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This is a short—period coBrss on statistical methods

designed for mathematicians and =agincers whose work needs a
thorough knowledge of statistical mebhods.

Because ¢l considerations of time. It was necessary to
concentrate on the theory of probability and distributions,
leaving the applied gide To another course given by Dr. M. W.
iahmoud .

By using :he-theory of sets, and the matrix notation, it
is nhoped that the course would make a more sound apprcach to
the theory of probability, and give shorter proofs to a good
numbsr of theoriems, It is hoped also that this would help
in the field of applications.

The course also includes an introduction to stochastic
processes and Random -~ Walk problems which should be useful
to those interested in applications in this field, among
engineers and research students in economics, biology and
other related fields.

I take this opportunity to thank Mrs. Mary Naguib for
the geaerous help she gave in preparing this course, correcting
the proofs, and organizing the publication of this memorandum.

A, A. Anis
9/5/1965 .
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1. SEIS The possible outcomes i an experiment are called
(random) events, which may be simple or compound, the ‘
latter being agbrebates of simple events. It 1s convenlent
to represent s:.mple events as points in a space of appro—'

" priste dimension, called the observation space. Compound .
events are then represented by sets of points. :

2., Notations x ¢ A means 7 ig a member of the set A

{IIKCI)} the set of zll x's having the
property K(x) ,
A=B the sets A, B consist of the same

elements~ ieiifx € A then x ¢ B .
: and conversely
AcB or Bo A A is a subset of B; I{x € A then

Xk B
Union ¢ AUB, {x:xé at least one of the sets A,B_}
Intersection: AB {xix¢p and elso x ¢ B}
Complements A If 5 is the whole space, the comple-

ment of A (with respeet to S) is

 I={xx¢sSendx ¢ 4]
Empty set: O denotes the set which has no members
Disjoint sets: A and B ere disjoint if AB=0

3, The following properties hold :

Commutstive laws A3 = BUA,  AB=BA

Associative laws 3 (AUB)UZ = Al (BU’J) = AUBUC
(AB) C = A(BC) = |
A(BUZ)= ABUAC, AU (BC) (AUB)(AU”)

oo

Distributive laws ¢

Idempotence : AUA=A2A=A

Zero and ynit : AUO = A, A0 = 0, AS A whenever SDA
Complementation s - MjB =1 E y

.7.} e

4, Logicel dictlonary. |
Using the representation of (1, we heve the following



‘correspondence

the set A ... the event A Complement & ... Negation, ~
AUB ... disjunction,4 oz B not - A r
‘gj’ ACB ... implication, AB ... conjunction,
: A implies B both A & B
: AB =0 ... A,B mutually
exclusive

(2) AXTIOiS OF PROBABILITY (Kolmogorov )

Wle have a besic set E (corresponding to the observation
space) whose members are the simple events. '3 is a set of
subsets of E. Then

: 1. F is a field of sets
: 2. IDE
3, To each set A of # is assigned a non-negative real number
P(4), the prob., of A.
4, P(E) = 1 , >
5. If AB=0, P(AUB) = P(4) 4 P(B)
6. If ADAD A  eee DAy coo @and A coo. =0 then

A, P4y =0

(where "complete additivity" if the A; are disjoint,
P(Alu A2U o-no) = P(Al) *P(Az) + oeco )

2, Basic probability laws.
(1) P(0)=9, ©£& P(A) €1, (ii) F(R) =1 - P(4),
(i1) P(AUB) = F(A) + F(8) = B(AB)
(iv) F(ad 'BU.C)=X P(A) - F(AB) + P(ABC); (v) P(U4;) éZP(’At)
(vi) If AcB, F(A) € I(B).
3. Independence of experiments
An experiment Ar corresponds to a decomposition of the
observation space E into disjoint subsels Arl,Ar2,° ”AI_Kra
let r = 1,2, oo N The decompositions are mutually indepcndent

dany
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If AIQOco A, are mutually independent, then any m of then

(m<n) are also independent

4, Independence of events
The n events Al” Aag 600 An are mutually independent if
the decompositions E = &, UK, (k=1p2;... n) are independent.
Hence the N & S conditions for the mutual independence of
the events Ay Aspoo A, are the following 2% n = 1 relations

P('A‘_L‘ AI‘OOO Ar ) :P(!L_{_‘) QQQP{;.AI“ )D m:lazgoo gy
A, n ik m \

l f;";_: l‘lz:’rac:'c oqrméno

Notes the independence of events in pairs does not necessarily
imply their mutual independence, ie we can have
P(4B) = P.(A).B(B),P(BC)= P(B).P(3), P(AC) = B(4),B(C),
but P(ABC) ¢ P(A). P(B) PLC).
In particular, A and B are independent if and .olny if
P(AB)=P(A). P(B)

5. Conditional probability
DEF, P(B.{A) = P(AB)/P(4)
where P(AB) = P(A).-P(BJA) = P(B).P(A[B)

Conditional probabilities behave like probabilities :ie
P(BLA)=0, P(ElL) = 1, P(BUC.A) = P(BIA) + P(ClA)
provided BC = O
PCAIA) = 1
If and only if A and B are independent, P(4|B)= P(A),
P(B 1) = F(B),
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Rindrn variables, or varictos ¢ A random varigble is & singlk
valued wcal function X (u) defined for all u €& E (where € E
is the cobservasion specs) and for Wh:.ch gu. X(u) & a} G?
for ell real a.
We often write X for X(u). ®

o

(3) DISTRIBUTION FUNCTIONS

1. Univeriate case. Take E to be the real axisy, “J the aggre=
gate of all countable unions and intersection of subsets
of &3 then the non-negative completely additive set func-
tica P(A) may be defined by its values for the special
intervals (=sgx) .
P(=00,x) = P(X& x) = F(x) = the(cumiative)distrib.fno,

where F(-go)= g F(400)=1l, F(x) is a bounded monot.: ' non=decr.

fn. since P(a¢X %2 b) = F() = F(a) 0 if b >a

At diseontinuities we define F(x)= F(x+0)
Clearly P(X=x) = F(x) = F{x ~ 0)

la. Continuous types F(w) differentisble, I (x)- £Cx),
the prob.{density) fn. £(x)20, F(x)= j FC)at, =

Pr(xex Zs0 7 i)
Pr(X¢dx) = Pr(x < X< x+dx)= £(x)dx

pe—

1b. Discrete type: F(x) a step=function, with
Jumps of magnitudesp; at x; (131929090)523;]_:1
Pr(X:x. )-_- P:o the mba i_n_o

’ L
F(x)=D_ D, | o e Alternative
i(x) * notation
where 1(x)= {¢:x%.< w.i Py = f(xl) \



2, Bivariate cass.

where F(X,y)>0, ¥ ([ =s0,=-00)= F ( =09,7)= (X ,=09)=
F( =00,+00)= F (900,=00)=0

;P(xle:‘. L ZZpo J1¢14Tp)= Foom Fio= Byt Fyg

F is monoto.icnon.decreasing in each variable separately,
At discontinuities PF(X,y) = F(x+o,y) = F(x,y+0)
5 : 4 s = ,
2a. Conginuous fypes & F/9xdy = Lix,y) =krob. aenst. fuu.
ol X o X

Pataarta) et Gnteday reiy - f f 2Cus v

2b Discrete types There is an enumerable set oI points
(x ggs) and positive nunbers P, M_pﬂq—" L 8o .b(x,,y)_Z j)

pUy
.£ 08 ro(xy)

where r s(xy)= Srgso X, &Xy Jg < § ! [hen P(‘{.ﬂxrp Y=y )= p

D s

3oilarginal distributionss Let (X,Y) have the dof. F(X,y), as in

|
The marginal d.f. of X is F Qx)uﬂ(xaco)-l?(xncx) (_P(Lx,y<,a)

of Yy a(y)d(ooay)-ﬁP(I!-y)
Then Fl(x)g Fa(y) are wnivariate dofo'so

3a. Continuous types If F(x,y) is continuous, we define the
marginal prob. fn. of X to be £;(x)= F;*(x) = f £(x,7)dy
of ¥ - MEpr T EUC RS RS
3b. Discrete types If (X,Y) has discrete pro.fn. Pt the
marginal prob. fn., of X is ],l(r) = % Ppgh of Y p2(8)=g£
fl(xl_)z ; f(xl,_,ys)



%o 04 L%:2 onad dd STLalU e, our L@:ﬁ _.E‘I:‘Oill (2)9 éﬁg we
PlASXx | ILY) = P{ Jj ?.(143‘)

