - s
Ez 2T @s Vabn
X‘?‘:E—jli—rz ?*afv—%_.—;ya-t“.+\——-n—:—n— -
x5=3§ \,z__éy3+,°o+ﬁ(__—v—n—- -
1™ * -;:-2) a1) 81 +_L\/TE_:__5£ ‘5
x, e _ _n=l
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n ! n

Gl o 2 : - 2

E(Xi—X) = b 1.8, B 8" = Z‘ 75
J=2 J=2

o P(§3329355“03yn) =_P(Xl: Xz,o.a, XD.) I J\

‘3 - 2 ' n - 2
s y3 ~ (x *'j')
J
_ w Z, 2
z ¢ © : . e -
[~ <]
-’. P(%) Ejjoooog P{?{’ ya’yB,o'.’yn) dyz d.'YB 0 e d-yn
- o
_alx «-:f )2
26"
= Qi a2 $ _
_ n(x- =
2G
p(X) = . e
2T G
" Also &2
P(Jps Jyseees ¥yl = J P(Xs ¥ 1055 0005,) dX
‘ i :
- ) 73
2p d=2

e 3. ~~ H(OF)
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ie Xy Yzr Jz» eoo » §, are mutually independent set of random

variables
- 2 £ p
o X, 8= T~ y; are mutually independent
Jg=2

(3) ZIhe sampling distribution of ™"

Given a normal population with mnean Fand. variance 5-2 ;
the sampling distribution of the mean for independent random
samples drawn from such a Population is normal with mean}' &
variance 6_;‘:':. : ' AR )

n

<
i.e. X "\_.lﬂjs "Gh:'—)

(/\_/ is distributed as)

. 1__‘_"1/\/1@( R age
‘l.e. the test statistic A = li is distributed ss unit

=

61 n
normal distribution. Usually g for the population is unknown.
An estimate for & based on sample values can be derived:=

q
4
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.« The test statistic becomes =
Ewy
£l _Ea3 - G/\Va

G/VvE s/val %, Ve

=’Kﬂnl= 'xu R
ﬂ“ll ~» /V-)T
Also

Given two normal populations N(E,gl) N(‘fz,s‘z) and

two independent random samples of size ), n, are drawn. Then

the sampling distribution of the difference between the two

mesns l.eo. xl - X, is normally distributed with mean jrl T?é

2
and variance ©1° | _G3% .

o S
= L ' : g = 2
Let the two populations have common variance 5'2 =61 =62

 which is usually unknown. An estimate forc;2 based on the
two sample observations can be derived.

I

2 _

2 _ 2

2 e
> "2
ﬁ&ﬁl+n2=2 S .

g(n 81 qua)- (n+ -2)G'g

._'.g( L& + 11292_)_—

1+ n -2
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4 2
2 2
: Ao f 0,87 * ngsa e 'xﬁl-n-na—a 6'
n, + n24-2' nl+n2-2
But L =
X, =% :
R = p—— is distributed as unit normal.
\/ G2 G-
—_— -
e

Since 6-2 =G] =G, &aid 6'2 is unknown, then the svatistic

becomes : Xl"‘ _;52
B h
8—\/ 5"]'_' + Ei’é' ’Xhlﬁ-na-g / \/nl+n2—2
b B 2
X, VY
To get p(t)
1 - % u®
p(u) = m- =
&" T
P(X_,) = —= % o
2y -1
e -
e WEX are independent
V-1 - BuBexd)
S pugy) = p(uw) p(_x-),) = c“:&, e

Make the transformation

= = ’ y =%
x, [V P
- 'X.v =y ty/f;

e
]
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2
Yy - %70 + &)
e,y e Y
(+75]

2. @
Y - RyQ+ =)
CSop(t) =y y e Y  ay

et 2
write Z = % 32_(1, + %}— )
2 YLy
(1*‘, ﬁ) Ye( Y+1) -

ooo P(tgyD

c

<o (%)

il

wkhere

.
B I3 3
2 rer®/y
- KV D)

o i

oo PLE

o y o
= s
vv B(-é'ﬂ %‘} y

i et R LT s S L

(4) The sampling distribution of F

(y » o)

Given two normal populations with variances 5’?_,5‘3 respect-

ively. (Usually 6‘%95’% are unknown)

Two indepeadent random'sa.mples of size n,, n, are drawn. If

their variances are g% 5 gg then

2
e n.. g
2 i i % :
5'1 - gl.ﬂ
o= |
A B.&
2 _ Tokee
G2 =1
AL 3 5 = =
- 61""‘ 5 nlgl /(nl“'L)
P o
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2 2 2

s Y

2 2 )
A.i,. = 2
22 -1 65

8'12 'x'il-l / (n-1)
i — = .
G ‘x'ia-—l / (ng-1)
“x?,i /Y,
A ey iy
% Y

..%2 %%, eare independent
PR L

. px2 , %2 ) = p(x2) p(XF )
1 2 1 2

(¥, -2) BO,m2) R+ X))
2 2 . AT TH
where

C

5= J

1

kY +¥)

2 y“-% ['(-}-) o ("é
lMake the transformation ,

_& '}L?)’]_ e
", T2y

& 5
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b

L

~r

&

%Y %V %Y. -1
yhé : 'Yz ? F *

s P(F)

ki

1 Y2 ' RO YY)

0CF < 0

The moments

/Lr f kY, + r-l - WY+ V)
= C

¥ (Y, + VB aF

where }é)} }é)ﬁ_
Y W%
s L, X,

4
2 g

wri u e 7 = Em-—
R
1=Z ?yh :
B

o
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F:....?é £
Vi Iz
B/U“(Zé)r st ez, B-o
o e v you
' B(z= » 3~ )

Exercises

(1) Prove that

where t2

\_1
o, =

(2) Find (31 &.(%. for F-distribution
(3) Show that

2
P(ty ) = P(Fl’y)
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(VIII) Testing statistical hypothesis

and Conridence interval
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Tegting Statistical Hypothesis
and Confidence ILimits.

L) Testing statistical hypothesis around the mean
(i) Large samples

Theorem:= The sampling distribution of the means of éndependent
Tandom samples drawn from a normal population N( M ,67%) is also
normal with expected value/t—and variance @ </n.

Cor.{l) Usually the population is unknown and hence the above
theorem can be stated again as:

The sanmpling distribution of the means of independent
large samples drawn at random from an infinite population 9#,67
approaches a normal distribution with expected value/ﬂ&.&

variance CTa/n as n increases.

Cor.(2) If¢ ‘is unknown, then the sampling distribution of the
means of independent large samples drawn at random from infinite

pop¥_adﬂon.f/L {yﬁ) approaches a normal distribution with expected
value L4 & variance s /(n~l) as n increases.

4

it e I 2
(Remember G = iy 8 ) :
" : - 4 &
Hence to test the null hypothesis = against F ’

we use the test criterion _
X—/A'

T ... .
GTE
where Cﬁi is the standard error of the mean and
G .
G;E ® — if ¢~ is known
VES
or = —2 if & " unknown

Vnwl

The sbove statistic is distributed as unit normal N(o,l) and
hepce we compare u with wo looked in the tables at p( % level of
significance

(ii) Small samples

To test the null hy;pothes:.s }A. /A— against /t;é/b we use

the test criberion

t =
g‘x
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~4 e
where 6-5% = s/Vn-1 . This statistic is distributed as t-dis-
tribution with n-l=Y degrees of freedom. Hence we compare %
with t')} " at K% level of significance
pi
2) Confidence limits for the population mean

It is regquired to find two values between which we expect -
that the population mean will lie, with confidence coefficient

Y = (100 - 2£%

Consider the sampling distribution of the mean and that 2,
b are two points on the sides of the mean /-(, where

a::/lL+KG'}—£ ¢ o

. S
A
= &

. A= (L
k 1s determined such that area below the_curve between &,b is
(100 - 2€)%. Then the probability that x lies between &,b is
given as

(1) Pr {,Lt—mxa’;c S T M+ kGG

s g

Now s

=T
I
b,
C

Wi

<

Z
Hence /&m k6z § XL
te c - Kk g %
Consequently
(22 Pr{i ~ EO= g,@g_ X+ kO } = (100 - 26)%

.% The upper Coniidence limit far/—iu is
¥+ k€G-

and the lower Confidence limit is

/’\fﬂ cr s/\yn-l1 according to asG is known or

¢
i
i
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In small ssmples , K = Ty 4 and we need to look in tables
of v at ¥ = n~1 degrges of freedoh and at X = 100 - ¢ level of

significance. But 5;'-;: = 8/ |/ n-1 where -:‘ =Z(Ii-f)2/n-

Exsmple

A standardized intelligence examination has been given for
serveral years with an average score of 80 and a standard devia-
tion 7. A group of 36 students are taught with special emphasis
on reading skill. If the 36 students obtained a mean grade of
83 on this examination, is there reason to believe that the
special emphasis changes the results on the test?

1- The null hypothesis. is /"’o = 80
The alternative ™ " /Llo £ 80
2- Test eriterion
Mo BE < BO
= et 2053
6NE VB |
3=~ Qomparipg thisl ’u_l = 2,53 with iﬁ 1%,[ = 2.58 we accept

the pull ohypothesis. In other words, there is no evidence that
special emphasis on reading skill changes the results on the test.

W = Z

Exanple:

A fertilizer m Xxing machine is set to give 10 pounds of
nitrate for every 100 pounds of fertilizer Ten bag. s (each of

4 b

100 pounds) are sxamined. The per centages of nitrate are as
followss
(:jﬁ La; ..L:E,, 103 ll, 9, _Ll’ 12, 9’ lo

Is fthere reason te believe that the mean is not equal to 10%.
Mean (X) = 10.4
Variance (52) l.24
= S
&= = 0.37
£ oe : V-1
Null hypothesis. s 10
alternative hypothesis //‘6 £ 10
The test criterion is

:X“/’é 10.4 =10 _ ;.13
&%

i

]

o = 0.37

Frorm the tables t9’ e = 5,25
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S. We accept the null hypothesis
There is an evidence that the pupulation mean is 10.

3) fTesting statistical hypothesis around the difference
between two means E
-3~1) Independent ssmples
(i) large samples: Given two independent random

samples. The lé:‘i‘sample is of size n;, has a mean Sil‘, a standard
deviation s; and is drawn from a normal population N(/A.l, 5'1‘?‘).
The 224 sample is of size n,, has a mean 22, a standard deviation
s, and 1s drawn. from a normal population N(/-%a, 652). Then the
sampling distribution of j?lw 5&2 is exactly normal with expected
value M-— }{2 and standard deviation

o2 6532
[ — + e ——
2y Bs

It the populations are infinite and the samples are large,
then the samplirg distribution of X=X, approaches normal with

nean /CLl_, /l&a and standard diviation

G2 632 B
e men—— + e e
- Ba

Usually (3’2'"’ & -'922 are unknown and hence the ssmpling distribution

0l Xy = X5 spproaches normal with mean,“l - /’-2 and standard

drrviétion 2 2
1 / 57 3

e

Now to test the null hypothesis /Al"" f“'z = O against the
p/
a.ternative hypothesis }(Al_ /Jé £ 0 we use the test criterion

. K‘ s ¥
i = Gi xi ~/ I\I(O,l)
T~
woere
X.l“.ea.z = D:- + “—I',:P
o 2
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A~ 2 2
or 5:“ - = i——n - ..L
X =X, 111-»1 _ n2-=-

gcording to 61?, Gé? are known or unknown. Hence we compare u

with u.‘x at & % level_ of significance

(ii) Small samples:- In large samples we know that the
standard error of X=Xy ie.e.

I : 2 5.2
C. _-= E%I + “ﬁa

Assuming that the two populations haw}e the same variance i.e.
o7 - G;F =62

: p; --2 _-.L___:lwm
e 0 G—EJ-_EE "'\/6 (-nl + ne)

But © 2 ig usually unknown and can be replaced by its estimate

”éw then ~ 51 1
Gz .z =BG+ )
F Sl 3
whare ’ . _
o mfemd  FlnE)h T,
n, + 112—2 ny o+ n2-2
Hence, the test criterion
X =X
g P —gjj—i-
b e

is distributed as t-distribution with 7 = n,+n,-2 degrees of

reedom. The calculated t will be compared with tv at X %
level of significance. W

.3=2) Related _samples

In some problems we have to take one random sample and call
its values-before treatment -~ the control group and its values-
after treatment - the experimental group. For examples, to
gtudy the effect of a certain diet on the weight of Children,
the effect of a cerbain trainning ecourse on the achievement of
students and the effect of a certain medecine on the recovery
from a given disease.




