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ls Introduction.

This second exploration in the field of regression will add one
or more dimensions to our range of vision,-For in practice it will not be
possible in-general to explain one phenomenon simply by one other
phenomenon , Due to the intricate Pattersi of Our community - often
many @xplanatory variables. are necessary to provide an insight - 'in the
development of another variable ; ' Thuas the consumption .of -
limonade by a~person can be explained by his income, Often this is not
anough nagd the iprice’ of l1imonadé has to be taken into account; If
this persdh is living in a country with strongly fluctuating temperatures,
we may expect an‘influence from the scope of the temﬁerature on the consum-
ption of limonade, In this way it will be possible to show even more fac=

tors playing a role in the explanation of this man's consumption,.

If we are convinced that a causal relation exists, it will be desirable to
draw a scatter in order to obtain an idea about the extent of the relation.
Howevery, practical objections limit us in the execution of our task, After
that, we have to specify the relation by use of the available mathematical
techniques, See Section 2.Because we have more than one explanatory varia-
ble here, this is called multiple regression, The techniques will be out-
lined in Section 3., This section will also give formulae to show the fit of
the relation, Not only the resulting regreséion coefficients, but also the
values of the "variables give us an:indication,of the importance of the
several explanatory variables, With the help of a so=called regression chart

this will be demonstrated in section 4,
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The use of matrix notation in regression analysis is widespread . An

introduction to it will be given in the Appendix.

2o Preparatory work for the multiple regressign, /

2.1, The scatter diagram: , ,ﬁ

Our first care in the estimation of a relation between more
than two variables will be similar to the simple regression case. It leads
.8 to the determination of the variables playing a role in the economic
process under hand, After .onsidering the éependent variable. we enter the
oy ‘

second step of our ];»ro'c:(—zdu.I i~1.0., drawing a scatter diagram,

* In the introduc?ion we alread&'pogaiii‘to the fact that prac-
tical considerations limitfour-possibilities herey-Simple. regression pre-
sented to us a scitter diagram,in a two dimensional space, Adding one
dependent variable™to_the relation brings us to the sfimplest case of mul-

: : e ; ; : ;
tiple regression,| The thre?~d1men510na1 scatter diagrpm can be shown in a

box. A sketch is Bhown in !figrmf?\mﬁhﬁmx\\
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Two explanatory variables ( x; and X, ) are shown in a horizontal space.
The dependent variable (z) in reality gives the scatter its three-dimen-
sional shape, The dotted lines show the intersecting-lines of the plane
through the points of the scatter with the walls of the box.

- Then our possibilities are exhausted. We have no physical means
of expressing a scatter in four or even more dimensions. Also it is not

poss.i.lzs to draw a scatter. between x_ and y only, because the result will

1
generally be disturbed by the influence of the remaining explanatory

variable X, .- This will be even worse with more than two explanatory

variab? ..o

After the estimation of the regression coefficients of the re-

lation there are some ways tc research the influence of each explanatory

variable and the linearity of the relgﬁ}gpmwﬁgigﬂLsmgggygmégmsection 4;

e
T

2+2 . The Matheméjicai”fnrm of the velation:

" In part’ I we discovered the complexity of the problem to fix the
nathematical form of the relation., The numerous possibilities did not allow

us to give a complete picture. The explanation of the consumption of food
illustrated the method to be followed.

Sometimes an explanatory variablé‘has to be included in the postylated relation
not only in its linear form, but also as a square. This serves to account

for a non-linearity in the relation., The easiest exampie is a quadratic

relation in. two variables:

¥y=a+bx+ c-xa
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In the computations of the regression coefficients as shown below

this relation is interpreted as:

Y= a-+ bxl + X,

i.eey a relation in two explanatory variables xl and x2 s where xl =X

and % = # o For the mathematical handling it makes no difference if we

=

work :ith the square of an economic variable!

185 of multiple .regressiong

3els The gstimation of the multiple regression coefficient:

In order to be able to find values for the regression coeffie
cients we need n observations for each of the explanatory variables and

the same condition goes for the dependent variable,

To estimate the regression coefficienﬁs-for the x and y values we use the
same principle of least squares as we used in Part @,,section 4, The postu-

lated relation is written as.
¥y o= a +-bl X, + bzzx2 + o0o0e + bk Xy

In general this relation will not suit for all values of x and y, Therefore

we should write,

ma+b X +b X + oee + bk Kok W

Y
i G K R B jed S
where x!ji is the i~th observation of the j-th explanatory variable and v;

is the disturbance of the i-th-, observation. The subscript i goes, from 1
to n.Accqrding to the principle of least squares we should minimize the
sum of squares of all disturbances, This sum is'written as, =
i . : BALLIN 5
Vs = syl e Rie bR e e g e
d = it AR SR kaki)

il iml
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According to our principle this function of a and by «.. by should be
minimized with respect to a and b1 voo Dy o The partial derivative with

respect +n a is

Q)(V )

o B s e A ass - - - " ed e T ‘)

® ,i (3, = a=Dby X, =byXym ees = by Xy
o A-

ve obbtein a minimum by equalizing this form to 2610,

0s=-22 (y-a=D X3 ~Pakyymee = by Hy)
1wl

Diw’ _..ng the relation by - 2n, implies

a
L

";y"'b Xl‘“bg X2— °0e "'1i<~ }Ck

Where y r & PR i :
L P9 eee X re the 5 SR Sl i
2 k a averages of ¥; xligx2i’ oo xki +« This

means we can compute a similar to the method used for simple regression.

