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Interpolation Formulas
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Introduction

Interpolation has been said to be the art: of reading between
the lines of tabulated values of a function. We may now make
a distinction between interpolation and extrapolationQ The
latter is the art of reading before the first line or after
the last line of a tabulated function. More specifically,

we may define interpolation as the process of finding the

values of a functidn for any value of the independent vari-
able within an interval for which some values are given and

extrapolation as the process of finding the values outside

of this interval.

The process of interpolation beéomes very important in advan-
ced 'mathematics when dealing with functions which either are
not known at every value of the independent variable within
an interval, or the expression of which is so complicated
that the evaluation of the function is prohibitive. It is
then that the function is replaced by a simple function which

assumes the known values of the given function and from which

. the other values may be computed to the desired degree of

accuracy. This is the broader sense of interpolation.

In precise mathematical language we are concerned with a
function, y = y(x) , whose values Jos Jps eee » Jys are
known for the values X, X;, .. ; X, 0of the independent

variable, Interpolation now seeks to replace y(x) by a
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simpler function, P(x), which has the same values as y(x)

for Xys Xy9 see 5 X and from which other values can easily
be calculated. The function P(x) is said to be an interpo-
lating formula or interpolating function. In many enginee-

ring application this function is called a smoothing function.

A desired characteristic of interpolating functions is that
they be simple. Consequently, the most frequently employed
forms are the polynomial and the finite trignometric series.
In these cases we refer to the process as polynomial interpo-
lation or trignometric interpolation. The latter is used if
the given values indicate that the function is periodic. The
interpolating funection can, of course, be arbitrarily chosen
and can take any formj; thus it could be exponential, logari-
thmic, etcs One such form which is frequently used is that of
a rational fraction. However, it should always be as simple

as possible,

The use of the polynomial and trignometric series is based on

Welerstrass'Theorems

Bvery function, E(x) , which is continuous in an interval (a,b)

can be represented there, to any degree of accuracy, by a

polynomial P(x), i.e.,
B - ro|<E

for all a < x < b and where £ is any preasigned positive guahtity.
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II. Every continuous function, ¥(x), of period 2 II can be

represented by a finite trignometric series:
T(x) = &, + a; COS X +;a2 COS 2X + +eo + &, COS NX +

bl sin X + b2 sin 2X + soe f bn sin nx

such that

[E) - ) | L&
for a_<:x:<fb and 55;)0

2 = General Interpolation Formulas

Arbitrarily Spaced bata

2.1 Interpolation Polynomials

A polynomial of degree n
.
(l) .Y(X)=ao“'3-lx+ 2X2+oo.+anxn=';- akxk
“ : k=0

has n + 1 coefficients and it can be required to pass
through the n + 1 points (x;, yi) b o M £ e (R R |
with x; # Xy o To find the polynomial we see that we
can always solve for the coefficients 8y by Cramers

rule or by any other method.

Putting the values (xi,yi) 1= 0y 1325 e 3 N inbo the

polynomial (1), we have
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n
k ;
Vg :E> 8 X » 1 = 0, L2 ey 1
k=0
this means
Vg = a_ + 8 XO + a2 xg + s00 + a, xg
y.L = a0+al Xl+a2 Xla+ ...+anxil
(2)
Jn Stet: al Xn + a'2 xg + oo +IaIl xi

The determinant of the gnknowns e of these n + 1 linear

equations is the Vandermonde determinant:

2 n
1L XO Xo eo0e Xo
2 n
il X Xl eee X
(3) D =. ® = & o e ® s & & % & ®
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So=
Phus the Vandermonde determinant vanishes if and only

if any two of the X5 coincide.

Equations (1) and (2) can be regarded as n + 2 homogeneous

equations in the n + 2 gueantities -1, &,, 87, «es 5 B0
2

Hence their determinant must vanish:

/

y(x) il x @ x T X
¥ 1 xy xg voe xﬁ
1 1 X x% see Xy
: £ 0
TOREe W

This can be regarded as an equation in y(x).

