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CHAPTER 1

The real roots of an eguation

This chapter deals with those methods which are applicable to

finding the real roots of the equation

£f(x) =0 (Led)
where £(x) is any plecewlse COLULLLUOUS fuuivion of x naviing
numerical coefficients, whether a polynomial or transendental
function.
The finding of the real roots of £(x) can in general be divided
into two parts. The first part has as its goal the iinding of
an approximate value of the root. The second part makes use of
this approximate knowledge of ths root to obtain the root out

to the desired number of sigrifican® figures.

1.1 Finding an approximate value 0F g _real Toot

Sometimes, one may have & good guess as to The approximate
value of the root; but in general it will be necessary to
use one of the follcwing methodse.

a. Graphical Methods

Generally speaking, the best method of finding the approximate
value of a root is to plot the function

y = (%) (1.2)
and determine approximately the points at which this plot

crosses the x axis. At these points y=U, and hence the



corresponding values of x, by Eq.(l.2), satisfy Eq.(l.1) and
are therefore real roots of thafequation.

In some cases it is preferable to write the equation in the forn

£.0%) & £:(x) (1.3)
in which case we plot the two functions
yp = £(x)  and ¥ ,=E5(x) (1.4)

The abscissas of their points of intersecticn obviously satisfy

Eq.(1l.3) and hence are the real roots of this equation.

Be Analyticalrﬂethods

There are two comaon analytical methods for finding the
approximate value of the root of au equation. '

One is to find a simpler equation that has a root. approxima-
tely equel to the required root of the given equation. This
can often be done by neglecting a term kunown to be small.

The second method mekes use of the following theorem.

Theorem: If f(x) is a real fuachicn that is continuous
between x=a .and =x=b, where & and b are real numbers, and ...
if £(a) and f(b) are of opposite signs, then there is at

least one real root between a and D.

1.2 Method of False Position

Suppose that t(a) and f£(b) are 1b)

of opposite signs, the plot £(x)

crosses the x axis between X=a

&Y

and x=b and that, therefore,

a root X=X lies between these limits. Fig.l.l,'ﬁethod oF Flase
i Position



The root x=X will be approximately given by x=c:

= a + —fa) (b-a) {1.5)

= £(a)=-£(b)

Since f(a) and £(b) are of oppecsite signs, £(e) must be opposite
in sign to one of them; therefore it is possible to apply the
approximation again for a still better predictiocn of the value

of ¥. Therefore a better approximation

L Ie) (e (1.6)
£(c)-2(b)

to the root x=X is obtained by replacing a in Eq.(l.5) by c.
The method of false position is very simple in prineiple as it
merely replaces the plét of £{x) between any two points a and
b by its chord. The simplicity and complete generality of this

method make it a very powerful tool for computation.
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In Fig.le2, X517 is determined Dy i
drawing a tangent O the curve at
x4 and extending it until it inter-
sects the x axis at the point . =
(Xi+t’ O0). The slope of the tangent x Mo, e .
: : : . .
is gilven by f(xi) Newton~Raphson- Method

£l ) o em——— A

Solving for X; 1y W€ obtain the Newton-Raphson formulas

f(xi)

x.
i+l < f'ixq)

(1.7)




To debermine the rate of convergence of the iterates in the
Newton-Raphson method, we expand f(x) about one of the 1terates

x5 using Taylor's serles with a remainder .
- g 7 _-:L'/- \2 it
f(x) = f(xi)+(xfxi)f (x; 0+ 5(=-%5) ;i Cﬁ )

wherse T lies between x and X,. Substituting x=X and solving

for ¥ in the second term on the right-hand side, We have

f( ) ]
e LRE SR 44 O

X=x -
therefore, by Eg. (1.7)

0
Xi+l-i = (xi-i)a ;LéFEQL- ~1.8)
2T (xi)
Since xawi is the error in the jth iterate to the Troot, Bg.(1.8:
states that each iteration squares the errer and then multipl-
ies it by the factor f ( I)/Zf (x ¥s where"f lies somwhere
between X and the root X . It is clear from the above that
the convergence will be poor i% f"/zfg igs large in the neigh-
borhood of the root. This will usually happen 1f f(x) does

not cross the x axis at a sufficiently steep angle.

Iteration-Method of higher Qrder

i d
p o & P £ (x YECED
i i \
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1.4 The Half - Method

If f(x) is a 'lreaf function that is continuous between X=u
and X=v, where u and v are real numbers, and if f(u) and
f(v) are of opposite signs, then there is at least one real

root between u and V.

g ] (rr0)

VA ;’ /\ =5 | je
Fié:d o B, w \\] -

%

s

Jf,- fv--wl<¢ e

Phe Half-Method is shown in the following flow-chart

Read u,v,¢, ¢,
: y
— W : ﬂes
= y
\ fv = F(V)
Jt yeS : -
(ks ? s 57 _ﬁ* Print x}§3top

\

4

I n=(u+v)/ 2

fl’ﬂ. = F(m)
Ypo - -
(-\Tm\< g }:% X= — Ny
[Sigalf)=Sign(1v)? Jes
N+ Mq f
ué@ T=10
.__L,;f“:é(m)l fv=F(m)
Yoo 3 ¥
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1.6 General Method of Iteration

The equation £(x) = O cen be written in the from

g(x) = h(x) (1.12)

It is convenient to replace Eg. (1.12) by the set of Simul-
taneous equations

y = 8(x) ﬁ
(1-13)
y = Bx) ,

1l

If one can solve explicity fcr x in the second eqguation,
these can be written

y = gx)
(1.14)
x = H(y)
Suppose x_ is any initial guess at the root of £(x); then

0
the iterates Xy, X5y eee» X, and J1s Jor eees v, may be

defined by

Ty = Bz )

X H(y;)

Now if the absolute value of the slope of g(x) is less than
that of h(x) at their intersection, i.e. if

|s'e] _ <[’ (1.15)

where X is the desired root, then, for a sufficiently close

guess X,, X, S st n-3®, If the alope of glx) is

much smaller than h(x), the convergence of x, to the root
is rapid, and the method is 2 practical way of determining
the root.