, = Wxoy) / *ofw by §3 .
We define P(X<x|Yay) to be i P(XS xly<¥c ySh)’

l=oe .
.o___E_, ;E,,(y) in the continuous case. The conditional prob.

fm,n of X, given =y, is then defined to be :E..lﬂ-,a(::,ﬂgr)iJ =
&l;;x‘zﬁ‘}; dxs %xd sx+dx | Y=y)

whence ' - 2 ' £¢ ) ’%F )

&= Z2.{4 Xyl = Xo¥
il_.{}agx ly) = féﬁ%l « where b -S':E(’Sﬁg‘
RTINS i) =i 4 F(e0,y)

(4) INTEGRATION T e L e o i
: We write, Jg@x) AF(xX) to denote the Steiltjes integral
of @(x) with respect to F(x)o :
I» the contianuous casey . fP(x) d.F(x)m &:{x)f(x)dxg the
ordinarg Riemanrs f (£(x) = F*(x)

- In the diserebe case wﬁere B(x) is & stsp function with
jumps £(x;) ab %, J@gxmm = b)) fx)
' the ‘Ro integral, or Bum, bei,ng taken over the appropriaw

rangae -
Note the.ts if B(x) :I.s the d.f. of the variate X, then

| B en) s iarw

) EX.PECTA’I‘ION : :
1. I£ X has d.f. F(x)g the & @ectation of any funetion o:f:‘
1;»(1{) of X is

- (iategral teken over all
@p(x) [ V(x) aF(x) | possible values of X.)

Similerly :f.‘or biva::iate da.stra.butionsg us:mg the natural




generalizatcion of § (4)

: : {
| gy OGY) = j?’ (Xoy) AF(Xpy) = jjf‘!"(xoy) £(X,y) dxdy

=3 Z’f(xr”y s) Prg

Additivitys E(X+Y)= f (z+y) AF(xy)

= f XAF (x,5) + fy dF(x,y):iK + 2 X
We then have 8 If X770, £X 20,

¢(aX+b) = a £X + D ¢( )is therefore
S(X+Y) = TX +ZX linear opera=-
tion

In particular

SN, D Dol

2. lioments If X hasd.f.F(x) the rth moment (about the origin)

_50

is M= ExF = £ aRx)

the rth central moment is

}“r' = E(I—-y)r = ﬁ{x—}ﬁ)rdF(x), where/* 5}_" { |
Conditionsl moments are moments of the appropriate condi-=
tional distribution

Veriance The dispersionof a distribution may be measured
by the Wstandard deviation®, whose square is the variance,
defined by (var X=) v(X)=E(x-#)2 = £x* = p° where f* = £(X)

then we haves P(X)zo: in fact #¥(X)70 unless X = consto
y(aX+b) = 8° ¥(X)

4o Covariancels 6(x,Y) = 'E(H)-(ix)(irki(x?ixj(r ¢Y)=

@(Y,X) = cov(X,X)
whence - : = o
e(ax+b,cx+d)= ac&X_.I); &x,a):O,
© @(x+U, Y+V)= @X,1)+E(U,x)+ B W)+ B (U, V)

Hence

V(aX+bY ).-;-. a?r(x )+2ab@(X ;Y )+b2V(Y)



6.

If v(X)= 6‘;‘2.. v(Y) = fé.‘ we define the

correlat:.on coeff:.cient as

CPUEY) = BGLY)
STiEe:
whence
~i4f(XY) <+ 1 § (ek+b, ex+d) = LX)
X,Y are uncorrelated if €X .¥) =

Independent variates. X, I are stcchastecally independent
if  F(xpy) = Fy(x) Fy(y)e £(X,5) = £3(x) £5(y)

Fio F, are then necessarily the marginal df®s (up to a conste
multiplier) and flgf the marginal probability functions.

We Then have E(XI ) = £x EI ~ as a consequence of the

def . So that independence implies uncorrelation(but not
conversely).

MARKOFF®S ~ INBQUALITY ,
IfX 0, and §X= is finite then for any ko,
Plxpkr] < l/ko

Proofs Let Y=o when X /kﬁf then Y <X 80 4%Y <A

Y=k o,

Bub £Y = 0. P(X<kP) + ks P(X }p kp), where the theorem.

7., TGHEBYCHEFF'S INEQUALITY

For any variate X with £Xs}land = &0

Py IX“;@*I?}RG“'}&’_};?_ for any k > 0.
k

Proofs In Markoff's inequality replace X by (X=/* )/ &
Example showing that the = signs are attainables consider

the discrete X for waich P(x=p)= 1@l/k2., P(J{;fi k@)= l/2k?‘

5
~
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STANDARD DISTRIBUTIONS

The variate is X, (or Xy9 Xy000 in multivariate cases)

The complete specification of the probability functions
listed below 1s
E in the range quoted, this probability function
has the value quoted, outside .this range the
S probability function is zero.

Name Probability function Range
Binomial (§ ) Px s xg oLpily q-'-'lu-pg Oglg290e0yld
Poisson e ﬁ /x!. >0, 09ly2p0ce0
(=)
Hyperseome- _.y(a=x)
tric n«-x) //(n x) a Eﬁ)a) 09lg2s00esl
oLa< ky, o<ch LKk,
Negebinomial k*x—-l} pk = OiLiS e
k=1 9 9 k}’ Gy 0L p‘lg
qel=p
Multinomial _nl o il o £
xl'!x2!°°'xk’! 4 K Ogdglpeceld
_ o<p1<l for each Xy
Zpi sl
25
Rectangular 1 (=F2s + R2)
Triapngular l- [xi (=1,+1)
Exponential e - x >0
Double exponential ke ~ %! ' all real values

B(psq)

4



~]0=

1 __p "";L ~X

Gamma. L e e o] 2 20e X ZzZo
[(p
Gauchy L/ T (l+x2) , all real values
Standard normal e—}é e / Jar

99 29 99

& 2
Bivariate normal 5 2/ (1= £ ), ’ 99 29

: 1 Lot
2T e oy TN
6179
6"2'70
2
Yi<1

o = A gy’

‘ -1
Standard multinormal (21) fk II' Yo @ 2 X % ’ all real
values.

¥ pogsdete for eaci Xy

Notes on the Standard distributions

1. Binomial =x= number of successes in n indep. trials, where
probability of a success, at any trial, is p = cons®.
€xsnp, VZ=npq J5=npala-p),

B(x)= I, (n-x,x+1), (incomplete beta function ratio)

If X binomial (n,p) and Y binomial (m,p)s indep.; X+Y binomial
(n+m,p) ;

o
2. Poisson (a) x = no. of occurrences of a given event in time ¢,
where probability of a single occurrency during $+ =A§t +OC(§ t),s
probability of>1 occurrences during §t = O([t), and noe.
of occurrences during non-overlapping time intervals are indep.
of each other.
Then x is Poisson, with parameter M = )\ G
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(b) ¢ (x) = linit of binomial prob. fn.whenn .50,

P—>0y NP v}u

If X, ¥, ave indep. Poisson variates with parameters

)13 ) os then X, + X, is Poisson (Mg + Mp)

f X;sf, UX =t M(x) =1 = :I:}L (z+l), (incomplete
gamma fn  ratio)

3, Hypergeometric X = DO. of A's in a sample of m, Gaken

k item of which a were

without replacement from a set of

.A's
EX: B Ex(r) & a(r) n(r)/ k(r).

4, Nezative binomial (a) k + & = no. of binomial trials

(of prob.p)required to achieve k successes EX‘ = kq/p,
JX = kg/ p2
] ] v ]
If we put ¢ = 1/py P = q/p, 80 that ¢ =P = 1, the
1 e - ! ' -k
pr. fn. becomes coef.of p ° 1n expansion of ( ¢ - P b B

and in this Gerwminology we nuve E.x: k p*yUX = li_p'q’ .
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(b, '’x may also be regarded us a Poisson variate with
varying Poisson parameter. In fact if P(x,u) = me “/x!
while P(a) = o<>‘ mA=k R /F& ) myo (a gamma dis-
tribution) then P(x) = ,_,,Q{\))r H” 2L (1+¢)™ which is of
one standard neg.binomial fora wn.th p.. KC1+o) , g = 1/(1+& ).

5. ultinomial Xy = DO. of occurrences of eveant Ai (d=2132yasel)

in k ipndep. trials, where at c¢ach trial puL )= pj = const.