If we expand this determinant by elements of the first
row, the first term will be D y(x), and every other

term will be equal to some xj multiplied by its cofactor,
which is a constant. Hence when we solve for y(x), we
shall have y(x) expressed as a linear combination of the
d

functions x* in just the form

y = &, + a8 + ... +a, .0

as required. Also if we set x = X in (4) and subtract

the i + 2 from the first row we get

D (y(xi) = yi) = 0



pointis x. agree with those of £(x).
It is possible that the coefficients of %" is zero and
that the polynomial is of degree less than n. To cover
this detail, the statement that a polynomial is of degreen of
ten  means of degree n or less. In the trivial case
when all the yi are equal the polynomial is of degree
zero, and y(x) = C (constnat).
2.2, The lagrange lethod of Interpolation
The basic idea behind the method is first to find a
polynomial which takes on the value 1 at a particular
sample point and the value O at all the other sample
points i.e. R
[l forixr= X4 »
0 for == X, ek
It is easy to see that the function
(xi—xo)(Xi—Xl)...(Xi—Xl_-l)(Xl—Xi+l) oo e (Xl_xh)
- G G
77’ X=X_) X=X_.)
Y j:O Xi -Xj ) j:O xi—x,j )

e

which shows that y(xi) =¥ and the ‘values of y at the

J#i



(where the prime on the product means " excluding the ith

value") is such a polynomial of degree ng it is 1 when

X = X; and O when x = Xj J e

The polynomial Li(x) y; bakes on the value y; at the sample

point X3 and is zero at all other sample point. It then

follows the well, known lagrange formula:

v(x) = 'LO (x) 7, + Ly(x) y3 + «.. + L (0) 7, = }I_l_: Li(x)yi,
where -

Lo(x) 3 (x—xl) (X—XE) (X_XB) sies (x-xn) 5
(xoﬁxn)(xo—xa)(x0~x5) oo (xo—xn)

il (x-x,) (2-x5) (x-%5) .o (%-%,)
(xp-%) (2 -%) (%) =%3) vee (29-%,)

e (x=xy) (x=xp) (2x5) oo (2x))
(p%,) (=%, ) (p=%5) wee (Xpmx,)

e (x-x) (x-x)) (x-%,) e. (x-x )
(Eyx ) = ) xp) wee ()
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With other method we can write the solubtion of (&)

in the form:

0 i X x2 e XP
2 n
To 1 X, X X,
2 n
Yy i1 o X X
Dy(x): l l l 1 :--D!
2 n
In 1 Xn Xh £n
Thus

y(x) = - D+ DF

which coincides with (1) if we exﬁand along the first

row, but has the form,
n

S
(7 y(x) = 2, Li(x) 7,

i=o

when we expand along the first column. The Li are themselves
polynomials with coefficients which depend only upon the
xj. These polynomials are
:77— X - X,
(8) Li(X) 3 X. - X
gkl i J
They can be obtained by direct expansion of the determinant,
or we can verify that they satisfy the necessary conditions

if we not that Iy(x;) =Qi.
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with $§£J the Kronecker S}Q From this it follows that
with Li(x) defined by (8) and y(x) by (7) we have y(xi) =

—— yi.

Note:

The Lagrange interpolation formula is not very
practical for computations. Its form can be modi-

fied somewhat to make it more tractable,

Consider the special case when all the ¥y = 1.
Then y(x) = 1 for all x, that is

Lo(x) + Ll(x) B Ln(x) =1

ig an identity,

We may now divide the right-hand side of the

Lagrange formula (7) A

n :
yix) =Z'\ Li(x) Ty

i=o
by
n\
(9) 2r L a1
1=0
and defining
3

(10) u; = : :
(x-x;) ZI' (xiwxj)
(i#J)
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we getl,

when we divide numerator and denomiator by

T (X—X_.I) :
J' 3

‘Mti
o

H

o

I_I

il
O

L) y(x) : 3

Tk

B
1
O

This is sometimes
called the "barycentric formula" and is easier to use

than the Lagrange formula. BSee the flow chart (1l).