(93)

Let us denote The observations for the .ontrol group by X,
and those for the experimental group by ie“ Then the differen-=

ces will be 4 = Xy = Xge
Now the null hypothesis is D = 0
the alternative " is D#ZO

The test critinon
for large samples is u

e M
sd/Vn—l

& for small saumples is ©

Lt R
8 d/‘/ n-1
with Y = n-1 degrees of freedom

Bxample Two independent random samples are drawn from large
populations A,B respectively. The following information is known

e

n X s
Semple A denc - 105 -39
Sanmpie B 50 115 28
Test that the two populations have identical means.
5 2
~ 2 8 —~ 8 2 z
: 2 28 -
G 2 =57 *tmer =y tic =25
Kl-",zia J,.Ll‘l .CL2 - 12..1.. 49
o frirs o
o © 6‘;3 2l = b
=T
The null hypothesis is }H_-—fé = O
The alternative © 1s /J‘l - j-kz # 0

The Lesat criterion is

%, =%
e S-SR 15 E 105 . 5

e N

Comparing with [uQ% | = 1.96, we reject the null hypothesis.

Tn other words, there is no evidence that the two samples are
drawn from populations baving the same mean.

Examples- A certain stimulus is to be tested for its effect on
blicod pressure. Twelve men have their blood pressure measured
vefore and after the stimulus. The results are shown below:

Mens:~- 1 = 3 4 5 & 7 : B | it 5 M (-

: 8 9
Before: 120 124 130 118 140 128 140 155 126 130 126 127
Afkart 108 131°°1%1 127 132 <185 - d&l 137 118 132--129 135
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Is there reason to believe that the stimulus world on the
average raise the blood pressure.

The differences di are s$-—
8, 73 is 9: —83 —5: l: 2: _81 2: 5) 8
d =22 - 1.83

i
2 _ 434 Adnain o
s8] =715 ( )< = 32.8056
Sd = Sl8
Sd./ n-l b-i&
HFrom the table tl 5% e L

s We accept the null hypothesis that /Ui“ f%’: O. In other

words there is no evidence that the stimulas would on the average
raise the blood pressure.

BExercise The follow1ng table shows the distribution of house-
holas “"Pﬁrqzﬂq to the anpual consumption expenditure of two
random sampies drawn from the rural and urban parts of the
country.

Tntervals Frequencies-
Urban Rural
15- 6 45
25 66 280
50= 167 44
75— 261 453
100~ 621 760
150~ 520 446
200-- 567 238
250- 202 127
500- 5725 126
400~ 295 o8
LUU— 125 i
B00= &1 3
LO00-L400 51 B
rotal 5145 50357

Ts the difference between the averages of annual consumption
expenditure in rural and urban parts significant?



(93)

Exercise :- We have the weightsré%)of 10 childre . before eating
a certain food and their weights (y) after eating this food.

Children: 1 2 R TgTd 9B TR D
« ¢ 142 140 143 158 149 140 134 124 116 157
y o+ 146 139 148 1lel 151 136 135 127 115 162

Is there reason to believe that the food would on the average
inerease the weights of the Children?
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~4) Testing the hypothesis arcund the proportion and the
difference between Two proportions

(6=4,1) If we draw a large sample of size n from an infinite
dichotomus population and if the proportion of successes is p,
then, to test the null hypothesis that the sample is drawn from
a pooulation where the proportion is § = ﬁo against @ # ﬁo we
use the test criterion p-@

U=

6p

s /@ (1-8 )
where 65 = -Jl—qrﬁL—

Exauple: A superint ndent of schools has stated that at least
60% oi high school seniors expect to attend college. In a random
sample of 200 cases only 96 say they are planning for college.
Does this refute the superinftendent's statement?

ot S Os6 X Oolt _

675 = 560 = 0.,1096
The null hypothesis is @O = 0,6
The slternative * " ﬂo # 0.6

p = 225 = 0.48

The test criterion is
0.1096

Comparing this with ! u5%\ = 1l.96, we accept the null hypothe-
sis. In other words there is an evidence that the superintendent's
statement is accepted
 =4,2) A large random sample of sizel] with proportion of
BUCCE8SE5 Py is drawn from an infinite.dighotomus population
where the proportion Qj_is unknown. Another large random sample
of size n, with proporfion of successes Ps is drawn from another
infiiite dichotomus population where the proportion ¢2 is unknown.
It is required to test the null hypothesis ﬁl = 92 = @ against

the alternative Ql £ an
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Since @ is unknown (common,propertion), an estimate based on the
sample values 1s glven as % where
~
g e ingp ¥ n,p,)/(n; + n,)
Now, if the null hypothesis is true, the test criterion is
P, P
u—_._...—.....—.——-—

85

17P,

where ~ . —
5510, o 8- 5 (3= + 1)

Examplie In an experiment, it is found that 56 out of 6815
incculated persons were attacked by a certain disease while 272
out of L1668 not inoculated persons were attacked by the same -
disease. 'est the significance of the difference between the
proportions of the atbtacked persons in the two populations.

py= 56/6815 = 0.0082 = 0.008
p,= 272/1leeB= 0.0233 = 0.023

i

g = 281272 . 0,0177= 0.018

15455
5§? . 0.18(0.82) (shre + 7v=2x ) = 0.000034
PP, = B2J \gE1s * IletB. T
o~
GSél‘Pa = 0.0059
. UoOdB i 00008 = ‘Q.i_f' e
U = =——5.6059 = —ihoEg— = 254

Comparing with I uS%i = 1.96, we reject the null hypothesis.

In other words there is an evidence that the difference between
the proportions of dichotomus in the two populations are
sigonificant

Exercise:~ A random sample of size 450 is drawn from an infinite
dichotomus population and we find that 50 of them were attacked
by & certain disease. Test the null hypothesis that the propor-
tion of attacked persons in the population is D.5.7
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Exercise:— A random sample of 40 individuals is drawn frcm an
intinive population and we find that in the sample 10 individuals
were unemployed. Another random sample of 30 individuals is
drawn from another infinite population and we find that in this
sample 10 were unemployed. Test the hypothesis that the
proportions of unemployment in the two populations are the same?

.-5) Testing the hypothesis around the populabion variance

(6-5.1) Given a random variable x. having a normal
distribution with meanlﬁt and standard ddviation G, then Ghe
standardized variate _}&

X
w, = ——— (i)

1 G
will have a normal distribution with mean O and unit standard
deviation. Then by definition j% 'u% will be distributed as X

with n degrees of freedom i.e. A=l

n 2 3
(=) 2 | 4
= 62 X G
If we repLace/*,by X, then
Il 2 e '—)2
p i i y B (3)

: 2 » s

i.e. ns '"><n-l (4)
C,-Z

(4) is used as a test for the population variance, where 82 is

the sample variance.

 5,2) we can also determine the confidence limits between
which we expect the variance of the normal population will lie
with a given confidence coefficient 'H’: 100 (1-A)% where ¢ is
the level of significance.

he lower 1imit® Sif is determined from

)(2 _. B8
upper C;Z
The upper limit G~ is determined Ifrom
XZ - 1182
lower 0;2
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Exampie (1) A randem sample of size 5 and verisnce 40 is drawn
Trom & nmormal population. Test the hypothesis that the populat-
ion variance is 25.

The nill hypethesis is 6= = 25
The alternative > " GT? #2565,
b~ :
.. TK? Y 5 X 40 s B

652 - i
- A o g
From the tablies )10.975, g 0.484
2 = 11.143
X0.025, 4 .

% ‘'the obtained value of 7L2 lies between the two tabulated
values. Hence we accept the null hypothesis. In other words
there 1s an evidencs that the population variance is 25.

Example (2) A random sample of size 10 and variance 30, is
drawn from

2 normal population, determine the 99% confidence
limits of the population variance. .

F 2 -
"X0.,995,9 = 14735

2 : ;
X00005’9 = 250589a
10 X 30/23.589 i2.72

The upper limit (Eg = 1O X 30/1.735 = 172,91

The lower limit G°

i

Remark When the sample size is large, we know that the sampling

distribution of the statistic - :
4 _-\lé?. ')(.‘2 - /2y -1

- w?ereKWJis the no. of dofs. - is very near to a normal curve
N(O,L)e : ;

Example (3) A random sample of size 146 & 52 = 197.26 is drawn

Trom a nmorumal population, 'Pest the hypotnesis that population

variance is " 256.

el - A 146 X 197+20 -
A = 0BT /BT = 256 Yo 11;'5

:.}C-‘:-Z
But at 5% level of significance lu! =196,
. We reject the null hypothesis
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Exercise (1) A random sample of 65 individuals is drawn from an
infinite population. If the mean of the sample is 95 and its
standerd deviation is 16. Can we say that this sample is drawn
from a population with mean equals to 100?

Exercise (2) A certain type of rat shows a mean galn in weight
of 65 grams during the first 3 months of life. Twelve rats were
fed a parfticular diet from birth until age 3 months and the
fellowing weight gains were observed:

55, 62, 54, 58, 65, 64, 60, 62, 59, o7, 62, 6l.

Is there reason to believe at the 5% level of significance that
the diet causes a change in the amount of weilght gained?

Exercise (3) Two astronomers recorded observations on a certain
star. The L20 observations obtained by the first astronomer have
& mean reading of 1.20. The 80 observations obtained by the
second astroncmer have a mean l.l5, Past experience has indicated
that these astronomers obtain readings with a variance of about
0.40. Does the difference between the two results seem reasonable?

Exercigse (4) Two new types of raticns are fed te pigs. It is
desired Lo Lest whether one or the other of the types is better.
A sample of 12 pigs is fed type (A) ration, and another sample of
12 pigs is fed type (B) ration. The gains in weight are recorded

Type A | 31 34 29 26 32 35 38 34 30 29 32 31
Type B | 26 24 28 29 30 29 32 26 31 29 32 28

Exercise (5) A random sample of 10 observations

ii, 11, 1o, 12, 8, 10, 15, B, 10, 8, is dreswn fron -a normgl
population. Test that the populatlion variance is 2.5.
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(IX) Chi-Sguare and its Applications
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Chi-Sguare & its application

In the field of research, the experimentermay face one of
the following situations:-

1l- The experimenter may believe that the students should
be distributed equally regarding the preference of one of the
three different subjects A,B,C. He draws a sample of 90 students
and asking them which subject they mostly prefer, he get the
following result

29 students mostly prefer subject A
25 i i it " B
55 (3] 13 " 1 G

According te what he believes, the expected number of students
who will prefer any of the subjects should be 30.

The data can be represented in the following table

observed Expected

ubjecta o - ‘ i
Bu IS0 GE Irequen'c_les irequencles

A 29 30
R 28 30
23 : 30

Are the observed frequencies Ccnsistent with the expected
frequencies? The null hypothesis to be tested is "there is
consistencey”. :

2- In fitting a certain theoritical model to a given oberved
frequency distribution, the experimenter may wish to test whether
the model is & good fit or not. In obther words, it is required
%0 test the goodness of fit. For example, given the distribution
of students according to their scores, the experimenter would
like to test that this distribution will follow a normal curve.
The null hypothesis 0 be tested is "there is a good fit".