% =npgy VZ =np; (1-py)s B(X5,Xy) = = n p; by

If xl,xa,.,. X‘k are indep. Poisson variates with parameters
/"1 yeoa 'Hk s then the conditional joint probability function
of the B:i y glven}:xi =X , is multinomial:

-—

P(xl,nxk_]Sin=x) C IR0 < M § __/ii)xi ’ (I“ = zi‘:)
Ty ! % '

Pransformation of variate (Univariate case)

l. Given a variate X,d.f, #F(@), pr.fn. £f(m), and a single valusd
function @ () to find the distribution G(y), g(y) of
Y= 0 )
Let Sx be the set of all values of x which are mapped into
a specified set S of values of y, under the|tr formatlon

J Y= x?
=0 (®. \‘\ i
then p(T€5,) =p(X € 8y \w/
(eg Y=X°. take Sy = (O35)s Then S = (—Jﬁ'ﬁfi%‘

Gy)=plo< YY) =p(-Jy< X £ +Jy )
= FJy) - K=-J3) )
2. opecial case where the transformation is continuous,l-l.

G(y) = F( 9_1 (¥)) if f(x) is monotonic increasing
e lasiRE 0 ) it g decreasing

ai\
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e

In either case, if the d.f's are continuous
| g(y)ayi= | £G0) x| (where on Tohss x=x(y) = 6 T ()

The extension to the multivariate case is straight forward.
Restricting ourselves for the mouwent to l=1 continuous
sransformation, we have for,eg, the 2 variate case,

if U = U(X,Y) and V = V(X,Y)

then g(uyv) = f(x,y)n‘ ;ﬁL E ' '

Convolutionss: Addition of independent variates

If X, ¥ ave indepe variates,with do.f's F(x), G(y) respec=
tively, and probability functions £(x),8(y) respectively, tke

defe 0L
2 mEX+ ¥

is r
H(z)= J F(z=y)da(y) = J&(z-x) a¥ (x)

In the disgrete case this becomes for the profne,
B(a) = 3 E(amy) o) = & EGax) £(x)
and in the continuous case

n(z) = J £(a=y) &) &y = [ e(a=x)2(x) ax
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Tite »
ExXDe

1) In the foliowing X and Y are indep. Find the distribution L
of 2 = X+ Y when
) X is binomial (n,p), ¥ i3 binomial (m,p);[z binl,(nﬂn,p)]
2) X is Poisson (M), Y is Poisson (A ); Z Poisson ( A+t M)
%) X normal (f“l,ﬁ"), Y normal ()" Eﬁ normal (/*% /25 Ir'- o ]
4) X rectangs((0,1); Y the bame,[Z trlang Q4 2)]
5) X gamna (p), Y gamma (q); [ 4 gamna (p+q)
6) X Cauchy ( Aj, /'), viz profn. Mfy (L,\?,"+ (zc-fl)aj
T Cauchy (A,F5) 3 [2 Cauchy (At A29[1+f2)]
2) Deduce from 1.6 that if Xl,X oo are indep., with the

3) X

4)

5)

6)

same cauchy distrbt., the mean % -,\jé / n has the same
distrib, . as every Ka. :

l,xz,.o.xn are indep. standard normal variates. Prove by
i
induction that the distribution of Y= Xo + X5 + .. + X2 is “

of the gamma type, viz e &=L ; ol (y20)

If U,V are indep. gamma variates,btheir sum is a gamma variate
which is indep. of their quotient. Show also that ( %V— ) is
a beta. ( If U has pr.fn. as in Q.3, with k=p, and V ditto,
.With k=g, then Y = U+V has dlnto}; with k=p+q, while Z= U/V

)

has pr.fa. Prop. to 22 B= L/(1ez)R (P+a)
De-XX -1
If X has the pr.fn. o e %P /F(p)y x>0, (X>o, P> 1l)s

its moments are given by Mr = cx“rf'( r+p)/ Y (p), whence
in particular ¥ X= p/x ,\VX= p/o(2 s (IEcC=1" f;X; 5]

iy X is normal (M; ), the moments of odd order r are Mr
...oa(r-l) (r=3)es01, (those of even order wvanish)
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7) Sampling from a finite population consisting of k different
memberss= X)Xppeee % d in which we define M = 1 xi/k,

2 :
and o’ = é (xietﬂ)sz s ‘lake a sample of size n, say
i

X, 9 Xp, 9oooe Xi g and let m = ixr. /De Show thatie
i 2 n 3 5|

P(K 5 x-) = l./kg i = lg29000§ do=cdl32¢ece Ko
;3 =7 :

P(Xri = xpg Xréz x.q) = 1/k (k=1)

P(any particular sample of a) = 1/k8)

L

Exr;‘i:).l 9vxr-] = 0—42 0 Ef—lsﬁ 9
2

Exa =}2£_x12/k_ E(X..y X )=-=o}/(k-1),\fm= k-n o
£ i % A B k=I A

n 8) The continuous veriate X has dofo F(x)o A new variate Y is
defined by the transformation y = F(x). Show that Y has the
rectange. distribui® (opl)o ("Probability Integral Trans-
formation™)



lictrix notation
HEXPECTATTON
DEF: If W is a (pxq) matrix (,w,ﬂs},, ¢ W denotes a matrix

of the same size, with (r;s) element equal to §W__.

Eirns : Irs
£, : ¢ X
In particular if X = f;l o X = :l
X ‘Eﬁk

i is a constant matrix and b & constant vector, and

fx = 2
B+ ) = 44 + b

VARIANCE MATRIX If x is  a (kxl) vector variate, its
varizance matrix ( or variance=covariance matrix) is

) :
V =ux = E(x - M) (x= M), or, equivalently,

v / :
VX = Ex x - MM where '¢x = M

Primes cenoie

Hence V. =varx., V. =cov (X, X_).
rr o Sriiss transposition

re

&

Hence (f(AX+b)=U(Ax) = & U A
Note s By def. S (x) is gyumetric, since cov(x, xs)z covV (X X, )0
U(x) is &lso positive =—gefinite, provided the x; are
Linsarly independent in the algebraic sense, for given
any vectoxr l_ o We have var (:)\_Iz_g) = var Z N > o
since variance is essentially positive, But
o L var (X = U (¥ =AY L~
Since the. guadratic form X j'}\ >owhatever the values of }
the result follows. ;

We shall frequently use the result thaty, if V is
any pos-def. symmetric matrix, we can find(not uniguely )
s } 0 > & ~ 1 1 - 4 ‘l . % -

a nonsingular natrix o ouch that V =58 5 in particular,
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we can find a lower triangular matrix 8 with positvive diagonal
elements with this property, 8 1is then unique, (Choleski) ) 5

4
.. e ; $ =l .\ '
it v =Y =88, V(&% = 1”  (the unit matrix)
-
Notation ¢ if '\ denotes the vector (11 ,r)\ -1 °3\1{) 2
&‘ A sy Giagonal matrix / 2\ ®)
— Z“
\ B
If the elements Xy of x are uncorrelated, the variance matric

e e

of x is diagonal.

. 2
If further thisex; a1l have the same variances o~ the variaice

-2y 2. .
matrix is U (x) =1%o . ‘

7
cousRTaNcE WATRIY Gz = Ex i -Cx £I = %@(xaé)}
the (ry,s) element is cov (xr,‘ ys)o

izt =v (@ 6@ +E(1x) +V (T

The Multivariate normal distribution

1) Let X%y, Xpy eoo Xy be k indepo standard normal variates.

their joint pre. fn. is /2 (2 -rr‘)"ﬁ“fi EXD 12 Zxa

T
Introduce k new variates Jys Jp» oo T by the non-
singular (and therefore 1-1) transformation

B E+ b
thent iy = M 0T 3 _Si §s =V 4 say.
the jacobian of the transformation is \B(I)/ B(gg)] =l S ' = l\l‘%-
whence ,"5(1{) 7 'a(;z)l \ ‘ ¥

Noting that Zx = = (=p's” S"l_(;z— W= G-P TG )



& v
we dee Lhat the joint pr. £n. of the Jy 8 is

{
s

()= = (9T

e - 'L (g ),

2)

3)

4)

oY <t %
where M= Ez, V=\7

[There is no real loss of generality, and often a considerable

saving of space, in tsking M= o]

-

In the multinormal distribution, uncorrelated variates
are indep.
For 1 v is d:l.ag , say ')\ o E (y) d.egenerates to

£(y) = TlJf exp - (=M ¥ ')\
1 W

whence the y; are indep. n%xwa.],, w1thEyi /"1’ \fyl = r)\

Bivariate normal distribution. N
. ‘ 2 2
Let Eyl =Ey2 =0y .V‘Yl = G"lvlfyp___ =S ‘6(yliy2) ZSDOZC’J
o o o1 o
e 32-
E: 2 ,IIISO'ioJa (l"S.)’
Se1ge o)
2
) o d Yog~ =¥eyop
- = 1—572 92 3 hence the pr.fn.
S/con Lo ;
of (ylya) is
2 2 \
ey i exp ~ 1 (ﬁ-z?ylya ¢ 72 |
If y is k-variate normal (M, V), ie with = {(y) as in § 1,
and z = Ay where A is nonsing, z 1s also k-variate ~

normal, with ‘iﬁ:_AJA, Vg:é'!ﬂn.