The nature of the iterative process and its speed of
convergence can best be shown graphically.
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1.7 Special Iterative Forms y%ﬁjh

The weakness of the iterative method is the dlfflculty of
being able to write £(x) = o in the form

y = &(x)

y = h(x)
and at the same time to make sure that The first equation
has a much smaller slope at the intersecticn and that the
second equation is readily solvable for X.
One can overcome these difficulties by establishing stand-
ard methods of forming the iterative eguation {1.16)
In place of £f(x) = o, write
F(x) = - 1—”.&..2 0 (1.17)

£4x)

This functlon has the same root X as £(x) = o, provided
f'(i) # o, and moreover

ot
_— - -
p'(E) = -1+ SR . 1.18)
(£'® ]
Therefore if one deals with F(x) instead of f{x), ope T
obtains the iteration equations

(l.46)



ey
1l

N(x)
x=y3 1 (1.19)

(1.20)

where

I

N(x) = F(x) + X=X - .

Vo

x)

These equations are well suited for iteration, provided fx(i)
is not too small and is readily obtained, since N'(E), the

slope of the graph of the first equation at the intersection,
is zero and that of the second equation is unity (see Fig 1l.3)
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1.8 Birge-Vieta Method

In the Newton-Raphson method any ciose approximatlon x; to
a root of a polynomial

P (x) = @xn+glx“l+gxna+..o+q qx+ 9, =0 (L2l

is improved by the formula

Bn(xi) :
xi‘ﬂ-l: xi—' ""‘““1'__ i:o,l,z,oei
P (xy)

This same procedure is followed in the Birge-=Vieta methed
¥

but the values of Pn(xi) and Pn(xi) are calculated by.

synthetic division, as shown in the following diagram:

X | %P, ¥ P) ALP, ... %P 5 XKyP
| 1 1 4
x | TP, AP, APy e Wy
b : | | 1 §
Pl P2 P3 Pq_ e Pn(xi)

Diagram (1:8)

One can easily prove this diagram as folldws:
o R T R
Pn(I) = “&oﬁl + le’ytl + cafl + cooot @/n_lx‘i’ Q.ln

E( oo (‘( g&%gl)%ga);‘ch)x*'o e e +Gn

?o(x)
: Pl(x}
Parx)



<The

For a given set of coefficients @0, @, Gy oo bn there can
be defined the following Polynomials

PO(X) = 90
l(x) = XPO(X) + Gl
Pz(x) = xPl(x) + 6,
B e o RN e (1.22)
P‘?'*_(X)":: X:E:'-z( = ?1-1
E;‘(x) = 3_:25"_'\&) B

Mult_j:p;ying the first Eq. DY <2, the second by %1 ,the third
by xp"a, etc., and adding, We obtain at once Eg. (1.21).
Pherefore QSX) of Egs. (L.22) is jdentical with Fj (x) of Eq.
(1.21)

\

Suppose Wwe wish to evaluate P(x Yo I 18 generally more
convenient to calculate in ogder, from Eqs. (l.22) the values
of P (xi), {(x ¥ P(x p R P(xi) then to find all n

powers of x; and substltute in Eq. (1.21)

St TR SR o1 Sy
J%-I x; P, Py e x;P o X3Fn1
BB By e N & 08

Diagram (1 09)
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If the BEgs. (l.22) are differentiated with respect to X,
obtain the equations

1 B
P, (» = xP;_,(x) + Py 1(x) ,1=12 cco y 1

}
where Po(x) = 0.

Comparing these equations with Egs. (1.22) we see that Pi(x)

P (x), b P (x) are obtained from P (x), l(x),_o.. .
n l(x) in exactly the same way that g(x), P (X), PR P' 1(x§

are obtained from® _, €3 ... 9 _,s Hence diagram (1 ﬁ )

can be extended to give the diagram (1. ¢ ) to obtain the
derivative of each of the Pi(x).

Also, if
Pn(x) =€, = ¢, o=k 4 e .:E @ ==

then L‘l“o

Pi(x) = X Pi_l(x) + CA 1 = o,l800ie08

0

1]

and Pnl

and

[ . ? 9 i = 192.’ nee g n

and Po(x) = 0
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1.

2

6.

1.9 Problems

Find an approximate root of

‘“X

[

sipx + 252 ~1 = O

Find the approximate value of a real root of

£(x) = x> - logx - 10 = O

Determine the smallest positive real root

f(X):XEX".E:O

to seven significant figures.

(Ans. x = 0.8526055)

Find to seven significant figures the root of

f(X) = s8in x - -icc—-t—% e O
approximate value iS5 - OJ4

Whose

(Ans. x = - 0.4203625)

Find to five decimal places the real roots

of the cubic t° - 4%% - 66 + 4

Iying between zero and one.

Find the roots of

P(x) = © - }xz + 4x -5

to six significant figures

(Xl = 2-21341, x2’5 = 0.393295 *

Find a real root of the polynomial

0

1.45061 i)

P(x) = © - 6.2842731 x + 23.7149% x + 3 = O

to eight significant figures

 (Ans. x = 1. 7799319)