3—- Soumetimes the experimenter may be faced with the data
arranged in a bivariate tables where the two variates are graded
into catsgories e.g.
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= Marital

biducationa tatus
status

illiterate

read & write

| reduim culificate

Single | married| divorced| widow

\ Ligher o

Such tables are called “Association tables™ or
Yecontingency tables" E

The hypothesis to be tested is “there is no association®
er “there is independence”

Now, in the above situaslons, we have:

(bserved Irequencies denotved by 2.
hixpected frequencles denoted by fe
""he test criterion is

£

(= "
P :Z Of - (l)

2
fpis test statistic is a discrete variable and has & sampling
¢istribution which was proved to be very near to that of the
oy e 5
continuous variate %= defined as

2 v 2
X =2 u’ -
where u is & stsndardized normal’variate. Hence we refer to
=
0 e -. " ) ’
. as ‘aﬂ.. he 8 2 “ (fo_fe)tz
% = :E cd (2)
=

nd we use the corrasponding'tables for'x? defined by (2)
lote £, in sny cell should not be less than 5

Applications
dxample (L) In a questiopnair distributed to 200 students it is
Bked, "which subject A,B,U0, or D do you prefer?" It is fourd
hat 45 prefer A, 54 prefer B, 46 prefer C and 55 prefer D.
Neet the nypothesis that thers is consistency with what is
helieved that the four subjects are equally preferable.

s .
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Now the data can be represented in the following table

Subjects P fe
A 45 50
B 54 50
G 46 50
D 55 50

: 2
) (£g-To)

x e
_ (w5-50)2 , (54-50)% +-g46u5022 , (55-50)2
. T 50 50 55
. o2
= 25— = l.e4

From the %Lables

@
005 LS

»°. We accept the null hypothesis. In other words, there 1is an
evidence of sxcstence of consistency.

Example (2) A rapdom sample of 2970 students ig drawn from the EEQ
grade secondary schools. They are given an achievement test. :
The observed frequency diatributilon of their seores is as follows:i-
Intervals: 40 40- 50- 60- 70— 80— 90- -

- . ‘1 ‘4 9 &8 130 338..592

Intervalg ¢ 100~ 110~ 120~ 130- 140- 150~ 160- 200
£ 916, -6a0:. 330 1g0-.- 85 . 13

o0

Do we consider this sample as drawn from a normsl population
baving the same mean and standard deviation?

The mean (%) = 104.56
n

The standard deviation (8) = 1€.99
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The following table summerises fthe results of fitting

a2 normal
Upper £ Standardized| Area £
o 0 VAN e
| limits Values below
3945 & - 5083 0.0001 0.,0001 « 030
49,5 4 - 3.24 0.0004 0.0005 1.49
59.5 7 — 2.65 0.0040 0.0036 10.10
9.5 48 - 2,06 0.0197 0.0157 46.63
7945 140 - lo47 0.,0708 0.0511 151.77
89.5 338 - 0.89 0.1867 0.1159- 44,22
99.5 S5da - 0.30 0.3821 0.1954 580,34
109.5 719 0.29 O.6141 0.2320 689.04
119:5 610 0.88 0.8106 0.1965 583.61
129.5 330 Le47 0.9292 0.1186 352.24
139.5 120 2.06 0.9803 0.0511~]  151.77
14905 55 2.65 099960 0.015? 4‘6065 ;
159.5 13 323 0.9994 0.0034 10,10
1995 3 5.59 1.0000 0.0006 1.78
2970 2970.02

In order that none ¢f the expected frequencies should be
l2ss thsn 5, we add the‘lSt three expected frequencies (l.e.:
0.30+1.49+10.,10 = 11.89) snd the correspending observed frequen-
cies (le.e. l+4+7 = 12) and consider sach as one class.
Similarly we add the last two expected frequencies (i.e., 10.10+
1.78 = 11.88) and the corresponding observed frequencies (i.e.
13+3 = 16). Calculating ! we find that

L S(2 -f :
0 “e’. a
X o= g L

The number of degrees of freedom V = 11-3 = 8 where 1l is the
rumber of classes and 3 is the number of constraints (the total,
-he mean and the standard deviation).

At 1% Level of significance we find from the table

rpisccashyls
X515 = 20:09

S. We accept the null hypothesis. In other words there is an
cvidence that the distribution of the scores in the population
is normal with mean 104.56 and standard deviation 16.99
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Exemple (3) Five coins were tossed 100 times. The frequency
distribution for the number of coins on which the head occurs
is given below

O 4 2 < 4 5 Total
2 L4 20 % e 8 100

a0 #e

H B

Fita binomial digstribution and test for the goodness of fit.

X = 2.84 = np
5}? = 2&84 ouo P - 0057

The probebility biromial distribution is given by

ek L D=7 3
pix) bed 7 4
15
In our exXampie
o e ~r 5 =3
e FFN I Do g ), D
plx) = (L)(0.5702(0.43)

f()'_!j x% == C’J,;i.gagﬁ_,/'i'?,ﬁe

obgerved frequencies and the expected

T = I T g T .
The Lbabie bsliow 3,
-+ =
from tiHe above formulsa,

frequencies calculated

; e _ _ —————
1 § |  Probebillties h£PQGEe“ Lreq.
G | Lo
0 2 0.0147 Lo47
1] 14 O 0974 9. 744
2 =l 0.2583%2 28352
5 5% U 54242 24,242
41 22 0.22695 22,695
5 8 0,06017 0,017
100 £00,000

X = 4.035

Dagreas of freedom = 3 ~2 = 5

From the tables }Qﬁ 5%~ P:8lS
).'

—

» o We accept the null hypothesis. In other words, there

i’ an evidencs vhat the distribution of the number of the coins
on. which ths head occurs {(in the population) is a binomial
distiibution with mean 2.84.

e R
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Contingency tables: In general the table can be represented
as follows where we have ™ " raws and "s" columns

B 2 3 :
.A. k& s 0@ o) o
l Ill . ° © fij L] ®
E il e = o fj—a e o e fiS fl.
r 3 . 9
:'..‘. o - ® - J:ia - ® L] frs <
e S e
£1 |-« e =l Fpg e
e p— A Ao R e e e e s et

f, . denotes the frequency in the (i,Jj) cell

ij
5 &

£, = . ZI,. denotes the frequency in the i1~ row

o !J:]- 3

= e ot + > in t .th

2o £ij denotes the freguency in the j— column

*y .

f oo S B T . = 2 £, denotes the total

L 1 J -—J i - B j il’
frequency.

Tt shouid be noticed that no associatlon or independence
occurs in two casesi-
(i) if the freguencies in the cells are all equal
or (ii) if the proportions of the corresponding frequencies in
" - - \ - e, -
&g two rows (Or coluunsy Qo ncet differ from column to_
luna (or Tow to TOW). e

The expected frequency £_ for the observed £ = £, . is =
7 e e 0 i
calculated @s
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Now 2. £ =2 £ £4/°¢
j_, =0

i
Hy

OJ o QJ

4.,

& = £, Zf Py /P =gy
J .; 00 @ o o
This means that the marglnal frequencies for the observed and
expected frequencies are the same. Consequently the number of
degrees of fresdom vy is given as

Y =18 = (8-1) = (r~1) = (r-l)(s=l)

Examples- In a guesticnnaire filled by a random sample of 2026
students, we ask, "Do you like to work in the givernment or on
yoeur own? "The students are also classified into three groups

A,B,C according to their father's job. The results are given

in the folleowing table:- -

Father's Job
- Total
_A B G
. ‘ :
Mo 120 208 13
& T +1} e ; ; =
%gﬁb In the government (58.9) |(242.0) (40.1) 341
i;ghgg On their own a8 _ 1350 e 1685
o i | (291.1)|(1196.0) (197.9)
Total 250 1438 238 2026
The expected frequenciles are given between brackets
£ o Y°
N N2 D ote | 05,908
NOW A’ = fmwmir; w— ED AL 53
The number of degress of fre dem is Y =(2~1)(3~1) =2 A% 1% level
of sigunificance WP f¢w4 that X% = 9. 2~,W1th 2 d.L.

Hence we rejict the null Lypathesmﬁ. In otner words there is an
evidence that fle&e is an asscc ldtlﬁn between attitude towards
working in the government and father's Job.

2X2 tables

Let us consider the case where sach of the two variates A&B
i classifiad into twoe cabtegories. The tables are known as
2X2 tables and tekse the *ol*aw;nv forms—-
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Varisate B Bobel
& . .
E = Al a b a+b
S A, ¢ d c+d
> .
Total a+c b+d N

where N=a+b+c¢c+d
The expected frequency'for ma" ig (a+p)(a+c)/N

*. The difference bebtween "a" and its expected values will be

(a+b)(a+c) _ ad - be
> i = N
for
Similarly the differences,;b, ¢, d and their expected values are
_8d -bec _ ad = be ~ ad - be
N : N ’ N
respectively
P
2 e A
e e
_ {adg-be)® 5 3 i ’ 1
. N2 ' {a+b)(a+c (a+b)(b+d) ~ (c+d)(a+c)

. §
i (c+d)(b+d).]

A N(ad-be)?

= (a+o)(c+d)(a+c)(b+d)
Example ,

The distribution of a sample of 1464 individuals according
tec sex and attitude towards smoking is given in the following

table
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cmels | 28 ROE i aaial

Smoke
Men 295 462 To7
Women 183 524 707
Total 478 966 1l4o4

The hypothesis to be tested is that there is no association
between smoking and seXe Using the above formula the value of
x> is 28.5. Ford =1, and at 1% level of significance we have
from the tables ¥+ =6.6. Hence we reject the hypothesis. In
other words there is an evidence that in the populatioq)attitude
towards smoking depends upon SeXe.
Note (1) when the sample size ig £ 500, we use Yate's correction
—hich is only appropriate for %+ with 1 degree of freedom. The
procedure is ©O change the frequency in each cell by 0.5,
ke%?ing the marginal toval unchanged and reducing the size of
fx ® Hence o 2

- N(lad = be) - N/2)
= (a+b}(@+d)(a+c}(b+d)

)
Note (2) It ig kmown that for a large sample if % has 1 degree
of freedom,\x* has & distribution which is the right hand
nalf of a normel distribublon. Hence, We can usex* with 1
degree of freedom as & test for the hypothesls that the proport—
ions are bhe same in the two pepulatlons. Tn the above example,
the hypothesis to be +ested may be ghated as follows: the
proportion of persons who smoke is the same among men as among
women. The outcome of the test gives an evidence that equal
proportions in the two populations is untenable.

In hesbting the difference betwsen two proportions, the test

criterion is T Py
£y ™ #s
~F / 'S a 1 1
= ;L'“ { = -
where GJP.'}.“PE, ‘/g C )xnl % 312)

In terms of the 2 X 2 table,

a.

it i o il a+c
P =%+b * P2 " csd * 9 N

—
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&
e i 2 a ¢ y2 _ (ad - be)
o (P20 = (ggm -
% ? ' af °+d €a+b)2(c+d)
o Begrd. o 4 a+c b+d
ﬁtl"g)(nl T n Rl (a+b c+d)
_ (ad+c)(b+d
- _N(a+b)(e+d
S e S - be)® IRNT:
& = (a+b)(c+d)(a+b)(c+d) ~ 1
Note (3) 1In 2 X k tables, 9(§_l is used to test the null

hypothesis that the k proportions are identical.
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( X7) Simple Analysis of Variance
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Simple Analysis of Variance

Introduction: Analysis of variance is a technique applicable
To testing the hypothesis that several independent samples

haeve been drawn at rendom from a common normal population.

The development of the analysis of variance as a powerful test
in experimental and research work is largely the responsibility

of R.A. JFisher and his Co-workers, :

The analysis of variance has proved to be not only con-
venient method but also a powerful method of analysis for the
research worker is testified to by the extent to which it is
being used in the planning design and analysis of research in
a variety of fields.

Basically the analysis of variance is a simple arithme-
tical method of sorting out the components of variation in a
given set of results. Whenever there is heterogeneity of
veriation, more than one component is present. Suppose that
we have a population in which the people are all of the some
race and the variable studied is height in inches. Four
zroups are drawn from the population. One group of men,
arother group of women, a third group of bays from 13-15 years
of age and a fourth group: of girls of a similar age. When
e Tour groups are combined, the frequency distribution might
appear reasonably normal but, we know that two components of
variation are actually present, one representing variation
wi.thin groups and another between the groups. The arithmetical
procedure of the analysis of variance enables us %o sort out
s1.d evaluate the components of variation for such mixed
population.