In particular, if the ¥4 are indepe. normals, with wvariance

0-2-, eand 2 = T y, where T is orthogonal, then the z; are
also indepo. normals. with variance o—'a. 3
Marginal distribution - x K
; 1 AR
Let y be k-variate normal (0 , V), y = [ == $
' % k
) 2

we seek to find the marginal pr.fn. of Iy -

Mooy : w W
Let V = “’:3; =2 ﬁ L=t (=L =2 where El and ‘El
S \ws ®
whenece : 5 1
i ‘ ree, (33 e
VWor VW, = o N -, =1
/ s w1 _ks i i
V W+ V0, = og vt = W, 1w2
T i
Vel talin s it

400
The marginal pr. fn. of y¥; is J-(ka)-Jf(gl,gz)dya, wheref(yl,ya)

A =jf(z) is
Now the exponent ini:ﬁ(;ylgya) is proportional to :

) the k-variate
v }[—l ¥ | multi norl. pr,
fn.as in 81, JA
=0oe
R AR T T ey (SR S e TR SN SN ol -
8 8 T yl el = ] / 1
= (w;_ w4) (ya) SIS B Mo T T o)

]

/ S e . i Ll
A RN Ul A PR MNC R Al A DI A el A
3 ("Completing the square" in By )

! S S
Wé) ¥ + (3ot ) W, (yo+X) , where = does
not depend on Yo

% =1
= Yl (W1=W2 W4

b i, 3
I vll Yl"‘(ya + <) an(ya +0()
( using result of 15 half of this paragraph)



~2f)-s-

The intcgration can now be carried out : the resulting KX
marginal pr. fn. of Ty is
i -1
/ o
£1 (¥p) = 4 ex0 - % I3 Yy g3 where A, is the

appropriate
normal factor
whickk is itself kl - Vvariate normal

6) Conditional distribution
Using the notation of § 5, we ssek the conditional PT.
fn.of 7, , given Y3 = & « This is prop. to £ ( a , 3 ,
the quad. form in the exponent of +this fn. being, as in § 5,

¥ n 5
IV =gVt ;

-] / il e ’
a + ( Fo+ W, W, a) &4(y2~m4 L a)

Whence clearly Yo is ka-variate multinormal with

=i L i ik i .
V2= -7 W) a =¥ V7" a (by18%half of § 5)

as the conditional expectation (whereas the unconditional
expectation of y is o )

=1 _ o /=l g

as . the conditional variance matrix.



»

Generating fanchtion

" Def: The g.f. of a ga.ven real sequence (,ao, 8y ag,g.o) is

v (8) = >f' T provided ! this conver-
LS aes A
; gles in some interval

I
sl 8ye

eneraving furction of inlepral-valued variate X 2o

e s 4

%]

a5 the pr. fn. of X be Pr(¥=j)= Pys J =0, 1320

and the * tail probabilities) Pe(¥> j) = ay s 3= 0,1,2,.0

(Nearly 9y = Pyuq * Pyup * o) ;
with go£'8: , P(s) =) ps¥, Q(s) = >_qs.

fheorem T
¥ Q (s) = '.L—(-ll-sP 2L for |s| = 1

Ex Show ’chat EX P (1) @ (1) (prov1dec1 P 615 Q(l) exist)
and VU = P (1) + B(1) - PP(1) = 2 ¢ ) +q @ - R

isl<l

Convolution If X, Y are independent non negz. integral valued
variates, with Pr(kj)z - e - (sz): by »

J"
then P ( +Y=r) = ay b + ayb, g+ asb, ot.. + a b, =c, say

the sequence {cri is said to be the cbnvolution of the sequences

fLar], : Lbr} ; symbolielly,

icr} z{&r} ¥ {by]

Theorem If A(s), B(s) are the gof.,as of X, Y respectively,
the g.£f. of X+Y i C(s)= A(s). B(s)

We extend the notatlon for convolutionsas follows:

{%] {ar} % {_31-} [ar} -{a._[f x [&r} = sequ;nce who se

g.fo is AB(S)i and complete these with (Iar]I = {ar}

C_ ? oi o o .--.4-, - @i .ﬂ " Ao | =]
ld.r.l = (l,v,ogooo) = geguence whese gif. is A (u)o



Consider the preob. that in a sequence of Bernoulli trials

the first success occurs at the (1) %h trial (r=o£1,2,..°),
This is the geometric distribution. Show that its g.f. is
p/(1-9s); Hence show tha%ithe prob. that this k —-th success
occurs at the (r#ﬁﬁfth trial (P=0,1,2, 000,k = fixed number)

¢

has g.f {pf(l_q&}] = » (This is the Pascal distribution).

)

Compound distribution

Let Xl, s s X3 =5, bona sequence of indep. variate with
a common distribution given by Pr(Xk=j) = fje
Let SN = Xl+ X2+ Omv+XN Where N is a variate indep. of the
Xj,.wi.t.h.distribut° given by
I "' \1 — '
Pr(ﬂ_n, = 8

Then P, (8y=4) =S Pr(N=n). 1 .(Xl+ oot X =3)

n ¥
= Z;‘gn. S fj . s a compound distribution.
n L :
bLx of compound distribution.
If the X have binomial distribution with fr(szo) =q,

Pr(szl)zp, while N has Poisson distribution with parameter,k 3
then Pr(SN:j) = e‘»‘P(f.\ pja.fjl)iae Poisson, with parametex% D

(ego SN = no of unhealed chromosome breakages in an .drradisved
cell, for no.N of breakages has Poisson distribution, prob.
of a breskage remaining unhesled is p, Propof j of the N

breakage remaining unheeled is binomial (N,p). )



-.‘}'/

Generating funciion of a compound distribution

Let £(8) = r ) boti g.5 . 0of the'X o :
5— J A k and SN’ 1Feee XN
g(s) =2_g8 woth &Fe of W )
For fixed n the: g.f. of :

The g.f of Sy is
ooy ; c S
n(s) == Pr(8g =3). s’ =Z 2 g {fj}n sY
IR o oqn®E a:% i =
=Zgn{§_ii"" .835 ‘ =§n_gnf (s)

= ¢ )
g(£(s)) .

Expectation in compound distribution

Ese g feeent  =e'@@)@® =@

ds s=1
g ¢x,
(Bx find the variance of Sy in terms of the expectatlonus

and veriances of N and Xj)ins.: U Sy =g’§ )‘i +6% Ay
(Ex. If g = prob that' a family has exactly n children, and
the sex ratio boys: girls = p: q, (p+ g=1), then the prob. of
a family having exactly j boys is the compound binomial
% 8, (IJ}) pZi qn—ij’ with g.f. g(q+ps), where g(s)= g.f. of

{6a ]

of no. of boys in family is also geowetric (as g with}g—>‘g/(1._ X

£ g = (1-%) 5, (geomcbric distrib.) show that ‘distrib.

Chain reaction If we have 'generation' of pacviclus, each

having indep., fixed, prob. P, (k=0,1,2,..) of creating k new

particles;having started from a single particies inthe Oth

generation.

\

9



Let,xn = 1o, of particlssin n U generation, (Xo=l)
then 1h+1 = U1+U2 + voo + glh whera Pacthj has distribution

iﬁké and the Uj are mutvaily independent hence the g.f.
b :

of Xh is
+1
Pn+l(s) = Pn(Pl(s))’ where Pl(s) = E%-prsr.