2eD Newtons general interpolation formula

Newtorfs interpolation formula, which we now develop, is
simply another way of writing the interpolating
golynomial. Tt is useful because the number of points
i)eing used can easily be increased or decreased without
repeating all the computation. Let the polynomial pass-

ing through the n + 1 points (Xi,yi) 37 I=0iydya v »yt. DE

(L2) y(x) :“E’; +,:Xi (X—XO) +r2 (x-xo) (X-—Xl) e e

+/-3‘I'l (x-x,) (x=%p) oo (X=X 5)



ke
It is now desired to determine the coefficients
ri,:'I.:O, l’ 'R ,n

Io =ro

= X
x (o)

Crem o R ey
(1g)8 === * ¥ ’*’K\o Hh, (xox) *bﬂa (epx) (3pmxy)

o

. ( i R JK'O +rl (x,-x,) +{‘B’2‘ (x-x,) (Xn'xl)
- #oeee £ 00 G (pmx) een (%))

n

we can solve (13) for the coefficienté-m_ as follows:

{xo\' = :Yo:

)51' = yi—yo = Z:Xl x|

- O-
X, =X
T

i s : VoY Yi=%, ZTo=X

r yeyoﬁ X, % (%% ) 2 Y0 o Ao e 2
X 0 T2 %0 - Xy—Xq X mX, XomXy
S 2 (xo=x, ) (%% ) = 5
%




o=
rY Y Vi 7-‘
a9l 1.5 %o
i"_‘_" == Xo}/ (XE = XO)

Xy — X 25

[Xg “1]‘["1 XJ
Xa - XO
(% = ]

Finaly we have ;

6 = 7,

K‘l = [Xl Xoj 0 %‘;—i‘g
(14) K; LX2 %, % J [XE Xll LX o:'

[,5 s ] [i X, x5 t;a X x;]

O

*

i

H

¥

L] ° L L] e L]

=

[}c s X} ,_Xn n 1 ---' X;J—[X "'l Xn-z o e 0 XJ
n n “B-l "°° - X
0
=n‘£" {rn are called the divided differences 1lsbt,
2nd, ... , nth orda. It can be shown by induction that

the divided differences.are alweys symmetric functions:

of their.argument.

The divided difference table which lies at the heart of
Newtons interpolation formula may be sometimes more

useful form.
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This calculation of divided differences is best
carried out in tabular form. For n = 3 the scheme

is illustrated in the table below

x|y [Xi xk] [xi X, Xl] E X; X X xm}
5| Yo
J1=J
xi—xz =[Xl X]
ﬁk:x]-—Ec:%J
o L ; zx]é = xi =E2X1X;\l
Jo=¥1 o x‘\ [XB}CEXJ]— lxaxlxc;}
Xo-Xp " 22 1 Xz=X,
=r§5x2xlx 1
%5 | 3o [%5 2]_}5‘2 1] t%anl ! 0]
s
. =[5 ]
372 v
1 R

The divided difference in the top row of this table
(the underlined values are the coefficients in the

following function.

(15) y(x) =¥, +E€lxo] (Z=x.) .+ (XZXIXO] (=% ) (x-x%9) + 4.

+ [ann—l e XO]' .(x-'xoj)(x—xl) x die (X—Xn_l)

See the flow chart (2).
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As a specific example consider the log table:

o +iiel g4 IR SMRET . wE B ([ e

1 0.0000

2 0. 3010 0.3010 006245  +0.01230
3 0.4771 0.1761 ~0.02555

4 0.6021 0.1250

y(x) = o + 0.3010 (x-1) - 0.06245 (x-1) (x-2) + 0.01230
(x-1) (x-2) (x-3)

In particular,

3 1 5 1
7(2.5) = 0.3010. § - 0.06245. %.. Z -0.01230. 5§ . 5 - 3

= 0.,40001

The correct value for log 2.5 is 0.3979

24, Error of the interpolation formula

Given a function y(x), we have been taking n+l points
(xi,yi), i=0,l,...,n and £inding a polynomial Pn(x)
through these points, We then intend to use this
polynomial in place of the original function, and it
is therefore important to examing the gquestion of

how much the function and the polynomial can diffef

at points other than the sample points (where they
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agree within round off error).

A theoretical expression for the difference between the
original function y(x) and the approximating polynomial

p, (%) can be found as follows:
(16) Rn+l(X) = y(x) 2z Pn(x)

consider a point X # Xy i = 0, 1, e 5; notheh

y(x) -5

Iz x = =
o) . X - X
s e 0

[x %] - Txx0)
g

X—X

[X X, Xlxa"] _ ‘X = X-l [Xoxl 21

. . . L] . - . . . . - .