Tn the present chapter, we are going to deal with analysis
of veriance in its simplest form, namely, the on-way classifica-
tion or sometimes called simple randomized design. The lmport-
ace of this design in experimental work cannot be overemphasized.
Not only is the design widely employed by itself, but it
constitutes a basic unit in nearly all of the more complex
designs employed in experimental research. In this design each
treatment is independently administered to a different group of
gubjects, all groups having been originally drawn at random
from the same parent population. After the treatments have
hoen administered, these groups may be regarded as random .
samples from & single population, only if the treatments all
nave identical effects on the distribution of criterion measures
for the population,Otherwise, the group recelving treatment Tl
say, may be regarded as a random sample from a hypothetical
pupulation which is like the parent population except that all
its members have received treatment Tl‘ The sample that

received treatment T% may, likevise, be regarded as a random
i

sample from a populafion like the original except that all
members of this population have received T2 etc.
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The hypothesis to be tested is that the criterion means of these
treatment populations are identical. The design can be
represented as follows:-

© 0o 00 T @0 0@ T

" i k
Xll Xl2 e e o 0 le o 00 xlk
Xal X22 ® 00 0 x2j o 0 00 XEK
Xil Xiz e o 9 0 Xij e 0 o 0 Xik

L] e e 0o 00 ° o0 e 0 L3
° © @000 ® © 00 o

-2 @ o o099 ® ® 000 [

an ﬁz @ & o 0 Xna' o9 00 Xnk

Xol Xﬁa 9 000 ,ij L- - ) x,k
i-“‘-l,a, o.ogn & :j = 1,2’ ce0e gy k
Xij denctes the value of the :i.j-ag observation in the group
of the jﬁg treatment
X 3 denotes the mean of the values of the jEQ treatment
X denotes the over all mean
n denotes the number of observations in each group.

1% may differ from one treatment to another i.e. n.
Whel‘e J = 192, 00y ko J

If all the treatments have identical effects on -the distribution
of criterion measures for the parent population, that is, if the
distribution of criterion measures is the same for all treatment
populations, these populations may be regarded as just one
population. Iun this case the varlous treatment groups may be
all regarded as simple random samples from the same population

whose variance we denote by T ~.
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2. Estimates for$§? and measure of discrepancy

From the experimental data we can derive two independent
estimates for . One estimate is based on the differences
among the observed trestment (group) means, the other upon the
variance of the measures within the individual treatment groups.
e cen form the ratio of the first of these estimates to the
second. If the treatments have identical effects, the 1St of
these estimates will exceed the other only by chance., If the
treatments really differ in effectiveness, then the differences
among the observed treatment means will be larger than they would
be and the ratio will then tend to be larger than 1.0. Accordingly
we cen use the ratio as the measure of the discrepancy between
hypothesis and observations. If we find the gampling distribution
of this ratio, we can use it in a statistical test of the hypothe-
sis.
The ;33 estimate (based on the means of the groups) If the k
trostments have identical effects on the distribujion of the
eriterion measures for the parent population the various treatment
groups are all random samples from the same population and the
meane of these treatment groups are a aimple random sample of k
Values from a population of such means. Hence an unbiased estimate

is given as k
i i = =2
G = e 3 (x,'j - X)° / (k1)
X J=1
But
X
2
s e Na - -2
e s et L fes
(1) x R

The EEQ estimate (based on the individuals within groups) If the

Treatments nave identical effects on the criterion distribution,
each treatment group is a simple rendom sample from the same
population. For the JEB tpeatment group, em unbiased estimate

for p52 is given as

2 -
%;3 = Zj(xij - 332/ @-1
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A better estimate can be secured by averaging
e ~ ;
6. 9 "6.;22 9 800 9 Gnik92 3 i;e.,
)2

k == (x..-%.
D oD - i °d (2)
G%é) % %E%_ Gy = k(nw=1)
= e
3. Inter pretation of E%%!
)
~2 = =12
. . = k-1
i_%l_ 3 n %_ (I.a x)* / (k-1) s
: = 12
522) % % (xié - x’a-) / .k(n-ﬂ-l)

We know that if the population has a normal distribution,
then the sampling distribution of the means of random samples
drawn from this population is also nsrgal heving the same mean
as the population mean and variance “/n.

(. - %)
S/ Ve
' k (% . o« = 2 k
- L Z n‘XGnr X) = Zﬁa =ﬁ_l (4)
d=1 &= 3=1
Also, for the 322 group
e Hes =X,
s et N ST
B wn 2 e
%T_, (xij N x.j) - E ua = ’%v-l
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Hence o i
n -
i - 2 2
5 ol o _leén-l = Te(n-1) A
J=

J=1 3d=l )

(applying the additive property of Xg)

Dividing both numerator and denomenstor byCSa and using (4),(5)
we get

G s / (k-1)
(1) A )]
~sF

Note: The above derivation is valid even if the number of
‘observations (n ) differs from one groupsto another

Xyqg = %X .
1. 1j | .
6“
gy, -F 02 S
xi’] o = Z— .X?n.—l
41 G * i=1 J
K- n.
= 3 g%
3=1 i=1 S e N e W,
where .
= 2 1y
J=1
2. Also (qu - X) 2
Grym

- o = k
nj(xnj X) Z 11? = .fk—l

csz j:l

—

k
.
i1
e n. 4=
& Z a——az—- /) e/ e

i

i - F ) / (N-k
%@ Z iaciﬂ Zed” /(v-x) e f R
3=1 i=1 6
= P

k-l ’N—k ;
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4, Analysis of Variam;e table

Partition of total sum of squares

— Agein 1etf’3&;ij denote the i¥2 observation in the jﬂl group

or (sample)

X 3 denote the mean of the jo& group

& X denote the over all mean
L]
x,, 9

x._'! ‘_‘-r—“'—-
= = I
* L
Hence o _ th
X; =X represents the deviation of the i— obsgervation in
© **  the it group from the over all mean.
xiawi ; Trepresgnts the deviation of the iﬁ}- observation in
*¢  the j*2 group from the mesn of the jih group.
X =X represents the deviation of the mean of the 3-31_1
e group from the over all mean ¢
- = - + (% -% )
Now xi;j x ‘“X-ia' X.j) + {°x.j w3
Squaring both sides G5 A =
e o Y R P NS 0.(E . -% )°
3 - (xl;} e = i (‘xij .;]) J J(x_.j x )

i.e. = et :
Total sum of squares (88T) = Sum of sqQuares within groups (SSW)
+ Sum of Squares bstween groups (SSB
Where SST has HN=1 degrees of freeden :
SEW has N=k " 5 "
SSB has k-1 " w "

For numerical calculatiocns of the sums of Squares we havg
B = 2% . _3 2 .22 2  (EEnY
S id A S el G _AW— -
2
. 3 o %) %2 2
SSB = Zn.(xiax ) P Wi _“(j i X34
j i o e a nj ﬁ

and by subtraction we get SSW.

({ 2. 0% .}2‘/ N 4is called the correction term.
e 33 :
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A summary can be arranged in the following analysis of
varisnce table

Source of ~ bt Degrees :

variation ‘| Sum of Squares fresRon flean Sum of Squares

Between groups| > n.(x.-x ')2 ¥ =2 | Z atls -5 )2/(K—I)
J a a L AP B 3 a J s

Within groups | 2 2 (x:;-X )‘2 N -k (x. .-X )‘2 N-k
jzj-_ 33 Tl ZJZJ. s % | .:1'( )

Potal _Z_Z(xij—i | -1
' «-j i oo

5. Bxpected values of sums of squares
Let x, . denote the value of the character x for the 3B

observation in the jE-b- sample (or group) we may write the model as
. & ~

"
X3 = My * 2y
where zj4 is a random variable with expected value o & standard
deviation 5'3. CanlsByenvsk) e :
We suppcse tnat the sampling is random within each group and x. .

from different group are independent. Further we assume that -

the xij’s are independent in the same group. We also assume that
G| =63 = +-+ =G i.e. the groups from which the samples are

drawn have common variance. K 1 _
In the above model the statistical hypothes:.s to be tested is

This model can be modified replacing /Lj by/(,+ A:,i where/&_is a

parameter representing the over all average level of the character
measured. . represents the diviations of the average of each

group from the whole average. Without any loss of generality we
can assume that Ena >\,j =0 :

Tne model becomes

xg = e Ay m (L)
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This can be pxesentea in another way,Assume bthat the X5 j
are independently ;‘u(}l ,G Consider the identity

o+ B /‘“}La I””)+(de/*a
Let ,\3 =/L-J «,b, and /A. = Z ny fay/n
)

k
where N= 2 n

£ )\ X : k
hat B./N. = n - = n N
s g e g G oy
J=i J=l d=l
, = N - N =0
Alsc define B34 = ¥ . -/;g. which has mean O since the mean of
g .
X 4 is }43 But both 24 & x; . have the same varianceo'a,
blnallv 2,4 wre Jrfmaily distributed since the x; 5 came from a
normal distribution. B
i = 1,2,...,11.
° i g d
d = L2000,k
z; . are independently 1\1(0,5'2)
D. ——
vl bk
d d "
J=4 %
-
Now 3
e - i = '
X 5 =5 2 X 5 -./A+ /\3. + Z_ (2)
b i=l '
£, 'n A Wpdee ity
£ =3 22 x.=F5 = nE . =M+ E (3)
o0 .N ) ; g N DEJ. a ld T
a.o E i :-,@‘;_; = >\ + "g ""E - - SETE o
o a0 J i od oo) & xij x.j T zla Z,j
Hence

i- Sum of Squares between groups (8SB) = Z nJ(E J-:?c )2

E 4
= Z n, ‘—/\H,z -Z .i)z

L
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s - P - 2 gie o
.,.6(8813) = J%- na'>\j +B{Z nj(z_j—z“);}

K
- ;jz_L

i

K 2

2 3 G
= 25 A s ny
S

. ’
B 4 2 2
= (&=1)G"° + Z n, >\§ (4)
i f TR
2- Sum of squares within groups (SSW) = :2: ;E; (Xla—i J)2
n. Jg=4i I=4
s = fed
= (Z. D
azl lz_l 1J *dJ
@ 3 b, k 2 4 2
oo - x LBBH) = zl(,nj-l)@ =(N-k) " (5)
J-—-
These can be represented in the following summary table
Source of " % g De§§ees Bxpected value of
variation Wi OF SQuares | rreedop|mean sum of Squares
e e w8 B N b
Between groups | 2_ n.(X .-x ) k=1 gl n.G<%/(k-1)
T 9ed e S
Withi - e 2
ithin groups | S = (x4 .—X_ ) -k |
=T L. -
Total == (2%, )% N1

If the hypothesis tested is valid i.e. }& = )E ke e 0,

(4) becomes (k-1) G2, while (5) is still (N-k)G2. A large

value of the mean square ratio obtained from (4), (5) by (k-1),
(N=k) the corresponding degrees of freedom respectively may be
regarded as evidence of difference between groups independently

of any assumption about the distribution of the Zi;j's" - That is

we have no system of significance limits against which the
observed values may be judged. To obtain such significance limits,
we assume that each of the.z.. is normally distributed i.e. 23 5

14J
~~N(0,8). On the null hypothesis i.e. = 0, the mean square

ratio is J
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E naczsj-zos)%/(k-l)
: . N o ;
(z..=-2 . -k
%; %’; (25 4~2 )%/ (N-k)
eosn IS :
But gy = . (F 5-F, )Gl X G2 /(1)

s , = 2 2 - AP :
N—K Ziziwl;j“z.;j) "~ K- G /(B-k)
s sSum of squares within groups independent of sum of

squares between groups, Thef

2 g
Mean sguare ratioc = %]ggg g Xg«i/m““ TP g
X/ (=K K=1gN=k

Example Random samples of dixs are drawn from 4 dirferent
machines. The values of their diameters are given as follows

mschines
A 1B C D
25 24 25 24
20 26 29 a9
28 30 32 33
5 25 24 26 ;
35 28 29
34 ‘
Taking 25 as an arbitrary origin we have
A B ¢ D
0 -l -2 -1
- B 1 -2 -2
P o z 8
=10 0 - 1
10 +3 o4
9 :
nj + <) ' i Bl sl
S X -12 24 5 10 27 “wE X, .
B Ty
i & =
g:_ %55 134 208 67 86 4905 = JZ% X3 5
2
(2x,.)
Zx. Pl a6 96 > 20 [157 =2-RT
: i J J
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i
Correctlion TGerm = L%%l.
SST = 495 - 36,45 = 458,55
SoB = =

157 - 36.45 = 120.55

Analysis of variance table

source of . » P o Degrees Mean sum of

Variation Sun of Squares of freedom Squares.,

Between groups 120,55 3 40,183

Within groups 338,00 S 16 21,125
Total 2158.55‘m 19

i = = 400-!.8 14
Mean Ratio 8 Zitiég MVI.9O

From the tables we have F, .. = 3.24

3,16
o> We accept the null hypothesis, i.e., there is an evidence
Tha® the population means of the diameters of the discs produced
by the 4 machines are identical

Note If F proves %o be signiricant this means that )\3 £ 0.