Probability X, of termination at or before n
generations-—

= P(X=0) = P (0)
Tnel = Py (xh+l=0) = Pn+l(0} 4 :l‘P (O)) 5 1(xh)
thus x . = P(x) t  writing P(s) for P(s)

Then the prob. that this process ever terminates: is ? =-lim e
This certainly exist simce x ., = P(x)) > P(x, ;) = x,
(P(s) is an incr. fn.) and so T =BT

This equation may have more than one root. If S0, we
require thesmallest root for,if7| is any root other than ¥ ,
we have Xi =xB(0)= P ”l) = M , and by induction x, < M ,
for x .1 =P(x )< P (M) = M » whence § g

Roots of S =P(s):- (1) s=1 is always a root Y-S
Y8

Carahd | Hitie S1, S, are roots, 30”’ sl<gy<52, P (o)=1

A
Now this is unique, since P (s) increases 'Y
steadily in (0,1)




ence this can only be one pair of roots
in l:o,l] , and one of these is at s=l,Is there another?
If soit must lie in |o, l]

It is not difficult to see that
there: is a root s £ 1 if and omly if )
P'(l) > 1; and this root is uniques Also

I

|

; |
Ee(a) =\Z”_k.pk is the expected no., of direct (S :
|

descendants of a parﬁiclea Call .uthis)u;

Then we have the result:-

Let m =£k'.pk be the expected no. of direct asscezi—
dants of a single particle. If M) 1, 3 Iai_*-'unique root
§<lafthe equation 7 = P(7) , and ¥ is the limit of the
probe. that the proce-és terminates™ after flnltely many gene-—
rations (Thus { may be interpreted as the p;:gbo that the
process will terminate, and 1-¢ as the prdba‘ of an infi-

nitely prolonged process) If m>1, then, 1-T > O,

If p < 1 “the only root of ¥ = P(s) ) is ¥ = 13 so
the probability tends to one that the process terminates-
before the n-'> generation The probe. 1-7§

of infinitely prolbnged process is zero.

Ex Show that ex;pected_s:_{i;e' of n-tB generation is /,\n

The l-dimensional random walk

1) A particle starting at x=n, perform a random walz with
prob. p at each step of moving one unit to the right,

prob. g of moving onc wiit 5o She left (p  g=l).



2o

A gambler, with initial capital £ n, plays a game(consis—
ting of a sequence of B. trials) with an opponent when
initial capital is £(a-n); at such trial our man has
probability p of wining that trial, & prob. g=1l-p of
losing, with a Btake of £1 to be won or lost as appro-
priate. The game continues until our men's capital is O

(he is "runied") or is £a (he has "won").
Let prob.of his Yltimate ruin, when he still has
&n, be q, '
then Q=P Qqt Q Qp.q? l<n<£a-1

Q1= P 4y + q , q@l“"l Salrder 5

whence .
Q= A+B(%‘) when Q=£D, Q, = A+Bn when q=p=)

and in fact

a,= (/DY (/)"

» 4 DPi qy = 1-

% y Q=p=)

(/)% - 1

SJifs Py prob. of this ultimate winning = prob of this
oppenent's ruin, clearly Py is obtained from q, by

q—->PyP->49q n-—a-n, whence

1]

on e = (/)i Ge/op el

(DA e e

- n

= (q/PQa - 1 .= J= qng = 1~ qna
(a/p)® - 1

9 Q#Pi Pn

1
O] |=]
Q2
il
{%



Our gambler's expected gaim is (au—n)pi1 -ngq, = a(l—qﬁ) - n.

(= o if p=q=}t) In a ™ fair game" ie with p=q=)k, if he starts
with £n, his prob. of winning &t before being ruined is
n/(n+t) . (for put a=n+t in above)

Effect of change of stake 3

If the stake is changed from £1 to £, this is equiv.
to replacing n by 2n, and a by 2a; the prob. of ruin becomes
@y =g €+ ,(6= g), amthisa 18 Sq i£4>1
Ga + 1 e de df g Sap

Thus sma.lier stakes increase prob. of ruin for the player
having q >p Thus to maeximise chance of ultimately winning,

stakes should be as large -as possible; consistent with the

target value.

»

Expected duration of play. When gambler's capital is: £n,

let this expected duration of play be Dn

D =p D + q Dn_nl-t-lg\_ < < a

n n+l

The solution is

D, = n_ +A+B('.9.§n=__n_.—- a 1= (a/D)7, (a#0Dp)
p

a-p: g-p g“p 1= Ca/p)®

= ‘-n2 + A + Bn = n(a-n), (a=p=}k)

Distribution of duration of play ( = duration of random walk)

Let proba. _o_f this sum at the kth step, when he starts



with £n, be u

ﬂ‘i‘
Then : s
with uo,k = ua,k =0, k21
uo’o — i u‘n,o = Q , nyo
Solve by generating function Un(s) = Zn" Wk sk
9
We find U (s) = ps Un+1(s) + q8 Un__l(s)
with UO(S) =1 Ua(s) = 0
whence i s 2
Un(s) = A(8) { (s) + B(s) )g(SD, M(s) = 1 +V 1-4pgs
' 2
k , 2ps
wit
Alg) + B(g)= 1, AAl + R )\2 = 0
whence

The corresp. g. f£. for the prob. of his winning at the k

U (8)i= g 3* AR (e)o- NETH (e

P a i a
)l (s) }2 (8)
th

step is obtained from this by p o £ q, 9 =Py n—s» a-n , and

the g.f. for the prob. aistrib. of the duration of play is

the sum of these two g.f.'s

Random walk with only one barrier (at x = 0)

= game against infinitely rich opponent, a —>oc°

The preceding paragraph still holds, with Uo(s) =1

as the role boundary condition. We find that one of the

roots A(s) is > 1

for 0<s8 £ 1 and a bounded solution



W

is obtained only if A(s) = ¢. The go f. corresp. GO Un(s)

n
3 & . - o \‘l
is then ‘;n(s) = )tz(s_,

This is also the g. f£. of first passage times through x = o

of a free particle starting from x = no

Markoff Chains

A Markoff chain is a seguence of states E,j in which
P:c‘{ntll state is Ejn/(n-l) th- state was Ej, 1, (n-2) uth
state was Ej, oy oo and (n-r) th. state was Ejn—-r}= Pr&Ejn/Ejn_l‘k,

fOI‘I‘:l, 2? u;o n,, andn:l, 2, ooo
This conditional prob. that the system is in state Ej,,

given that the preceding states was Ej _4 is called the tran-

sition probability from E,jn_l to Ejn and written as

P:['{Ejn/ E‘-J;n—-l} = Pr[ EJ.n—:I.'_”ﬂ'ﬂjll} = Pdp-3 Ip

orPr{E.‘:_/ B, : }

3 Pr{Ei-—;,Ea.}:p

b~ 74 o)
Clearly
‘3;_ Piy =1, all i.

If we put Pr (initisl state is Bj) = aj (zo0,yay=1)
then the probability of obtaining the sequence E;jo,, E;jl, Ejz,“ 0 E;jn
s 250 Pi0a1 5132 °° Pyn-1dn°

The system is thus completely characterized by the initial
distribution {aj} ahdt bhesmatalaane transition probability
B= (p;ij)o This squar? matrix P is subject to the restrain.

{Rel] 8
that D - 70 5, all i, j; and P 1 = 1l (2ll row-sums are unity).

Such a matrix is cal;.l.'ed‘a ptochastic matrix.



Higher trangition probabilities S
et P‘ ﬁ) = Pr (system iz in state E_at time r+n (was

in state .E_} at time r), Then, eg; P§k> i.p,;jz; Pyg = Ciak)
L4 II IJ
element of .f:_j'z '

Thus the & ‘rw:x of the p‘:‘?‘) is P2 matrix of 2~ step

transition probs. Surely the matrix of n-step probabilities

is};’nu

Absolube probabilities

Pr (B, at time nJ-E;j at time o) = pgi), Pr (Bj at time o)= a5
=% a, ptd) P ‘
Pr (Ek at time n) .‘i pjk. = k - element of the row-
vector a _En
We can thersfore find the stable limiting distribution
( as n —o00); if any, by investigating the limiting form of

Pno Now if P has latent roots )Lr ¢ and corresponding latent

vectors.x. (ln.nearly independent) we have P X, = )\ Xy PX = Xﬁg

where X = ( By, By 9 ooo ) and/\ diag (AlAeg e }k)

Then P:gm‘xl and P* = X Egg'lwhere _/‘f‘: diag

n n n

D e )

Example ILimiting distribution in a 2-state Markoff chain
Let g:(l“’f lgdi),oé‘%(l‘, < F1 -5

o< <l
To find the latent roots we solve P x = } X , le
1-B)% +BX, = )\xﬁ} 5(1-43—)):;1 +Bx, =0
v et ¥ : ar -
(o 4 - =
X, + (1 "*)Xa Ang Zo{ R + (1= <= ) = 0