[x%ﬁuxa=[xxx-n mﬂ [%ﬁ'“%ﬁ

X—X

Prom these equations we get:
T, ® Ec xo] (x—xo)
[X XOJ !_-Xoxl]+ Yx X %X (x—-—xl)

[x xoxi] [xoxlxz_l + E}c xoxl"XE] (x—xa)

. . . . . . . . - . . . L] - - . . -

[x X Xy e x‘n_:ﬂ = [Xoxl x;:]+[x Xy +eo x;l(x-xn)

I

y(x)

1
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Put the second equation in the first, the third in

the second a.s.o. we have

y(x) = 3, +[xm Y x) Hx gz x](xx,) (xxg) + .es
+['xoxl T N C DI C D '
+E{ X% oon Ty ] (XX ) ool (X))
(17) y(x) = p (x) +E{ XXy ens xn](x-xo) (xexy) oon (=)

Thus we have:

(18) ~Rﬁ;l(x) (X-xo) (x—xl) e (x—xn). X X X) ees XQ}

1]

Qn+l(x) Sn+l(x)

The error Rn+1 appears as

the product of two polynomials

Q’1:11+IL and Sn+1
where
Qn+l(x) = (x—xo) (x-—xl) lege (}c—xn)

Sm_l(x) = [x X Xq e xn]
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But R l(x) = y(x) - pn(x) vanishes at least n+l times

by Roll theorem )-y(x) - p (x) i 4 3 n 4
Y(X) - pn(x) s ] e Tl
.Y(n)(x)-—PI(ln)(x) M i " one time

At a point\'i in the interval Xg¥p e Xy

-
y(n)(-i) = Pn()) =)

y(n)(‘f) - n! txoxl xﬁ__ﬂ =

or

(19) {Xoxl xn] = _%.i. y(n)('g)

From (18) and (19) we gets

. T
(20) Rn+n(x) = (x—xo)(x-xl) (x—x) J n£+“ i St <X,

Corl)n |2 < ‘)
D ek e e '

L
Rolles Theorem: If f(x) is continuous in the closed
1nterval a(,be and differentiable in the open interval .
a?<x<b, and if f(a) = £(b) = o, it is possible to tind

at least one DOlI’lTJ? inside the interval, such that

i( ) =110 (a(T( b



2.5,

(21)

(22)
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Linear Interpolation

The simplest of all interpolation is the case in which

the interpolating polynomial is linear.

Thus

I,

y:yo-bﬁ (X“XO)

One of the most convenient methods of writing the

linear interpolating function for machine calculat-

ions is given by

yix)i=

DG = 3 ; 2 :
1 =0 T ;
yl Xl'—x -

zi yo(xl—x) - yl(xo—x)} e (xl4xo)';
which is linear in x.

The right hand side of formula (22) is easily evaluated
gsince it 1s the differencelof two products, yo(xl—x)

- yl(xo—x), followed by a division by x;-x, and is

thus accomplished on a calculator without recording any
intermediate

1]
Aitkens Repeated Process

Formula (22) presents a method for linear interpolation
which is convenient for machine calculations. As written
the formula interpqlates in the interval from X, to Xy .
It could also be written in a form to interpolate in

the interval from X, to Xo thus



(28)  y(x)= ';é%r

0 Io X=X
Some distinction in the notation y(x) must be made in
the expressions (22) and (23). To accomplish this in
a logical manner let us order the values for the

independent variable x in the sequence X1 X Xps e 0oy X

We shall always consider the beginning of the interval

for interpolation to be at Xge Then we may write

yll(x) = y€x) in the interval xofto Xq
Yal(x)- = ¥zl ." " " X, to X,
or in general

(24) Fil(X) = ¥x) =zt

)

and (xi,yi). The function yil(x) is a linear functionj

denotes linear interpolation using the values (xo,yo
of x. By changing the interval we can thus build up
a set of values yil(x), (if = 12,505 ,0)s ‘If Jdreap
interpolation is exact these values would all be alike.

On the other hand if the function y = f(x) is not linear,

these values would all differ by some amount.
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(26)

e

Let us list these values together with the difference

X4 =X in the following manner:

X
0

Xq yll(x) X -X
%5 yal(x) Xy—X
X3 yBl(X) X5-X

X yil(x) X.~X

we could then apply the linear interpolation formula to

these entries. Thus
= 7 ¥17 () 2L s
y(x = o ki

Y51 (%) X=X

It is clear that ygg(x) satisfies all the criteria for

a second degree interpolating polynomial. The process

may be applied to the intaval from X to X; 80 that 1o

general we may write
71160 il

il
Yio(®) = $=x
31 (%) ¥

We may now compute a set of values, yiz(x), B EE L e e

and form the table

2 11,
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(28)

=D

X,  Tpp®) Xp=%
X3 y32(x) Xz=X
X Yio(x) S e

Again applying the linear interpdlation formula

we could obtain.
| Yoo (x) Xp-X

735 = £
Fialx) - X=X .

which yields a third interpolating polynomial. The
Process can be repeated until all of the 'entries

of the original table of values have been consumed.