In other words the population means are not idenvical. To test
the signiricance of the diifference between the means of any two
populations from which samplies h,g are drawn we apply

ih—i

t = 8
1 L 4
I/G E+2)

oo w, ¥
., X are the si : :
n,, X, are the size and the mean of the sallpie h} Bgy X, are

o~
the size and the mean of the sample “g"% & ¢y is the mean sum of
squares of wivhin groups. ;

Bartlett's test for homogeneity of variances

In analysis of variance it is necessary to assume that a
number of population variances are equal. If we have reason to
doubt that this is the case, we may want to test the null
hypothesis

y T2 el o el
H OGLWG?_M.O”W@’}I
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gainst the alternative
Hy & at least two variances differ Under the assumptions:-

(i) k random samples are drawn from k populations
(ii) the k populastions are normal, the statistic

k
2.~026 ‘- ( y . 2 :2
——é—— N=k) 1log,, g. - (n.-1) log 5']
L 10 ®p =1 J 10 83

is approximately distributed as XE with k-1 degrees of freedom
if Ho iS tmeo Here S%. 9 sg g ese g % are the k samples
variances. Also

k
- | 2
B = “FE % (n5-1) &5 »
31 g 2
e Z(xi;‘i - %3
K
and - : 1 1 N 1
. w14 wrbwy %35“—1 H-k]

Example To test the homogeneity of the populations from which
' the following samples are drawn

2. 8, 4, 7, 5, 6

be 6,12,14, 8

Ce By 29 29 14 24 1
: de 3y 25 &

e. 10, 7,15,17,13, 8,14
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a b S d e
8 6 4 3 10
§ -3z 2 2 7
7 14 2 4 15
5 8 i 17
6 2 13
1 8
14
ng 5 4 6 3 2 25 = N
| i l = ﬁ-i— .
2{. X5 5 30 40 12 9 84 |175 T =
= P S ey
:?L xﬁa 190 440 30 29 1092 | 178l= = % x;5
2 2 (zi' xi-)z
(Zx;5)°/n; [180 400 24 27 1008 | 1639= & R
J
L
% (x5 x'j) 10 40 6 2 &
Samples |2 (x. .-X .)2 n.-1 | #2 log g2 (n.-1) log, . 82
yis 8 ol J J 10 "g | d 10 7§
a 10 4 2.5 0.3979 | 1.5916
b 40 3 |13.3 | 1.1239 | 3.3717
6 5 | 1.2 | 0.,0792 | 0.3960
a g 2 1.0 0.,0000 0,0000
e 84 6 [14.0 1.1461 6.8766
142 20 12 .,2359=
S (n.-1)log s°
j ;37 :-;5:10 J
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D = 142/20 = 7.4
icglu 8; - lugiu?o‘l = OaSS-LB

S (N=k) ioglesp = 20x0.8513 = 17.026
& Laldd
)(f = 22020 | 17.0260 - 12.255:‘"\ = 9.88

2 1 F 2 &
; “rom the tables ey 1= S
DUt I'rem taoe tablLes X 1,5% = Y 49

S, We reject the null hypothesis Host =6§ B paw B c;i
In other words there is no evidence that the populations from
which these samples are drawn - have common variance

hxercises

1- A professor ig trying to select a good text book for his
elemenvary course in statistics from 4 different oneSwhich are
availablie., He ras 37 students whom he distributed at random
to 4 different groups. The assignment of textbooks To groups
is algo done at random. Arter the course is over all students
who are still enrulled take tihe same examination. The results
are

Texthook

A B G b
o8 41 54 44
L8 477 44 51
-89 S4 Bl &Y
ol By 56 59
73 32 47 59
&k 73 5l 55
21 4 59 66

o7 48 49

75 o4 41

54 bl

/3

Assuming thau differences attributed toe using a number of
texthooks are the only variables that need be considered,
what conciusions can be drawa?
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2= Worms are classified into three groups by a structural
eharacteristic. Three random samples of 1ll are taken from
each group and the length of each worm is measured. These
data are recorded as follows

Group (1) 8.9,9.7,11.5,8.2,10.5,10.8,11.0,8.0,9.9,11.0,11.0
Group (2) 12.2,12.0,11.5,8.7,10.5,9.0,10.5,13.0,13.0,11.0,11.1
Group ( 9.5,8.0,8.3,10.0,9.5,10.0,11.3,10.5,8.0,8.0,9.2

Test the hypotn351s that the mean length ot each group is
the same

3- Jenkins & Snedecor eompared the yields of a number of varieties
of corn. Hach variety being represented by several inbred lines.
S1x varietles with yields (bushelg per acre) of thelr inbred
lines are follows:

V103 ety 705)4e5374435004509,604,6005,5.0,6001,70955.7
V2 8 Ze730e43542,440 _

\f3 : 6.9,6.8,7.6,8»:!.,9-43-‘-2003-'-?'9:?"499'_Oi5'2’9'2’b-°b
Vq. : 9-637»8:9'6$70738023?'5!'u"3’9‘5’8'8’8°4’b'8

Vg & 4.8, 9,a85,8879,5992

V6 P 4.35,8.4,6.0,449, 5 - b,b 4
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( X1 ) SIMPLE LINEAR REGRESSION
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. Given n pairs of values for the two variates X & Y,i.e.
Xrgxl’xavotoorotgxn
T2 T1 9 Tp 9 o 0 o o o o 4 -

it is required to find the best fitted line to the above
data. The equation for such a line is not just a mathema-
tical form where we can calculate the value of Y given the
value of X and vice versa. In fact we are going to have

two equations. From one equation we can predict the value
of Y given the value of X with the least possible error in

Y. This is called the regression line of Y on X and usually

written in the form
YT=a+b(X=-X).

From the the other equation ,we can predict the value of X
given the value of Y with the least possible error in X.
This is called the regression line of X on Y and usually
written in the form

X = ay+ bl( 1.

1- The regression line of Y on X ¢
Let the required equation be in the form

(L
:

~ X
4

If y. denotes the observed value and y. denotes the predic~
ted @alue then the error is represente& by :

& =73 - 73 (1=1,2,000m)  (2)
%he'*'over all error around the fitted line can be measured
N
! Fal
E= Zet /o= Z@ -3/
- - § i
But A s
yi=a+b(xi-x)
then =3 2
) E= >( ¥y - &= b(x=X) ) /n
Hence E is minimum if the quantity
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=3 -8 -bm - ) (3

is minlmum ( nis a given value )

It is obvious that thls quentity depends on "a"™ & '"b",
Now the question is : what are . the estimates of "a" &
H" whick make Q mlﬁlmum ) stng the Ieast Square meth-
od ,the required conditions are

QwWda =0 , OQ/Jb =o (&)
From (3) we have |
0 ¥/ Qe = -2 Z (y5-a-b(x;~X))
5 5 (5)
O /b = -2 Z (3;~%) (y;~a~b(x;~%))

From (4) & (5) the required conditions become

Ve . o= ) O =
Z (y; - a =b(x;-) =o } -
:Zf(xinij(yi-a-b(xi—i))z )

Solving (6) ,we get '

2 =Z3; /o d (7
- 2
b = 2 (x,%) (7,~5)/ Z (x;-%) (8)
Substituting in (1) we get the regression line of Y on X,
and "b™ is called the coefficient of regression.

Similarly it can be shown thal the regression line
of T onY is

X:alvb'bl('x—f),

where =
al = X
& " - _.2
by = 2 (%8 (7,5 Z (7;-F)
Remarks :

1= The two rgr95519n lines of Y on X and of X on
Y intersect at the point ( X, 7)

2=~ The regression coefficients of Y on X and of X
on Y can be rewritten as

"2 5y, - Tx Ty,
n fo_. - (Z xi)

b =
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. nz x;yi ”in_zyi
. nzyi = (Zyi)a

Both formulae are preferable for numprical calculations.

3-Again the coefficients of regression can be shown
to have the following forms: .

and b

s S,
b=rxr J and b1=r_£...
s N

x J
4w Introducing the above values for b & by in the
regression lines the two equations become

T =y X =X
| Sy =X Sx
and & =

X =X . Yy -y
C s.;y
respectively.

5= From remark 3 ,we get

_ 'b-l.bl = ra °/
Hence b , “t;% and r have the same sign, i.4. they may be

all positi or may be all negative.
6- If 8’ is the angle between the-two regression
lines then 4
s_ 8. (¥ -1)
tan 6- B X 12 .
r( 83 *+ 85 )

Consequently, if the two regression line coincide +then
r = 1 and if they are perpendicular then = = o

s dl =(x"'°l)/4 & 52 3(3"'32)/4

then b >

yox bdg!dl _[-L._
bx.y = 'bd.l"a2 el
!2

and
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2- Testing the significance of "a™ &"b"

Iet the fitted line be of the form
y; =a+bh (xi—i) (9)
where "a" &"b" are given by (7)&(8) '
Let alsc the theoritical model be of the form

¥y = X o+ 13 (ximi) + 2y (10)
where z; are independen‘b random variates with
EG) =0 &Varu(z) = ° (11)
From (9) &(10) _
y =8 (12)
F= X+ 2 (13
e = X+ %
Hene (a)= ' ) (14)
iseee "a"™ is an unbisssed estimator for o< ..
Also Var(a)= g( aa-' G(a) )2 = 5(;— < )2 o
Now Fi= X+ ’3 (x;-X) + 24
:‘? = oK 5 %
oo e ¥ g{)’(xi'-i) + zi—E
A L _Z &)
- |
Z'\’.xi"x)
o ye i (x;-%)( [fi (x;-X) + 2;~2 )
5.8 % 2 | (16)
e Z = Z(Xi-i) Z4 / Z(xi“§)2

e - (17)

The. ¢y are constants and given as

'ciz (xi—i}/ - (xi-i)a (18)
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e E@ = §(Zeyz ) =0

& Var(z) = =2 ¢2 Var(zy) =g 2 Z o
i By B R (19
. E®m=5(B+n = (20)
Var(b) = (b -5 (b) ¥

2
2GO<BY aFHBD
G T ane
= Var(z) = G2/ Z (%~ B (21)
Now , to test the significance of "a" ,we test
KX = X, against X # o, - The test criterion is

P = 8 =0

e

To test the significance of ™" ,we test
against /3 # o. The test criterion is

b

Ca-/\/ZCxis )2

In - tYhe above two tesg criteria , G is usually un-
known. An estimate for (< is discussed in the next
section.