The solution must of course be arbitrary up to a constant



[

-]

nultiplier, and will exist if ( 1~-p =A) (1= =QA)-xB = o0

whence )2"- (2= A = F) A+ (1-5

with roots

3
it

= 1y

‘=B ) =0°] NOTE: A stochatic:
32 =1 = =B matrix always has
a latent root equal
to 1 ]

The corresp. labent vegtors are ( % ) and (fﬁ )e

Thus

gx;g/\s becomes P (l“ ) (l f} (o ]_;a;?ﬁ>
B)@(l- -&)) wi)”l

so that in

oT’E
1

]

T

&

-

As n = 00,

><0 (l~o<=B) )(ml il

o<+§(lmd(ﬂﬁ) » B - B(1-a-B)" )
(ez-» (1-0-B)" !& + o((lmdmg)

F (4

X +B

& +B B

E S (‘X Bﬁg since.,(l~0<—B)n=-> )

R |

[ Examin the 2-state chain with matrix P = (P q) ]

Examples of transition matriges 3

(1) Independent B w0

1Y

o briaks By = success Ii:2 = Fallupe

b



(2) Random wellk wit

Ek mean X = k
p = /
:{‘”

I o

’...l

o]

o

Pime-dependent Stbchasiic:

ik

0o
P o
oP

-
=

G5

¥

@ o

1

&

1593;2 o

~
o
&

&

0

0

]

\.

i
1

@

Processes

(1) The Birth Process

L

2o

h absorbing barriers at x = 0, X =a.

Note the first

and last rows. These
characteres the absorbing;
states represented by

barriers.

A system may be in states Eog_Elg E2’°°°

If at time t it is in state E , then the probability that

during (%, t+h ) a transition occurs t B

s \h + o(h);

the prob. of a transition t Ej (J #n ) is o(h),

Let Pn(t) = prob.

Py (t+h)

P, (t+h)

We now let h=> o0,

ﬁhat system is in state 5n at tran.t. then
Pp(8)e (1= Ab)+ B 1 (6);, X, ; B+ o(h), a1,

R (t),(ly’)oh)+o(h)

whence

B, (8) = =\By(6)+ Y,y By 1 (), me0,1,2,e00i (B_j )

If at time t=o0 the system was in state B, 5 we have the

boundary conditions : Pk(o)=l, Pj(o)zo when f k. These

together with the differential-differences equation,uniquely

specifying the .'E’_n(t)°

Lx  The Poisson process. When‘}h =) (constant "birth ratc")

‘.\‘\.



¥

(2)

Ex.

b o

it is readily verified that the solution is Pn(t) =
('\t)ge * ‘}t/ n! (teking initial state to be Eo)o Here
we say that system—o¢in state E  ab time t when n is the
number of occurrences of no n chosen event during time &3
the average rate of i‘ecurrence being & « In a population
of reproducing entitiesy; n is the no. of birthg there is

a conste prob/\h of one birth during a short time ho

The Yale process. If there is a probe h+ o(h) that any

member of the population gives birth ( to a single of

during time h, then when population size is n the prob. of

a single additional member appearing m (6, t +th) dis nf)\h + o(h)o.
5 # P .

Thus }n =n")\, and P (t) =n ANPL(t) + (n=1) APy, (B

if the initial population size is k, Then
P (t) = (n‘”l) ek W (1= W) Dk oy

n=K

Birth and Death FProcess We consider a system as in (1)
above, but with the additional possibility of a transition

Bl = E 10 (n>1), with probe pnh-a-o(h) of such a transition
during (t, t+ h), and prob o(h) of a transition E.> Enijg J# Lo
We have

r (t+h)—- P GE) éla')\ hunpn ] +]n lh nml(."?r)+ )Skn#lh Pnﬁl(t)w(h
where

2 (£) ==( ’)\n+)*}n) Pn(t)""\ P l(t).,}&n+l n+l(t) ny,
-WJ;.‘Ch PO CL)e= "r)\O.PO (%) .g.jﬁl Pl (t)

Simplified telephone trunking problem: Assume an infinite
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number of channels availabley, & prob. of a used time
being fixed during (t,t+h ) is M bt o((h)s (Then leads to
" exponental holding time", viz prob. that holding time
exceeds t = probo:%l?ge is not fixed during (o.é‘t) = e M),
Assume also that the probs of an incoming call comumencing
during (t, t+h ) is)h + o(h) and that the prob: of more
then one call is .- 0(h)s Then the number of incoming
calls commencing during (o,t) has a Poisson distribution

with expectation ) te ("Poisson input with parameter N

We say the system is in state En if n lines &are ingaged
Then the prob. of one line: being freed. during (ty t+h)
is o ph+ o(h) while prob. of one new line being mequired
is \h + o(h).
Thus we have a birth and death process with
’)\n=”)\,}4n=n)-\,
whence
]
By (8)= = () #1) Bp(6)+\By 1 (6)+(a+l)p P (8)y 0L (4)
1
Py (6) = =YWP (L)+ P (b)
We may nearly find the expected value m(t) of n at time b,
for m(t) =y n P (t), so m'(t)=)\- Mum(t), from the diff.equs
wnence mn(t)= A e-/“t + 2‘— = (p ~ -—)-‘- ) e—)lt+ l (if inital

}L\ /l( /\\ Ok
—-;")\//u e G value is 1)

Similarly we may find the second moment, and hence the variance

(Alternatively we might obtain a (partial) differential equation

S



for the generating function end selve that.)

Extensions If the number of channels aveilable is finite,
and equal G0 a, says = Ghen as long as there is at least
one channel free, we are in the situation discussed above.

Beyond this, bhowever, we may have people waiting for a lines

Let En denotes the state where n = total no. of people
'either being served or waiting: when n » a there are n-a
people waiting. When n.ga the governing equations are(d)

above, but when n>a

g
Pr(t) = = (O ap) By(6) +Npp 1 (0) + ap By (8) (B)
We shall consider only the limits lim: P (%) = d’n’ s8ay
obtaineble by putting B, (6) = o 7% in () snd (B)
(thus is the state of "statistical equilibrium“)o
F:;'om (A) we gt \p, =MDy and (\+nM) pn=7\ Py_1+(0+1) P,
whence

P @Y/ D pj for n L aj;

nl

from (B) we get ("\+ a}i) Pn aNPyg * a p P

whence S '
"ﬁ:p — ngﬂin po Note '
n - 5 : e 2“: 21; converges
a 1 n=a i p
INa | 0
if )_\‘ <:!
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ORDER STALISTICS

I. Suppose X nhas the c.d.f. F(x) = Erﬂ Tz X] y and that the
derivative F'(x) exists everywiere. Suppose also that we have
n independent observations on X witich when arranged in order of

magnltude are

e =

. <:xi<;o~<;xj i sie wisier X

o

To obtain the p.d.f. of x;s we argue as follows:

Choose any one of the observations, before they are made

—(e3g. the Tirst observation to be taken, or the second; etc..).
Tne probabllltJ that this is in the small “Interval (x > +dx )
(x )dx « This chosen observation will in fact be Lhe it th.
in erew f magnitude if,-out of the remaining (n-l) observations,
(i=1) are less than X;, Ghe rest being greater than Xge By Do
Bernouilli ‘the probability of this is

(n - 1)

Gt (nei) 8

e }%"1 fira) 1 >t

Since the original choice can be made in n ways, the probability
that any one of the observations is x; in (xi,xi+dxi), and that
this observation is the ith in order of magnitude is

St i Gl o]

P () axy

(i-1)!(n-i)!

This gives the required p.d.f.