It is easily seen that the general formula is given.

by
yk-l,k—l(x> Xpe_1™%

(x) = e
Tix Xy = Xy g

yi,k—l(x) o S <

in which k denotes the number of times linear inter-
polation has been applied and also the degree of the
polynomial. The subscript i assumes the values

k, k+1, ..., n. The process is know as .

K ]
Aitkens method or, more appropriately, as Aitkens

Repeated Process. It is a very useful process since
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the calculations are easily performed on a calculating

machine, and furthermore, it providesifts own criterion

of when the process has been carried for enough. The

work should be arranged as shown below.

Xo YO xo—x
xl :Yl yll(x) s ‘ Xl—X
X b Tor(2)  7,0(x) ' EoRE

S B, 218 Jel il e

‘ p)
Computational Form for Aitkens Process.

AInverse Interpolation

This subject matter deals with the process of finding
the value of the argument corresponding to a given wvalue
of the function which is between two tabulated values.
An easy method of doing inverse interpolation is Aitkens
Repeated Process applied to data after interchanging the
roles of the dependent and independent variables,

Furthermore:
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e

spEe

Lagranges formula adapts itself very nicely %o

inverse interpolation since formula (6)
y(x) = L (x) 7o + Ly(x) Jp + o0 + T (D ey,

is simply a relation between two variables, either of
which may be considered the independent variable. Thus,

we can write x as a function of y:

x(y) = L,(3) %, + Dy(3)xpte.. + L(y) =y
Normally, the values of I3 will be unequally spaced and
the method just described must ingeneral be employed.

Furthermore,it will be more difficult to find a linear

transformation which will reduce the size of the numbers.

S Sgeéial Interpolation formulas

. Interpolation formulas for

equidistant function values.

"Newtonts formula for Interpolation

Very often our information about a function is given at
a set of equally spaced values of x: X;,1"%4 = h
(i =0, 1, eoo , n-1) . This simplifies much of the

notation and computation as well as the ideas involved.

For equally spaced data it is customary to use the operatorﬂx

such that



ey

(30) AVp = Ty ol

o ~r =, _»x
,KO J».l ..{2 XB

This is the familiar notation of the difference

calculus except that we have fixed Ax = h (the interval= -

. length) in all times:

Ax, = X — X =0

We also have
2 = Ay - = -2 +
A T n+l Ayn = Int2 In+l In

, AP 22 2
(31) A3 In “AVns1 ~ AV
)
» X K—l y
N T S F Inel ~ A h
These differences are related to the divided

differences (14) as follows:

OQ
I
e
o

Tl

>
l_l
|
|
b4
]._l
e
(@)
==
i
M
}_’[
M

h
_L—X2Xll % [Xlxo] = Ayl i A:yo zfyo
X

N, =[xxx7 =
2 [ 2 0] X, - X, 21’12 : 2!1’12
1 - T :
(32) /)' 5 = [X5X2X1X0J= [ X3X2xl] [X2X1Xo — A 1 Ayd
3 ) 3
E A YQ
: 3100
: p
2! = AT,
/)/y = CX X b erate XlXO] = oo



(33)

(34)

(35)

SoBl.

From (32) and (19) we get:

) (W
AY
'1:792 yﬁ)

Newtons formula in this new notation for equidistant

function ¢

e
y ;
vix) = YO:*'éafa (X%XO)‘+ 5;;% (x—xo) (X—Xl) e whia

+ & Yo

n

nth n-1)

(X—xo) (x—?l) voo (X=X

See the flow chart (3).

If we suppose that x = 0, We get
2. 3
y(x) =7+ X+ —=—m-' X (x=h)+ S22 x(x~h)(x-2h)+...
0 h 211 *?ﬂgg

and if we further assume h = 1 we have '

2 3
b g I
y(x) =5, +Ayo X +‘%!—9 x (x-1) +A-5-T-9——-x (x-1)(x-2) + ...