H
o

i & =

3= Reggeséion analysis table
Partition of total sum of squares i.e- (yi-i)a
S =Z@-7+7-5)°
ST 3R s TR 2 TG

But < (7.-7) 7P

i

2 (73-F =b(x;=E))b(x;-F)
b [_Z (7;-F) (%;-%) -b Z(xi-§)2]

0

L}

1}
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Ew —-:y‘)' Z (3. =y>2+z (:Y -37)

In other words the total sum of squares (Z( yi—y) ) is
partiticned into 2 2

sum of sguares due to regression (Z(y=y) =Db Z(xi-x)
and

sum of squares of residuals ( =2 (:iri«y)

ected values for sum of squares due to regression and
um of squares of residudals

1- Sum of squares due to regression b2 Z(xi-i)
= (3 + 22 2 (x,-%)°
Expected wvalue of 685 (Resr,) E ( 824-2 Bz + Za) & -x)_%]
RS (2 =D) + ?_(xi—x) g(zf;'
s 6‘2 + (32""(1 —x)

2- Sum of squares of residuals = f(?’ "'.Y)

tﬂ

- E\S’l“d - b(x; "x) )
s [eem® - - B0 ]

:Z'(Ziuz)aaf 74 (x. -i)?-
- 22(2 ~2)2(x; =X)
2‘<z =22 - = 72%(x, P

Expected value of SS(Resd.) ::g [Z(z -z) - fZa(xi—x)]

ﬂn

(1]

ll

= (n=1) (5' - 6’ = (n-a)s'

In other words

{Z(?’ 4 /(n=-2} c;’

2
ie€e § (yl-y} / (n-2) is an unbiassed estimator forG'
A2

G- = Tl /-2)

=Mean sum c¢f squares of residual.
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Source of Sum of Degrees of Mean sum Expecfed value

Variation Squares Freedom of Squares :ggugggg”sum of
: 2

Due to regression b2 ¥ (Jri—i)2 : 3 b2 Z(xi-l_t) G 2+ (322(::1—5)2

Residusl Z (:;r:.i_---y)2 n=- 2 Z(yi-y)‘?/ (n=2) (;'2

Vo TR

Total P n- 1 s

Regressiocn Analysis Table

(6€1)
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To test the s:Lgm.fJ.canee wheather =0 ,we have the
criterion i
b Z (xi—x)
i Fl,npz
S (7;-5)%/(a-2) >
% B

Note : From the above eriterion, we can deduce the dist-
riBution of the coefficient correlation r given as

= 2 (x;-%)(75-T) /08,5,

Sum of squares due to linear regression = oS (:z:i-i)2

- 2Z(yi-‘y)
Sum of squares of residual = > ( Ty =7 )2
= ) Z (7,92
5 baji(x.-ija r2(n-2)
2(7y 52/ (n-2) (1-r%)

< ,Ga e r‘fn—2

i.es To(n-2)
D=2 — ‘bn_z

(l—I‘ ) t/(l--' I‘E)
M If w =rVn- /\/1-:?2 &-.(J-*c, then u =1t 5

£2 -(n=1)/2
But- p(t, ) = ¢ (1+ ~m;~)

Hence p(r) = p(%) l_m.é,;m‘

where

¢ = 27/ B[ Ha2) Hn-2)
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EXAMPLES
1= 5w x y F_oF R BLLX ELE el
5.8 2 1 % 31 % L-8 28 O & %
% 0 £ A& -8 5 -8 R SR -8
LR N -5 0 8- % F T a1 =
5 5 8 % 9 X% 9 & 838K S5-3 - &
13- % 31 2 33 -2 il 3. 8- % 7 4
. % o 3§ & -9 7T & -8 3 & @&
o kMR Y TR R P 5
72 3

n=' 50 S x = 350 S y = 168
S xy = 1202 = xP= 2690 = =63

= 7 y = 3.36

o3 a=Y = 3.3 & b= 0.108

3936 + 0.108 (1‘ R 7)

=2.60 + 0,11 x
S3-5° =23 - (7%

Total sum of sdﬁares

Due to regression sum of squares

=12 (x-%)%=p° [212 - (2x)°/n

L]
L ]
ed
i

t

= 2 ° 82
Regression analysis table
Source of Sum of Degrees Mean SSQ
Variation Squares 01_'_" freedom
Due to regression| 2.82 1 2.82
Residual 64,70 48 1.35
Total 6752 49

(]

R = 2.82/1.35 2.09
From the tables Flgll-a,, 5% = 4,00

.*. We accept the null hypothesis that =0, In other
words the regression is not significant®
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2= Distribusicn of 100 1lsbours according to their
age and number of working hours
Now~—~_ Age(X)
of workin 25= 35= 45 Total
hours (Y)
27- 10 10 20
32 10 40 50
37~ 20 10 30
l Tobal 30 60 10 100 |
‘ X-table Y-table
Intervala| £ dy & £a2| [ratervals| £ & & £a5
25~ 30 -1 =30 30 27= a0 =1 =20~ 20
35 60 0 0 0 %2~ 50 O 0 0
45-55 D 0 30 B7-42 | 30 1 30 30
Potal 100 =20 40 Total 100 10 50
N= 100 = £d,d, = =30
S £(x-%)° =100(40-4) = 3600
o
S 2(y-5)° = ec(B0-1) - = 1225

S £(x-%)(y=F) = 50(~30 + 2) ==1400
.ao  + :'=-"“l£l‘00/3600 =- -00589
F =310(=-20/100) + 40 = 38
¥ = 5 10/100) + 34.5 = 35

.*. The regression line is
v = 35 = 0.389 (x-38)

New  qqta]l sum of squares §if(ya§)2 = 1225
Due to regression SSQ szz'f(xui) = S44.44
Regidual sum of squares = 680.56

o - = S44. 44 / (680.56/98) = 78.4

Comparing the value of R with that of Fl 98, 5% =4,00 ,
we reject the null hypothesis( =0) . . i
In other words the regression is significante.
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Exercilse
The following is the bivariate distribution of 31l skulls

sccording to their length & breadth. Carry out the required
regression analysis

\\\\\\\X Breadth in mms.
i | 1334 1364 139-| 142 145 146~ 151-| 154~ 157~} 160-1{163—
160- A} a2k |
165- 2 & 1 2 i
170~ 2 2 2 1 2
& s 2 2 2 7 9 4 5 21
180~ 1 i 10 15 1k 9 2 x
185- i 1 4 13 12 18 2 4 b |
190~ 4 13 i7 14 8 3 2 i
195 3 s 13 14 5 6 2 1
200~ 2 6- 4 4. 3 1
205= i 5 3 2 4 - 1 g
210- i 3 2 1 2
215~ 1 i
Total 4 44 13 43 76 76 48 33 8 4 2
Ixercise

The followings are the measures of the wing length and tongue
length both in millimeters for 25 bees:-

Wing 3 9.68 9.81. 9.59 9,68 9.84 9.59 9.61
Tonzues ©.53 6.71 6070 6469 670 5462 ©<DHY

Wing 3 - 9,55 9.25 .00 9.70 9,60 9.50 9.74 9.72
.L'.L—).é"..l.e 2 6tj:) 6&35 6@25 60&).1. 6!51 6055 6.?4 6. 75
Wing ¢ 9e04 9.73 9.77 D72 958 PeB3 9e74 " 94359
';L‘Dilguez 004’5 6q75 6070 6' 6b bo68 607’7 64144‘ 6054
Wing 3 9.71 9.56

Tongue: ©G.04 .55

Cariy out the regression analysis required.
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(X11) Multiple Regression
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(1). Introductions . This is en extension for simple linear .
' regression, where we have more than %wo characters. We are going
to deal with the Case where we can express one of ‘our variables
(dependent) in terms of the other variables (independent). Suppose

X is the dependent variable & Xy, Ly5 o000 s Xk are the independent

varigbles. Let X take the values X ;, Xl ’ X2 s oee ’ Xk take
the values Xy39 Xoqs oo 9 Xyy and i = l,_2, Shw-y 0k

The data cean be arranged in the following form

XQ Xl : XZ R S A Xk

. oo %1
Xoa Xl2 : 3222 Bl Bl TR xka
XOn Xln Xan & .e e o xkn

The expected value of xoi given the values of X;45 Xo49
e e 80 ’ kki is
Xy .= o8 # hl(xliwxl)-s- Sk br(_xri-'-x-r) +ooot bk(xki-xk) (1)
The mathenaticsl model is

X3 = G4+ ﬁlixliw“l)-n- pas - -r(xriuir)—l-o.d ﬁk(xkiﬂik)
+ }i ‘ (2)
We are going to treat these independent varisbles as constants
lorecver, we assume that the %i are indepegdent rendom variables,
é(:?i) =6 & Var (%) =5° . The B”s are naticed to be the
partial regression Coefficients ioeﬂﬂomlge”(r).”k
The question is to derive estimators for ﬁr and test the mull

hypcthesis /§.. = O ageinst the alternative # O,
T r
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(2-1) Let us try first as an example the simplest case where we

have two independent variates. The mathematical model is

x,; = ol + B GaFp) + Bo(xo3-%5) + 31 L
Let the best fitted line be of the form s
xR D, ) )
Using least square method, we minimize
g 9 — [xoi’a‘bl(xli'xl) = bz(xzi‘xzﬂ , (5
To get a, by b, We should have
Di e
T e - | '
i = 0 | (6)
L. ‘
—abg = 0
Tn other words
a = X, iy
by Z:L (%,4-%,)° + b 25 (x,3-%,) (% 37%) = Zi(xoi X)) (%9 5-%)
| (8)
. RN R Vb | ) saslE ok Yo%)
M - G T gl o Vel 2
- L (9)
If we write}\rs = EE; (xri'xr) (xsi—zs) , then (8),(9) become
by Ny * B Apy = >\o3. (0
by Ngo * B3 Azp =N - 1L

Solving (10) , (11) we get

- T >\02A>\12 (12)
Ayl Kge )\i

-
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i >\oa ?\11 = >\ol "\21 t1s
- e 2
: 5\1;@‘ >‘22 = >\12

(2—2) Ve want To express by, b, in terms of our theortical model
In other words, what are )\ol’ )\02 in terms of thez 8 2

xo; =+ {g.L (3-%)) + B, (%) + 53 (14)
s el : + g (15)
S e (31(1‘11"-1) + 3, Gy B - 2 88 Tl
Now ; ‘
kal - Z‘(x .-§ ) (x .r-:—cl)

il

.2' By ;2 %)) +h(xy;-E) (- %] N (xp5-%))

. (31 }\11 "’/32 Aoy + >\51 (12

Similerly : : - =

Aep  * Ei(xai‘ia)cle“ﬂzb 1% 12 @2 Ao ”\32 389
he >"‘51 = Z(H- F)(my -F) = g(xli - %) §s

By = o (19)

.Also)\,gz “Z(E ?)(x .,..) =Zi(xgi‘i2)}i
)(\

)a) =0 : ' (20)



hgain & 0‘231) ’“‘é Z‘éi (x5 x1)2
3 Zi(xli—il)a - >\11. G*° keL)
Similarlyg( }\2.52)= = N, 62 (22)
6 Ny M) = = NaaG 2 (23)
But b, = %ol-kza _>\02 >\12 :
. e Afz
= (31 + '%22)5; 2 ’\12>“32 =(51 +2y .
N1 Ao )‘15
Similarly 4 o, %
- .—.ﬁ +11>§§ 12231 =[3 + 2
. 2 Wy Agz — A o
Gris) - (31
& -
§ (by) = (32 N
Al v b = (b, ~ 2 = {'ZE = 22 - Gz (24)
so ‘Var (b)) =5 b~f)2 =5 D) e
& Var (by) =502 =B(z3) = 2 (25)
s 2 M1X22 ~A5
and Oy, 1) z__&l@rﬁﬂfba-/%)] ey e
€ 20 G, COb, M1 A2z N3
(2=3) Partition of Total Sum of Squares
Total sum of squares =fi__(xei-§o)2 - >\00
a = = 2 s £ -1 *
- %ﬁxoi_xo"bl(xli_xl)_b2(22i.—x2§+{bl(Xli" 1) *baixzi‘xa%]
""1_3_.__ - — ~ o :
= ﬁl{xoi‘xo“blcxli‘xl)“bz(X;z:i'xa)}
B § = s 1 2
+ glif’l(xli_xl)"'bz(xzi_xz) 3

e - = & o
¥2 e A Xy Ey by (37470 oy (B ) {bl(xli-xl) *bz(xai‘xz’}
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The lSt term is about multiple regre851on sum of squares (re31d—
ual sum of squares) i.e.

n 2
- {Xio'xo“ol(xli“xl) 5 ba(xzi‘xe)} '

i=l
>~ +bl >ll+b§ \22 2b, X ~2b >\02+2b 7\

=N, +b1“’:9‘11“‘02 A1o- ol)"'ba(bl»\la"'bzl 22~ \02)

e ST
x%oo_bl)ol"b2>\
The 22¢ term is due to regredsion sum of squares i.e.
.ﬂ.
= { by(&y A],+b2(xal 2)}

1=1 %
2 2
bl ?\11 5 )\22+2b 1:)27’\12

1

i

by by Nyg *ba%la)fba(ba N 22+01 N 1)
—b2>\02
The last term i.e.