It is clear that

jﬁ(x ddx;

T on putting

‘v

J

ed
n! i =1 -5
(T-DTa-1) 1 fF ‘xi){f'fxi) }l LGy
-\
. e :
5 Ll D=1
e EET f S| =
-@70

= F(xl)
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Using the fact that,
_(t (l )2 at=r 1 sl / (r+s+l)! (2)

we conclude that fﬁ(xi) dx; = 1
-0
II. For the joint p.d.f of x; and X (1£J), we choose any two

(in n(n-1) ways) to lie: respectively, in (x g 0%y Hdx; ) and in
(xj, Xy + dxj), with probability F'(xi) F‘(xj) dx, d.x s

The remaining (n-2) observations must be distributed with
(i-1) of them less than X;, with (j = 1 = 1) of them between x'i

and X3 and the remaining (n - j) must be greater than x5

Hence

-.-né;-a" EEUCDHCHEECHY fe

{F(x )-F(x, )} -l-tl-F(xj)} 5

(3

‘ and it should be noted that ¢ (xi,xj) = o for xj < X5

IIX. Application on the Rectangular distribution

If X has a rectangular distribution in the range (o,l), we
have in this range F(x) = x and F'(x) = 1 so that

! B} -i
B(x) = oD % AT

._al 1-1 jmiel n—j
&x;2%y) = CyTEDT ot %a CRymxgd?T Qe )™

=0 whenxa-< Xy

On usi.ng (2), we find. j

. 2 B ;
E(xi)"‘ f @(x;)ax; "(11)!(11—-1)!" J('n +(I:]C)?) =nil=

wherem=n+l -'

Bk




e
8(11 ::a) - 3 ( x5 Xj d’ (xl,xj)d.xl dXJ L
g c X &l i
i { x;
= n! o e = 14 £J-i-1 o
= O f xj(1ox)™~0} j B =70 0 e HE0 Ty |
o 'D s}
= 4Cj.+.1) [.(n + 1) (n +.2)
= i(j + 1) / m(m + 1)
Hence A 5
i 3
é(xi,xj) =g(xi X;j) T (Exi)(ng) = m.ﬁ 8 _2-;1-_
Bl (i D)
m@(m + 1)
IV Standard error of qguantiles.
Among the various quantities measuring location and dispersion, e

there isone grouap, namely the quantiles, which are not algebraic
functions of the observations and whose sampling veriances cannot
accordingly be determined by the|ordinapy methods. Order statistics
results are very useful here,

GLguetion (1) expresses the distribution of x;» the member of
the sample below which a proportion.% of the members fall i.e. the
ith quantile

Put 5 SR |
So that n - i = n(l-q) = np say

The distribution (1) has a model value given by differentiating
b (xi) with respect to x; and equating to zero.
This gives

' ¢ "
F (xi) F (xi) B (xi)

: ‘ " I
(i-1) -3 i (n-1) =ik ¢ T 3 &
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his equaiion being satisfied by the model value x . Now for large
e

n, the rfactor T will in genersl be small compared with other

terms in (4), i and n-i being lorge. We may therefore negledt it
and {4) becomes to order n"Lg

B
%"1_F“’

or F(x) = gq | (5)

Nog.let us investigate the distribution (1) in the neighbourhood
of the model value .

Pu F:q-{-:};
(1) becores (negleating constants)

(a +3™ @ - PP
Taking logarithms and expending we have (except for constants)
nq log (1 + ?/q) Enp dog (1 =7/p)
= ng (?/q-% Z /€ + ..0) +0p (=]/p - % ?/p vees )
= -n ?/2 pq + terms of higher order in}

Thus for large gemples, the distriubiton of 4 is

dPXexp ( - n 7/2 pq) d}
or eveluating the necessary constant

2.
T -
@ = e o= ( & ) 42 89
. pa |
2 JO &2 .
¢6) shows that 7 in the limit is distributed normally with

variance :
v(?) = pg/n (7)
To find the variance of x; we note that

d'}-.—. a4 F(x) =2 ax,
Hence v(xi) = pa/n £ (11)
If x; is the medien, then
p=aq=%

+ and we have : 7

v (median) = ﬁ
n



T

where £ 1s the median crdinate

el
ex: If the parent population is normzsl the median ordinate is
O:J-'-_ ";).5989&,0—*2 being the variance of the parent Hence the
standard error of the median is
I 1
N 2 x 0.39894
= loabjj —
i
This is considerably bigger than the standard error of the normsl
sample mean (o~/ J/n)
V. Distribution of the range
It is obvious from (3) that the joint p.d.f. of the maximum
end the miniwum is given by
/ /7 e s
o -~ G - Y — n i O 1 - n-—a “ Gy
@y 5% dxy dx, = n(a-1)F (%) i'(xn){.b\(:gf) -11(11)} Todxy dx,
= o “for X, < X (8)
I the original distribution is rectanguler with a renge (0,41)
Ghien
e e - )82 .
@ (x9,%)) ax; dx, = n(n-1) (x %) dx; dx, (9)
= 0 for x, < X
The c.d.f, of the range w is then given by integreting (9)
over the values of X9 X, such that X, - xlé W q ;
. ) . ; _ N X
i.e. over the area bounded by the two e 'B(l’ )
lines X, = %
= . . X + W
o AL I g
=
This area could be divided into ;
the two aress o Ni & N @ P M o : >
IL

(W;O) (1,0).
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Hence
Flw) = fj @(xl,x)dx dx F g(xl,x Yoy dE,
xn_w X =X W
= W +n w1 (1=w)
= W - el v
Hence

£(w) dw = n(g-l) 1 P2 - w?""‘lf 0wl
It is easy to verify that

E (w) (n-1) / (n+l)

Vu%w) 2(n—1? i (n+l)2 (n+2)

il

squation (8) is soluble explicitly in some other particular
cases. The normal case has been fairly completely studied by
Tippet and Pearson. Tippet found the first four moments of the
distribution of the range, tabulated the mean values for values
of n up to 1000 and gave a diagram for determining Che standsrd
errors. These tables and diagrems ere reproduced in '"Tables for
Statistioians and Biometricians" Faet II.
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Probability Theory

Of three independent events the chance that the first only
should happen is aj the chance of the second only is bj

the chance of the third only is C. show that the ilndependent
chences of the three events are respectively

E%E 9 -E%E 9 E%§ o, Where X is a root of the
equation :cg = (a+x) (b+x) (c+x) ?

A box contains ten pairs of gloves. A draws out

2 single gloves then B draws one; then A draws a second then

B draws & second. Show that A's Chence of drawing a pair is

the same as B's and that the chance of neither drawing a pair

is 290/325.

Two bags A and B each contain N balls; the balls in A are
white and in B are Black. A ball is drawnssimultaneously
from each bag; the ball teken from A is put into B, and

vice versa. This procedure is carried out n times in all.
What is the expected number of white balls in A after the

ﬁEQ trial?

Under the conditions of a certain game to be played by X and
Y, pleyer meking the first move in a particular game has a
5/8 the chance of wining that geame. No games can be drewn.
The player wno wins a game has the right to make the first
move in the next game.

X is to make the first move in the first of a series of
n games. What is the nuuber of games that X mey expect to
win during this seris?
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A and B shoot at merk, and A hits it once in n times, and
B once in (n=l) times. If they shoot alternatively, A
commencing, c¢ompare their chances of first hitting the
mark,

In s game of squash raequets between two players, the server

~ scores one point and serves again if he wins a rally, but

if he loses the rally the score remains the same and the
other player serves.

Assuming that the two players A and B, are egqually matched
and that there is no advantage in service, find the probabi-
lity that r rallies will be played without the score chang-
ing and hence the expectation of Lo

If A is serving, what are the probsabilities that (1) A-
will be the first to gain a point and (ii) B will be the
first to gain a point?

A game is played in which 3 dice are thrown simultaneouslyﬂ

If the numbers on the upper faces sum to less than 12, thé
thrower puts a number of pence into the central bank correspm '
onding to the difference between 12 end the number he has
thrown., If he throws exactly 12 he pays nothlng, if he

throws over 12 he takes from the bank pence equal to differ-
ence between the number he has thrown and 12, Two men, one
with 3 dice and one the banker play the geme, What is the
expectation of the bankers gain?

There are three urns labelled 1,2, and 3, The first contains
5 white balls and one black ball, the second contains 4 white -
and 2 black balls, the third contains 3 white and 3 black a
balls, The balls are .iindistinguishable except as regerds |
color. A ball is taken from Urn 1 and mixed with the bells
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of urn 2. A ball is taken from urn 2 and mixed with the
balls of Urn 3, Finally a ball is taken from Urn 3 and
mixed with the balls of Urn 1. This circular procedure
is carried out three times in all,

What is the prob. that the number of white balls in Urn
1 is K at the end of this sets of operations.

Two packs of cards are made up in the following way. The

~ first pack consists of the suits of heart, diamonds and

clubs, and the second pack consists of the suits of clubs,
spades and diamonds., A Sampling experiment is carried out
which consists of drawing a card from the first pack; if this
card is red a second card is drawn from the same pack, if it
is black the second card is drawn from the second pack., The
colour of the second card is noted, both cards are replaced
end the procedure is repeated. If n trials are made, calcu-
late the probsability distribution of k, the second number

of red cards seen at the second draw. .