The work should be arranged as follows:

i
X B AT R A3 y AT
%o I G
lkyo é
b I AT,
ﬁ!yl ‘Asyo
= 7e Aayl A4yc
AT 3 :
A2 5 :
A Y3 : : :
201 Ty : :
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o

Diss Gregory—-Newtons Interpolation formula

(36)

Since the values x; (i = 8,7, Jo Hin) apeschogen
at equidistant values we have x; - X, = iHal, - mil R i
«e. , Nn), where h is the interval length, x. ILet us

now make a transformation on the variable x by letting

X = X
Ta= 0

h

and note That

X-X o ih =
i X: (X0+1h3 5 X=X g L R e
il e = S

for i = 1, «.o 4 D—-1. IT is also seen that each term
of formula (%.3) contains an h in the denominator for
gach pafenthetical expression (x—xi) so that by (36)

we have from (33):

o)

‘ : t 2 %" 3 t n
| 5 n

where ('F)Fis the binomial coefficient sysmbol.
i (see the ©liow chart (4).

This is Newtons Forward Interpolation Formula. It is
called the forward interpolation formula since it utilizes
T and higher-order differences of Vs Consequently, it
is used when it is desired to find values of y at the
begining o6f a table. [If we make a transformation on the

variable x be letting



—pe

E7%
so that .
X - X, x - (x_ - ih)
n L = nl’l- = T+ 1
-n -0+l =1 @ %
t d— ; -4 R
*o X1X2_ ey =

then we have :

GNIT t+1 2 ; t+n-1 -
(39) oy = T+ BV 5 Vi T + - NV Y

where the operator{y is defined such thatb:

E vyl = yl_yo ’ vyz = ye—yl, =%

2 2
v ;Y2= V;}Ta‘vyl’ \V/ .')75 =VY2 _Vyly-°

I V7 v
¥,,= V? —‘, 5
k k Fig=1-

This is Newtons Backward Interpolation Formula, The formula
is used when it is decired to f£ind values of the function

near the end of a table.
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The work should be @rranged as follows:

x ¥ gy <y v’y 'y
XO 37'0
\"R4]
2
X T v 72
3 3
V2 V73
=5 I 2 4
J I3 9 Y4
V73 3 o
X ¥ Vg
3 3 2 VvV 4
Y T4 i
VT, vos
T Iy B

2
2l

It is clear that q2y3

y ] y
and in general VI = VY Tk

3.5 Gausg Interpolation formulas

Central Difference Schema

We define the Operator S such that:
Sy% = yl o yo ? Q‘;y%y; = yz = yl y ® o 00

§2 =Sy -5‘ SE —g _§
yl = % y‘yz ’ y2 = '.5'5_/2 Y% s erele

5 v=1

V-



We can prove that:

v y
(#0) 37, =V Ty

=20~

Y
=4 T-V/2 .

Instead of x we can use the variable t such thatb:

X~X,
t - o e 0 ""‘2 """l o 1 2 e e 0 At = l, t"_‘T‘
; =2 =1 .6 Tl 2 %
G = + A X =
X, X, X, ¥ Xz :
or
t = R ""‘2 ""'l ’ o] l 2 - t == 1
S x5 X X, X % cee X=h
-2 -1 o) 1% 2 &
G II } ; e A~ Xn-
Xz X X, X, Xy
From (40) and the Newton formula (33)
we get the following Gauss - forumaes:
i . b+1 o1
41 ) = Covecel o) Nogs ok Do bt Fo 4
(41} ¥( —yo+l 5 *\, SN e Yo

t+2

>

5

)

% y% + o0
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Gl

t+1 A+l +2
G2y L g(s) =3, + Y.Y_%_ & )%2yo +( )Say_% + )

1 2 3 4
m t+2

NEy §5y_% + oo
5

For the calculations the following scheme is more convenient:

t Ty S %y § %y Sty
L 3
. . _ G II|
o [0 L e |
0 e /D’ < /O\* G I
0\\\‘\“9' .\\\\\““@ i
T .
2 L]

It is advisable for the practical calculation to use

the following Everett-Laplace formula.