2‘;§iixoi gu b (X l) ~b (Xﬂ 2)‘} i’b (X l)+b2(x )}

i=3

i

Dl'“ol

" __1,2 - = -
2(oy Nop=b3 ? \3_1 i b Ala”’a}\ 2 b1b25‘12 D3 N 52)

N+ (7 abl 12705 A o)

i

= 0
In other words the last term vanishes and we are left with

Total sum of squares = Residual sum of squares + Due to
regression sum of squares.

A o =% Noo-P1 F>‘ol"b2‘ 02)+(Py RSP\

leee
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(2-4) The Expected Values

A e T ﬁl(xli"xl)"_' Pa(xei‘xz)” BT

)\ = (x,;-%,)°
i=1

= P urf e 55"*291&31*2{32’\32* 2P0
* 6 (Xoo) i3 Pl 11+'r322.>\22+2ﬁlpg>\12+(n—l)(52 :

(i) Due to regression sum of squares =b /\01+b2 02

=k)‘22)‘ol-£>\12>\ 2 >‘ >‘2 ‘/(7‘117‘22 Ao

o1 Tog*
s § (N2)) =6 @15.‘{1‘*‘/62 Aor* ;\51)2
= BN+ ﬁa App)% Ay 5"2f
e G = (ﬂl/\2l+ﬁ29\22)2+'>\22 &<
e & (A Nge) = By [p22 20 By A éi*ﬁa&az)*x
». Expected value of due to regression sum of squares

=& (b >‘ol 2 Nop) = ﬁl 1" /32_ )“22”%61&5‘12*2 o

(ii) Residual sum of squares = xooufbl',\ol+b2,\02)

»’s Bxpected value of Residual sum of squares = (n-3) 6'2
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Regression analysis table

| Source of sum of Deg%ees Expected value of
Variation oguares freedom|Rean sum of squares
- e ; 2 - F
Due to multiple bl)\ol >‘ 2 52+ %(ﬂi)\ll+fg2 22+2{81P2kl2)
regression 3
| Residual /O =iy )‘ al™ a 02 ne% 0-2
Total )\00 n-1

From the above table, the mean sum of squares of residual is an
unblased estluater for @ 1.6

Nl' g

G __* "Frenid,

(2-5) Tests for the significance of Dy,Bs

-

Again the normal equations (10),(11) can be written in a matrix

1w
»

rorm i G %
'}\‘ll >\21 l - by No1 : : 27
| P12 }*22J [ e
M T e e ~1 .
x ¥ 531 i Al 7\21.] }—f\ul
E o= i
‘ %y l Mo P ! L}\oa
L T >‘ol
Bon - | Sip No2
. Nop
where kill 2 -"7:;4
S
s =7 -
Cyp = Cpp = = Mo/ A
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Hence equations (24), (25), (26) caﬁbe reyritten as
2 e
Var(bl) = GllG-

A 2
€250

(28)
Var(b2)

Now to test the nuil hypothesis ﬁ& = 0 against the alternative
!81 # 0, we apply the test criterion

By,

N
B S

[
where Cfgj i cll msresd.

S imilarly to test the null hypothesis (5, = O against the
alternative £, # O we apply _

A

tya = Py /'Gpo

N P
where Gpo= Coy DS, o5,

To test for the significance of the difference between

b b we have

1 %
el g a0 - e
wag — e T S0 c
SR b égcla) B8 resd.
5 t = (by=b,y)/ Ob b,

The no. of degrees of freedom for the statistic "t" is n-3,
the same as that for the residual sum of squares.
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(3) The above procedure can be generalized to more than two
independent variables.

Let
where 1 = 1,2540e,yD denotes the number of observations
and T = 1,24...,k denotes the number of independent variables.

The nmathematical model is

Xyg SHAF ‘Bl(xli—-il) # ais * ﬂr,(xri-ir) e +ﬁk(xki—-§k)+}i(2)
where é(si) =0 & Var (‘51) = 6'2 -

Minimlzing
& 2
B Bt o . N - =X
D= z.:._l xDi a Dl(zli 'Xl/ bg(le xg) R bk(xk.i k)]
we get
8 = E (5)

510 O \ 3 =
l..-L )‘ll "i" ‘L‘a \21 + L ] "i' br)rl + L + bk\kl — xol

"‘)_l>\ 5 - 1}2)‘v_:.1.«3 + eee + brAra + s T bk'.)\kz =x02

L 8

L o o e 8 L] L L]
L L LN L L a

o o0 LI

T S T L A

is as defined before

{

Where M i~

fr

Now the above set of equations (4) can be rewritten in a
natrix form as



This is simply wiritten

RS = AN
where \‘-_>\] is a square matrix, (b)’(’\o) are column matrices.
=1
(b) =[N O
From (2) io = A + 2
" XXy = ﬁl(xli°§1)+ﬁ2(121_22) Tns *ﬁ 1c(Fpe =% (- N
ltiplying both sides by xli-il,xei-?a, i (Eki—ik)

suwcessively snd summing over i in each case, we get

Nor =P "'/82 Mgy + eeenes + B M +>51
.)\02 = (31',\12 +{32>\22 PIBNRRL S "'ﬁk)\k?_ +>32

L] . 800000 -, o
© g . e s@s®OD ] e @ (8)

® 008

_xlk )Qk Mo >\rk T ’\kk by >‘okJ

(%)

()

7
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These set 6f equations can be written in a matrix form

o

- - ‘ -~ T 5w =

)'ol >‘11 >‘.21 $ & )‘1:1 (31 )31

Poz| | M2 N2 v e - Neo B | 1\52
i . : i & 7 3 =

i
+

Dok | [ A Mo oo

Kk @k = 3\3]&
This is simply written as '

A) =(r:)‘*\]((3) AV (10)
where ? 4 %%) =0 . o 3 e (11

Substitubting from (10) in (7)

®) = A:}_i{[ﬂ(ﬁ)‘*‘\”;}
-(8) 3 [3)09) o

Hence (}(b ) = {gr ' 3

From (12) :
o [T (%) J _.
. kb*ﬁ) Oa L%] - 5008
® ~f ) —fé)- B 7\1zj 3 [\]‘1 (15)

/ YR .
»}_;.5};_?2' M2 (Aél >\32 ---\yc)



S

)51

Since
b i
n =
= 2 &y =% 31
3.—-1
. Z >\ 6’
Also é(%érkas) - >\l‘S 0-
Gonsequently
>\1152 /126—2 e o o >lk6—2
E\ ) :
o(}}é)_ i O et ER R
‘ \k & ’xkz ) ;\ G*
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7\31%52 - >‘§1

>\%2>\%1 >\52 vee gy

/\321: \‘51 >\‘§;k kga Hk :
> ﬁ: (31"3 S

& - ﬂ)(b -3 ——ED\ >\’5>\3>\—1J .
5—\1>\ ;\-—1 D\]-I(T

i

NG

(16)

' 17)

(18)

(19)

(20)



(153)

But
, &' - P
(b'(s)(b?&) = | v - (bl—Bl by, =B, o By -p
by - /ek
21"1" B3 RO ICR SRS (bl'{gl)-(bk'ﬁi)_
(ORSICEEY (0p=f,)" e Oy B i

: . PR . (21)

] LI L]

. "9 L

[(Dye= Bty Oy CRICE ffl2d oo (o =P 1"

i ‘ e

If L}\} is written as

~— —

$31 SPMENL R
021 022 & L] L] cak
T LN -;-l - s - e -‘ . o :
LI\E = i . s o e . ; (22)
| %a s ek T

then, substituting in (20) @and co'mparing with the expected
values of (21), we get :

g e ﬁr)a x .C’rr 62

10 var (b,) s B0 | (23)
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% g (b, -ﬁr)(bs = 55) = Cpg & 5 (24)
Similarly >
Var (b, - b) = g[‘or - b, - (/31. »ﬁS)J

:é[(br —(31-) -y~ ﬁs)] g

- o - f? Fo, - f)* - 2500, - f0y <f D

B T TEe T (25)

The regression analysis table

- R Degrees of |
Source of variation Sum of squares foedom
Due to multiple >\
b +b, A +eeet D k
Regression i/el "2 “ez k>\°k
ReSidual )\oo"‘(bl >\Ol+b2>b2+noc+bk>bk I - k c= l
Total 50 | n-1

Following the same procedure as in the case of two independent
veriates, it can be shown that

6 (llean sum of Squares of residuals) = 5”2
~ oo IS = Sum of Squares of Yesiduals (26)
i.ee = resid. e B - L

To test the npull hipothesis/jr = O against the alternative /31_ # O,
we apply the test criterion

b - ﬁ P
o T I &
t f = b ’4 g | (27)
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i -
i GJbr X \/Grr ¥5resia e
and with n - k = 1 degrees of freedom
Also to test the null hypothesis ﬁr - {% = O‘ against the
alternative ﬁr a2 # O we apply the test criterion.
PR e @9
abr- b “

ot

where & % \/ (30)
b, = by (Crr + Cgg = 20:‘5) US Lesia
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Example (1) Consider the following data

xO
xl
X2

t A8k R B AR e T D 1
£ 729 1.8 25 286 & & &
H &4k 8 6 4 g 3 & R
= x,= 48 ,>x = 120, > x = 56
Sum of Squares and Sum of products
in deviate form
" 3 B
X, 200 290 =105
X, 800 =227
%, 72
800 =227
A = = 6071
| =227 72
011 = 972/6071 = 0,01186
022 = 800/6071 s Qul3AT7
012 = 227/6071 = 0,05739
b, = 011 a > 012 o2 = ~0,4866
by w0 01 T8 g RN
Sum of squares due to multiple regressioﬁ
By Ny + Bph,, = 195.1195
Total Sum of squares = 200.
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Regression analysis table

Source of variation Sum of Squares Dg%g:gog? Eeangum
Sguares
Due to multiple regression 175,1195 2 86.5597
Residusal 26,8805 5 5.2761
Total 200,0000
R = B6.5597 / 52761 = 16.4
FE,S,lO/O = 135.27
The regression is significant
Var (bl) = 011 Msresid = 0.,0625
Var (ba) = 022 Msresid 2 D.6952.
e =g
Gb,oim, 0,25 6Gh, =  0.83
Hence 1%, = l.96
-
t = 3,61
by il

There is an evidence that @l = 0 while ﬁz £ O.
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Example (2) The following data represent: the score on the final
exam (xo), number of daily study hours (xl), intelligent quotient
(xa) and the average score through the year (xa) for a sample of
10 students.

= 7.8 % mony A L % a8
w0 - &, 8- ¥ 8 ¥ § £ B
£-10 I I Wi O WOR B oL
£ 17 1 € 15 'L 181510 712
x, =109, x =6, x =120 , X = 116

Sum of squares and sum of products in
derivate form

xo ﬁi x2 x5
xo 15409 55.1 3800 145.6
x 24,9 13.0 54 o4
%, 32.0 28.0
XS 162.4

To get the inverse of the matrix formed from the squares
and products of X;,; X5, x5 we use the Square root method as
follows
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£ 2 e s o i s e s

3 % X3 I
24,9 13.0 54 4 1 0 0
32,0 28.0 0 1 0
162.4 0 0 1
4,98999 2.60522 10.90183 0.20040 0 g
5,02124 -0.07999 | =0.10%398  0.19915 0
6.59877 | -0.33234  0.00241 0.15154
0.16142 =0.02I51 =0.0503%6
P 0.03966 0.00036
(AT -
0.02296
where [Lk.\ = 24.9 15.0 54 o4
9.0 8.0
162 4
el N2 |01 O G5 | = [oe16142 -0.02151 -0.05036
B Bos U 0.03966 o.ooozz
| 0.0229
(51 ~S33: Lan] £
by = Bt *Oiah * g e = VB8R
B B B Ny ¥ 9 o2 025 B 0.3736
by = Og Mot * %2 \ez * O3z Moz, = 0-5359
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Sum of Squares dus to regression

= By Ay * Vs Nz + By = 137.7097
& Total sum of Squares 4Xb0 = 154.9

Regression analysis table

Source of Degrees of | mMeen™ su e
variation Sum of Squares freedom e o Go SN
Due to 137.7197 3 45,9066
regression
Residual 17.1803 6 2.8634
154,9000 9
R = 45.9066 / 2.8634 #1605
F596,J g = = 9.78
The regression is Significant
Var (bl) = Gll Msresid = 004622
Var (bg) = Cos S, 59 0.1136
Var (b5) = 055 M5 ..ciq4 = 0.0657
~ A~ Y
Gb, = 0.680 , Cb, = 0.337, 533 = 0.256
tl = l.24 3 t2 = _1sll 3 ‘b5 = - 2.09
But t6,5% = 2,447