Phe target on a bombing range is a circle of c feet radius.
Jone, a bomb aimer, may be assumed always to aim at the
centre of the target and to make independent errors in line
and range, each with the same standard deviastionc” . In
order to pass out as a qualified nan it is necessary for
him to hit the target at least k times in n trips, the boubs
being dropped single on each trip. If C=25, o= 50, n=30,
K=15, Calculate Jones chances of successding in this test.

Two men A and B play a single game of tennis. If the
probability of winning any point is P, show that his probabi-
lity of winning the game is

‘ 5 3
P* ¢1+4g+10¢ ) + ER4
q~~p
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In an Urn there are nxk balls., The balls are indistingishable \
except as regerds colour; there asre k different colours and =

n balls of each., A ball is drawn aend replaced after its colour
has been noted. Show that the probability thet r drawings will

be required in order that all colours will have been seen at
least once is

&kyl)rml I k%}

1 (k=2)"L & B=lg, (k=3) ooo} /=t
Part of the retina of the eye may be regarded as a lattice
of sensitive points (rods) on which light falls so that

one photon of hight hits one, and only one, rod,

Consider as a simplified model,a square lattice of n®
rods, Two photons of light fall at random on this lattice
fitting different rods, what is the probebility that the
two rods hit are adjacent (where a rod not at the edge of
the lattice is regarded as "adjacent" to 8 others)?

An experiment is carried out on the effects of coal dust
in the air upon mice, Assuming that the probability that
a mouse, which is alive at the _beginning of the, B
month, will die during the month is Pyo find the expected

length of life of a mouse,

The experiment started with 60 mice but at the end
of each month two of the surviving mice were removed from
the experiment for examination and their lengths of
survivel are unknown., It wes found that 15 mice died in
the first month, 18 in the second, 13 in the third, 5 in
the fourth and the remaining mouse died in the fifth month.
Obtain an estimate of the expected lengbtih of life,
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In a certain process, events occur randomly in time; l.€o
the prcbability of an event gccuring in the small interval
(tyt+3t) is NEt for some "W\ 0, independently of what
has happened previously., Show that the time interval
between two successive events 1s a random variable with an
exponential distribution, and the number of events occur-
ing in a period of fixed length is a poisson variable.What
is thé relation between the average interval and the
averasge number of events in (0,T)?

A trafic light has a constant probability ‘A\dt of changing
to green after being red or to red after being green in
any infinitesmal interval dt. Show that a car arriving at
a random instant has a probability % of passing through
without waiting and a probability element j2"\exp (--Aw) of
waiting a time w ) where W > Q
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Distributioms ,Moments, and Moment Generating function

l. A varieble y is defined as
T=Xx+8

where x is a discrete variable, distributed according to the
Poisson lew with meen:i’A , and z is a continuous varisble,
independent of x with probability density function

p(z) = 1 0Lz L1
= 0 elsewhere

Derive the first four moments of y
If A= 1, obtain the vleue of y, where

P {J)&o} = 0,05

2, Bcrews manufactured by a certain machine are passed through
two gauges, the first of which automatically rejects all
~ screws whose length is less than flv and the second reject
those whose length. is gréater than (29 It is found that, out
of N screws tested, n), have lengths less than {, and n,
- have lengths greater thanQ 20 g
Assuming that length is approximately normally distrib-
‘uted, estimate the mean and standard deviation of length of
all sorews produced.

Derive an estimate of the mean length of those screws which
are not rejected by the _gmiges,

Obtain the two.estimates of meen length in the case
where N=100, Dy = 9, n, =3, Ql = 96 mm, and &2 = 104 mm.

!

y -
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u is a unit normal variable, and)(,z is distributed as follows

2 1
P ") = A
(X5 ‘?7'2 2“",—-‘ (f"'"’/a) (%) e,

:Lndependently of u, Write down the joint distribution of
u and')L, . A trensformation is made to new veriables t and

s, given by t = —-9—_-.—2_-— and s = % 7<.2 Write down the
equations of the inver’ée ‘creans:ﬁ'o:r:-mzad::x.on° Find the Jacobians
3(t,8) _ ana dy, X 2 and

U, X°) (t 4 8)

verify that there product is unity. Hence find the joint
distribution of t and s, and by integrating out s derive
the distribution t. '

(you will need a further transformation s (1l+ ta/f =V)e

A random variable x is Jnioin to have the distribution

p(x) = ¢ (1+ §)m-l o ix/a » —ag X L0°

Find the constant ¢ ahd the first four moments of x. Derive
the linear relation between thef3, and the ﬂa of this
distribution. Sketch p(x) for m=l,2,

Define: (a) a random verisble, (b) a characteristic rendom
variable (¢) an elementsry probability law (d) a cumulsative
probability lew.Use the technique of The characteristic
rendom varisble (or any other method) to establish the first
four mements of a Poisson distribution. =x and y are two
random variable which each follow a Poisson law. How would
you use a pair of observed values of x and y to test the

hypothsis that the expections of the two Poissons dlstrlbutlons

ere the same?
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In sample of size n from a bivariate Normal population, the L
sample correlation coefficient r has (approxmately) mean f "
and varisnce (le- “7 2)‘?'/11@10 Derive a trensformation Z=f(r)

which will give a statistic Z with variance approximately :
independent of { and n and give this varience.

The distribution of a random variable x is such that y=logx
< 1s normally distributéd with mean/ and standard deviation
o~ Derive an expression for the rth moment of x about zero
in terms of M andg~ Hence show that the coefficient of
veriation of x is independent ofM , Comment on possible
practical applications of this result.

Derive the binomial distribution of probabilities, stating
clearly the assumptions involved: Obtain the first four ‘
moments of the distribution and show that under certain _
conditions the values of {51 za.l:tdﬂ2 tend to those of the
normal distribution.

Given that, j.f")(;a 1s the sum of squares of £ independent
unit normal variecbles, its sampling distribution is

(@yhe-197E |

B 1
BT = ' By
2 [ (kL)
find the first two moments of ?{\2

A sample of size n(xl 9 Xy 9 ooo g xh) is drawn at
random from a normal population with mean % and stendard
deviation.Derive the first two moments of

@ } (xi - '5:‘)2 and compare with those Ofﬁo o
“i=1
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Por the distribution

r?‘]fz(n-fl)} n
AF = - sech " x d s £
b= O Zy —PREXS
Show that
M_ 1) 3 n° [ , (n) A ,(n+2)}
rue = e +1)(2r'+27 ‘ﬂr o 2 forso )

r 2 0

Hence show that

./M2r +,(n} = (2r+l)(2r+2) {jiégéégl—- + JEQEEEigz_ +
n (n+2)
%ﬁéﬁfﬂfﬂ_ + s
(n+4)°

For the variance show thsat

%<H2<Ei_2

State and prove the binomial theorem in probsbility.
Demonstrate the correction between the sum of a nunber of
binOmial probabilities: ahd the incomplete Beta Function
ratlo: wviz.,

X 1
{ gk Eep)® L by f TR a
o] o

O=x <1l

Explain over what range of values this relationship is useful
in practice and what procedure you would adopt outside the
range of the tables,



12, given that fl(t)da(t) = 1= !t | when { tigl, while fl(t)-so A
when | t|>1, show that it is possible to have g

13, Find the first four moments of the type I distribution
. L q )81
P = gzE x“‘“‘ (1=x) O<x<l

Show that (1) If t has the distribution P(t)=
2 =l
+ ) =
J' ) B()éog) ‘

then

-A-T is a type I variable, .
1+ ¢ .A; ?Z/"'Z ?)%2.

(1) If F has the distribution P(F) =  —2<irr Lo F%"l A\
B(% 5 42)

; - A+,
{21“12} —= B30

W

then § has a distribution of the same form es F with M), ),
intemhangede ‘
(111)0 = )y B/)) B +1), 18 & type I varisble.

14, The moment stat:.s%lc m, is definéd asZ(xax) /n. ~ Show
that in normal samples

T p———

v n=

Corr (m2 9%) = = «-qn-ug




15.

A quantity of bacteria is trested with a disinfectant, but
owing to the method of application not all bacteria receive
treatment, It is necessary that of each bacterium receives

t treatments in order to be killed., If the probability of
any one bacterium being treated in any one application of the
disinfectant is constant and equal to p, calculate the
proporﬁion of deaths after the nth application, where n > t.

=
What is the generating function for those proportions?