3.4. Everett-Laplace formula

From (41) we haves



(43)

n
Put s =1~% and
t [t+1 s+l
tawEw
T+l e s+2
4 > 5

then we get Everett-Laplace formula:

'S+1 AJS+2 4
y(t) = sy, + Ey + 53y0+

X

t+l
+ ty, + t+2
(5 [F)e




iy

For the calculation it is suitable to use the followirg
scheme.:
t s y Sy ey §%y $*y
-1 . . ‘
0 1L ® : & : & }E(s)‘
1 o 2 ‘ 0 ' s, | E(t)
2 ’ .
5.5 Remarks on the formulas
1) How do the different formulas compare with each

other and will the Lagrange formula found carbier?
the value obtained in an interpolation depends on
the polynomial used, and the polynomial depends on

the sample points used. The error term has the form

(n+| )
(x=x ) (2% ) (2-%5)  oe0 (xx) ot (f)

(n+1)!

The coefficient of the derivative is minimized when
x is in the middle of the range of samples. Thus there
is a tendency to use an even number of samples when
the interpolation point is in The middle of an interval

and an odd number when It is near a sample point ..
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2) A large number of formulas which appear to be different
are shown by Lozenge [5]) that they are really all the

Same.
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4, Flow Charts

4.1 Flow Chart for the lagrange-Method of

Interpolation
n
2 Wy ¥
4= 171 1.
e - et ’ L ol
n (X"Xi)]T- (Xi—Xj)
uy J=0
=0 J#o
!_quad Xi,yi,i:O,l,.. . ,Ilv]
Iy —-&'.y’j‘:'_,if—-r?,l,...i‘,n ‘
i * A v
Read x i > B
& ' y
O
0 —>UX u+B —>u
o —=1 luy+By1—}uy|
i A
0 — ] | 141 —5-3 |
,yes
lx—-x —>= A '¢—‘ 1= <m? )
n? 9)—-& LA
(: Jd £ ¢ = —y
yes -&
: 3 Y ; “ Z
(=142 =5— 3+l —=J || | print x,y
, - J yes
Yes P SE—en’ ) " Be®¥ x.1is
i = given 7 )#
e y
' ‘A(Xi—X‘.) —> A l eop
G+l —- j!
] - Flow Chart (1)
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Test for the Flow Chart (1)
ait B — é

s md

AR W W AN RS
I

i
2

(X“Xl) (Xl_XO) (Xl“xa) (Xl;xa)
(:X-"X2> (Xa_xo) (Xa"'xl) (XE— 3)
(x-x5) (xz-%,) (xg=x7) (x5=x,)

1/ (z=x,) (xp=xp) (2,=xp) (x,x3)]
1/ ~(x—xl) (Xl—XO) (-:cl—xa) (lex;)g
1/ {(xmxp) (mpmx) (2p=x7) (%p-%5) 2
1/ 3 (==x3) (x5~x) (xz-x1) (Xz=%5))

o+ 1/} (x—-xo) (KO"XI) (XO—Xa) (XO-sz)i
A {(X-—Xl) (xy=x) (x-%,) (Xl_xi) ?
1/ § (x=xp) (xp=x,) (Fp=%p) (%= 5)'}
1/ E (x-X3) (3’_3—:{0) (Xﬁ"xl) (xj—xa)?.

+ 4+ + +

Fot {(X—Xoj (x,=xq) (x,-%5) (XO—:«:B)?
v/ {CGemm) (xpmx) (mp-xp) (%= 5) |
Vo / {(z=55) (x5-x,) (xy=x7) (Xa-x5)f
5’5/ l(X—XB) (XB—ZKO) (Xﬁ-xl) (xa- 2)f

+ + + +

(x—-xl) (x—xz) (X-—XSJ

= - Io
: (xo"'"fcl) . (%‘_o'_'xa). &-%9"35)

£ (x=x]) (x-x5) (x—x3) ¥y
(xy—x,) (%;-x5) (fcl--xz,)

& (x—xo) (X—Xl ) Ex-—.&a) : Y,
(:;2»:;:0} (Zo=%y s (Ky=iz)

+ (x=x ) (x=%7) (X-Xgl v3
i (= ) (XT“X-:) (Xz"xr))
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4.2 Flow Chart for

Newtons‘general Interpolation formula -

y(x) =77, '*‘51 {:X—XO-) +’D’2 (waoj}(x—xl) + eee + fn(X-XO)(”X'Xl) ...(x—xn_l)

where 0 = yé . ‘flz [Xlxo] : ’ﬁg = )_3{2?&'1}(0], el =Ecnxn—lxn—2 e xo]