There is an eridence that each of{glg FE, ﬁ% is equal

to zZero.
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™

/

In a problem to study the factors which may be used

in estimating cotton and cotton seeds production index, the
data collected are given in the following table

¥ D Ar As L EN Fp
1945 636 504 5e> 1016 234 65
46 754 585 655 1014 189 i
7 769 627 683 1009 483 177
48 1074 796 805 1002 677 214
49 1051 852 951 999 765 258
50 1628 1154 1116 999 924 705
21 Q76 1108 11355 1001 959 1003
52 1200 & & 4 % Ay 998 997 1264
25 857 729 745 999 1011 1037
>4 ©58 ok 889 1003 995 755
55 200 962 902 1010 943 1047
56 875 891 926 1017 840 1254
o 3 4 1091 990 1042 1027 934 1427
58 1200 1142 1093 1032 1184 i>5%e
59 1229 1017 996 1040 999 1475
20 1285 1065 1035 1048 981 1941
where Y the years
P Cotton & Cotton 3eeds production index
A, Area cultivated with cotion weighted with the relative
product of 1 feddan in upper, middle and lower Egypte.
As Area cultivated with cotton weigh?ed with the relative
product of 1 feddan cultivated with long, long medium
and medium Staple cotion
L Labour index
FEE’FP nitrate and phosphate iadex

lizke the required regression analysis.
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Exercise The following represents data on pigs. Thus animals
were kept on adequate vations during the period of approxi-
mately uniform growth rate. We wish to inquire the amount
of information about rate of gain which is furnished in
sdvance by the two independent variates

Pig No. Iﬁitl?éa;§§ 2 w?;fﬁ:dz§ R?;guggsﬁgig)f
1 78 61 1,40
2 90 59 1.79
o % 76 1.72
4 71 50 1.47
- 9 61 1.26
6 80 54 1.28
7 83 57 1.34
8 i 45 1.57
9 62 41 1.57

1 10 67 40 1.26
11 78 C o my 1.61
12 99 75 1.31
13 80 64 1,22
14 75 48 1.35
15 o4 62 1,29
15 91 52 l.24
17 75 52 1.29
18 63 43 1l.43
19 62 50 1,29
20 67 40 1.26
23 78 80 1,67
22 83 61 1.41
23 79 62 1.73
24 " %0 47 1.23
25 85 59 149
26 83 42 1.22
29 - 71 47 1,39
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: Tial age weight Rate of gain L |
Pig No, Inil (@ayg) (pilsnd:% (pounds%day)
28 66 42 1.39
29 67 40 1.56
30 67 40 1.36
31 27 62 1.40
L 71 55 1.47
33 78 62 147
3u 70 43 15
35 95 57 122
36 96 51 1.48
57 71 41 1.31
58 63 40 2
39 62 45 1ai2
40 67 39 1:96




(164)

Exercises

(I) The mean coefficient of volume of expension of water was
determined by 21 different observers at 3 different temperatures.
It is known that the determination of this coefficient will
become more difficult as the temperature increases owing to the
formation of bubbles in the water., Fine out from the data

given below whether the determinations of the coefficient are
significantly more variable as the temp. range of the water
increases. BEstimate a mean coefficient for each temp. and give
confidence limits for the true coefficient

Coefficient of Volume Expansion of Water (106)
Temp., Temp 1
0-40 | 40~60 | 60-80 ||Obser- |0-40 | 40-60| 60-80
observer ver

i 239 | 522 517 11 249 | 386 612
2 274 | 474 584 12 301 404 437
3 295 | 512 606 13 175 504 | 561
4 256 | 417 4u7 14 260 361 580
5 354 | 327 | 542 15 301 491 285
6 213 | 361 627 16 445 B4 453
7 264 | 504 614 17 335 436 520
8 236 | 572 632 18 166 346 372
9 302 | 390 505 19 270 449 566
10 269 | 526 667 20 254 560 607
| 21 343 468 560

2 Five independent samples of 25 individuals each were drawn
from a normal population of unknown mean and variance. The S8%

confidence intervals for the population mesn were obtained as
follows from each sample

Sample Nos Confidence limits

= 105.7 = 1lle.4
2 104.3 - 113.8
3 107.2 = 116.0
4 100.6 = 115.4
9 101.7 - 118.1



(165)

Obtain a 98% confidence interval for the population standard
deviation

@
3~ Using the symbols given in the table below, derive
expressions for the probabilities that of four men aged exactly
75,80,85 & 90 respectively

(1) all will attain age 95

(ii) all will die before attaining age 95
(iii) at least one will survive 10 years
(iv) none will die between age 90 & 95.

4~ Ruther ford and Geiger counted the number of alpha -~ particles
emitted from a disc in 2608 periods of 7.5 seconds duration.
The frequencies are given below

" Number | Number |

per freguency per frequency

perliod 7 period
0 57 8 H3
i 203 9 27
2 383 10 10
5 525 e 4
h 552 12 2
5 408 13 0
6 27% 14 0
7 L5

Compare the relative frequencies with the corresponding
probabilities of the fitted "Posson distribution®

5- Show that the sum of two Poisson variates is itself a
Poisson variate with mean equal %o the sum of the seperate means

66— Number of individual incomes in different ranges of net
income assessed in 1945-46:

Range of Income | Number of

after tax (x) Incomes
150 - 500 13,175,000
500 - 1000 652,000
1000 - 2000 157,500
2000 and over
Total 140,000,000
@ Exact_age 75 8 8 90 95

Probability of surviving 5 years p, Py Po P3 Py
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Assume that this distribution of incomes f(x) is linked with
the normal distribution

2
_% -
....;l.'.-. e 2
2

N(%) =

by the relationship
t X

dJnN(t) at = J £(x) dx
= 150

where t = a log (x - 150) + b

Obtain estimates for "a" & "b" from the data, and find the
number of incomes between 250 snd 500.

o- The following results were obtained in 4 independent samplings

(1) 6 J4% 3362 5
2R 1o iy 1y 18
(5; 1233 19 23 § 17
(4).19 2 2% 46 14 -20

Carryout an snalysis of variance on these data
8- Twelve dice were thrown 26306 times and a "5" or a "b" was

counted as a success. The number of successes in each throw
was noted, with the following results

Number of _ Number of
successes | T0AUONCY || oiicgages | Frequency
. 185 6 3067
= 1149 7 1331
= 3265 8 403
5 5475 9 105
4 6ll4 : 10 18
5 5194 :
Total 26306

Is there evidence that theldice are biased?
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9- The following table gives the distribution of the length,
measured in cm. of 294 eggs 2

Length frequency |length
505 l 492 54
3.6 & 4.3 34
5.7 o Yoy 12
3.8 20 4e5 ©
3.9 25 46 1
4.0 53 4.7 2
4,1 69

Total 294

Test whether these results are consistent with the hypothesis
that egg length 1s normally distributed

10~ A certain type of surgical operation can be performed either
with a2 local anaasthetic or with a general anoesthetic. Results
are given below

alive Dead
Local Bid 24
General 175 21

Tegt for any difference in the mortabity rates associated with
the different types of anoesthetic.

1l1- A Ministry of Labour Memorandum on carbon lMonoxide Poisoning
gives the following data on accidents due to gassing by carbon
monoxide

1941 1942 | 1943 | Total

At blast furnsces 24 20 19 63
At gas producers o5 A4 41 1993
At gas ovens and works 26 26 10 62
In distribution and use gas| 80 108 123 Skl
Miscellaneous sources 68 51 32 Ayl
Total 226 239 225 690

Is there sigrificant associaticn between the site of the
accident and the year.
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(12) From the following data find the regression equation of

xi.on x2 & x§

X X, x5
5 g 21
3 4 | 21
a2 2 15
&+ 2 R
> 7 20
i 2 13
& 4 ¢

(i3) 1t Sf " sg are the variances in two independent samples of

the same size taken from a common normal population, determine
% o o S -
the distribution ol 87 + gg

(14) A random variate X is known to have the distribution

3 nx

m_ - er—
p(x) = C(1+ %) g * ~a g xR
Find the constant ¢ and the lEE Icur moments of x. Prove that

(15) If u=ax+ by and Vv = bx - ay, where X,y represent
deviations from respective means and if /® is the correlation
coerficient between x,y, but u, v are uncorrelated, show that

2.2y =
- == i - \
Gu(;v-—(ajm B i - J14£

(1lo) The following table gives tLe distribution according to
age of becoming a widewer
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Age freq. Age freq.
18 -~ 22 2 55 - 97 68
25 - 27 43 58 = 62 76
28 - 32 108 63 - 67 82
95 = 3¢ 107 68 - 72 o
38 - 42 130 V2 = 1 41
43 - 47 109 78 - 82 16
48 - 52 115 83 -~ &7 8

Calculate (3, & P,

(17) fxemine the following data showing how age is associated
with size of farm

size of Percentage of occuplers whose ages are
B ugger 25~34 | 35-44 | 45=54| 55~-64| 65-74 ‘?};ﬁr
' % %ol & % % % | %
20~ 2 12 25 28 23 8 2
20— 1 7 21 36 26 2 >
100- & 10 29 28 24 6 2
o 1 9 2l . 36 21 10 | 2
over 300{ O 5 19 | 39 22 114 &

(18) Four machines A,B,C;D, are producing large numbers of
small articles. It is known that the average proportions of
defective articles produced by the machines are

A=1%, B=1%% C=1%%, D=2kL%
In a group of 20 articles known to have been produced by the
same machine, one defective article is found. What 1s the
probability that this group was produced by machine D.

State carefully sny assumption which you make. -
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(19) X1 Xa,..., x, are random variables each with the same
2

expected value , and the same variance G ~. The correlation
between any two ‘of the x's is . ohow that

(5@ LS w1 wdipe

(41) é [ "% (%, - :Tc)?] = (a-1)(1- )G 2
e ke d
tii) ;ﬂ > -

(20) B uppese thet the probablllty of death within a year for
a person aged exactly x is 7 « If fThere are n_ persons aged

exactLy X, what is the probab11¢ty that r of these.persons will
die before reaching exact age (x+l1) ?

(21) Assuming that in 1000 items ,20 are defective,what is the
probability fhat in a random sample of 100 items x items will
be defective.

(22) Adie has n+l faces ,numbered o0,1/n,2/n,3...3(n=-1)/n,l1 res-
pechtively.Assuming it is equally likely to fall with any one
face uppermost,find the expected value and standard deviation
of the random vaylabls corresponding to the number on the upp=—
ermost face.

(23) For a high voltage network,uniform cables of great tensi-
le strength are required.Each cable is composed of wires which
are manufactured in one length.In order to examine the tensile
strength a sample is taken from each wire and tested.The table
shows the tensile strength of each wire of 5 cables each with
10 wires

Cable 13345 327 335 338 330 334 355 3240 337 342
Cabl@ 28de9 327 332 A8 337 228 328 530 355 358

J;Js 3380 330 525 328 338 G52 535 40 D36 533
Cable 4:328 344 342 350 335 332 328 340 335 357
f"able 53347 341 345 340 350 346 345 342 340 339

Corry out the analysis of variance(subtract an arbitrary origin)
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(24) The following table gives the number of yeast cells
in 400 squares of a haemacytometer:

No. of cells 0 i 2 3 4 5 Total
Frequency 213 128 37 18 3 b 400

Fit a negative binomial

(Hint: mean=0.68, variance=0,81. np=0.68, npg=0.81,then
q=1.19 & P=-0Q1-9 &Ild. n=—3i59)
(25) Fit a normal distribution to the distribution given
in the following table and test for the geoodness of fit.
Height 459 60- 6l= 62= 63= 64- 65- 66- 67- 68~
Freq. 23 169 439 1030 2116 3947 5965 8012 9089 8763

Height 69=  70= 71= 72= 73= 74= 75=- 76= 77&over
Freq. 7132 5314 3320 1884 876 383 153 63 25
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