éRead ;cigyi,izo,l,,“.n
= v
yl o yi,i:ogl,o..n
_ y=< A
Read X
1 e P
i e = T T R )
= \!I W Yeo
ES
n — n y + yo I _.—y-y |_,,_
v N
g e A ktl ——>» k
¢ v
e e oS o} —_— i
= e n-1 — %t |
! T
4l —’?‘ F J CJ :Tn? }
\l{f Sl J o CAR
F f:X—Xj) s 0 Print =x,y J
e el ' ( new x 1is given ?ﬁ_
o it e
b B - , Stop R
Limkr it - T ‘__,_J
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Pest for the Flow Chart (2)

n=3
il g 2 il
k g 4 2
il ) Y2 2 gk & ol
J i i4 Z 3
F 1(x=x_) (X—xl) (x-—xa)
¥
X J
- ON 1o =leo]
=15 \E{axl]{}-cl —~X;‘ = EXlX 0-]
Xy—X, % xaxlxo]
k
8 SR |
wn Pl L e
5=X e Xz%y] = X% )= 65 2}:3]
Xz=%)
X
? %{ :E{j}e{a
Xa
75 3

Tt Eclxca (x=x, )+ Ecaxlx o-}(x"x o) (x=x )+Ec3x2xlx o.‘(x—xo) (x-x7) (x-—xz)
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Flow Chart for

Newtons'! Interpolution formula for

equidistant function

A, g .
= e o \ y = el e o
y(x) = Feites (x X,/ ot -A 0 (x xo)(x xl) + . +
2!112
+ Eyo :
] X-X X=X ¢« o0 X=X
T ( O)( 1/ =i n—l)
Read Xo,h,yi,izo,. v T
| i S
yi .%")Ti 9 :L::O,l,.. .,Il
l;{ P g = y
e ‘ H—
Read X yl yi—l 'ylﬂl
Y I :
- N2 :
e M e (i)
v . yes =
X : ¥k
0 o y+yoF/hok{_fTT"y
i ' ;L |
o —> 1 (:j =ty Lﬁ
{ e
0o —> Print x,y
N7
es -
1 —>k Hnew x is given )
v ) '
1 —>F s Steptin
AR e A S = i
= e = k.
F(x-—-xj) —> F k+1 —>k
v T
S S e b ) e 0O —>i
et N _ iT
S S s P
B i

T e g bt G
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Test for the Flow Chart (3)

=35
n* 3 2 1
i g X £ 3 ] AR g a
J # )4 Z 3
|k X 2 5
.%' 1 (x-xo) (x—xl) (X_XE)
=y
XO JO
T o2
y AN
Ve O‘ﬂ"\ﬁyo
Xy Iy
\AY
T~ a2
Ayl
X :_';7"!é
2 2
w\1\3’2
= I3
T |yt Ay (x—x,)/b+ A, (x—xc,)(x—xl)-fzyo‘(x—xo)(x-xl)(x-xe)
?E! ']:53!
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4e4.Flow ~ C€hart for Gregory-Newbons'

Interpolation formula for equidistant function — -

t v t t
($) = Yo +(1}Ayo +(2 )Aeyo 3 (3)A3 gy, ot +(n)dny0
wWhere + = X;XO

I_Ee:ad Xo,h,yi,izo, es ey

yi “"')—yi,i=0’_:l-, ...,n
o]
Read x i
¥
X-X
T > %
Voo s o
v n
n "'——>le
i A
0 =313 k4l ——p I
0 = o —-9-—1 \
J ‘P . || yes
e n-1 —>3= n* Cnue x is given?_)lf
v Y Yes s
1 —>-F C = j%" Print x,¥
.3 Lﬁ > ikt i =
r F(t=j) —> F J +7¥, F/k! ‘ ~ Stop
I K ST &
no — =
J+l ————j F—C i = n*? _) ™
e O R )
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Test for the Flow Chart (4)

| o 3 z
. ] 1 Sl ge 1 Z
J g ¢ Z
k ¥ p.
F i (t=1) (t=2)
4 5
Ao < _ 2
To
s el L3 A3 Jo
il J1
Y\ Ayl& 2
¢ A J1
*2 I
, AN
ATz
x -
3 T3
y
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