S0, when all values for b are estimated, we have a simple formula to
compute a, Further it shows thait the least square plane goes through the
point of avarages., To simplify our argument we shall estimate the values
* b using a relation with two explanatory variables only, Nowi v2

is equal too

Eo e ' 2
T ovim FE (y, ~a=bx ~-b z.)
i=1

i Al 2l

Differentiating this relation with respect to bl gives

(g v2) ‘ -
Mw_mjg;jb;m.z I ﬁi: X1y ( CRE T T, O R T e [ e

N by 121 i Tl 2 .21
When we substitute our relation for a in the last relation we see

n -
gx..[a'nmyub-(x-_-_ﬁ - b -“]
e 11 i 5. 12 18 5 (xzi x2)
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We may substitute Yi S Y om Ty Xyg m 27 = gi end xai r;‘"“xgj_”'j"; ST Phee

gives: ‘ A
’El 2 § Y, = byX 4= by Koy g - 0,

n - n ‘ n ; 5
3 SRS T S et L 0X e £ X w0
je1 11 1 li-il 1a ]y 25 14 21

In lart I we saw thatixlyican be written as=E Xiyi; Applying this here;

and writing part of the relation on the left hand side gives:

n n n
= Ky mbE Xy rb, T Ky, Xy
i=1 j=l j=1

The same procedure..can be followed for the differentiation «;‘!th:-.respect

e

to b2 e This gives,

n n 2
ﬁ Xp4¥3 = blifl X135 Xp5 + by X3y
= : -

We can now extend our argument for the relation with k explanatory varia=-

bles, This gives us a set of k equations; written as:

; : 2 2 L
= Xy¥p = by Kpy + DXy Ky 4 ees + DKy Xy

_ % _
- - X : .
Tog¥g 2 D1y Ty * Dy Xy, + oo+ BEL,y Xy
.j.
G o 2
v E X y =b=X X +b=X X +..+b=EX
Pl e O i koo ki

We can simplify the notation by omitting the subscript i, because it
appears in every part of the system. The k equations above are called the

k. normal equations; They are linear in b and these values can be solved
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after computingﬂ% + S X1Xop eee andi}(? . When we make use of matrix

notation the computations are nighly facilitated. The linear equation

= + e ;oo +
YiZa iRy B %

is called the multiple regr3551on equation, b 19 *° q& are called the par-—
tial regression coefflclento

Seme special cases can now be dlstlngulshed . When. k = 1 the system has

only ~ne equation and the remaing coefficient (bl) is the simple regression

coefficiente. Sometimes all cross products are equal to zerod
Thic~ .educes the normal equations to3
iXY;b{XE -ix Bl £x2: etcl.
1 o A foags) 2 29

- The first statement means, that we have no correlation between the
explanatory varlablesl).The second statement means that..the values for

b1 s bkobtained here are the same as the values of_bl... bk estimated by

consecutive. stmple: regression of y with all explanatory variables sepa-—
rately.
When we obtained the formulas for the simple regre551on coefficients a and
b, we started by taking the value for.a equal to zero. This can be done .
with multiple regression as well. It will be clear, we have to replace the
values in deviations by the.values in absolute termse. E.g. the first of the
normal equations, takes the. forms i :

= X¥= b1£x1+ boEX) Xp + eee * bhf Xy Xy e

So, the difference between the formulas is analogous to the difference
existing in the case of simple regression.
The. last method can also be used, when we have a multiple regression with a

1) E.g. the sunm 15:;X1X2 is the nominator of the simple correlation coeffi--

cient of a regression between xl and x2 .
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constant term a;é © . Therefore we writ®. a z b xO{; where boaa and xoi=1

for i = 1 . n, Then the general relation is written as?/

b b s kb 3 ;
LIRS A By s R B S TRV
We have replaced our constant term by an extra variable, which is advanta-
geous, because the computations will not be in deviations nowe. On the other

hind one extra normal equation has been added to the system;

3e2 The multiple correlation coefficient:

Anologous to the simple correlation coefficient we have to define
a coefficient which gives us any idea about the fit of the relation. We

define the actual value for Y1 ase

J ma+thx + .00 4%D X ‘+V
1 11 keiey i

Further, the regression value for y is equal to:
i L
= 3+ b + ° b, x
£ pers et b B By
Using the same notatlon as in the precedlng section we may write

@ s b, 4K+ aab X

The multiple correlation coefficient is defined as..

" -ﬁ.Yl Yl

Q 25!1152?1

In words: The multiple correlation coefficient is equal to the simple corre=
lation coefficient between the actual value of the dependent variable and , /

the regression value of the dependent variable

To obtain upper and lower limits for the value of R it is necessary- to
simplify this formula, For this purpose we use the normal equations. They

can be developed as follows:
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n n o n
bm = X 0w b = L aaE e S s &
x N Eeal s 1i i 140kl
iml im] i=m]l
:2 X -bx “ooao"bx
1 ( Y£ .2 k ki )

The mifst two relatlions of this gestion show us that Yion §i='vi_a‘Furthe?
we can easily prove §'= § . Substituting both results in our relation
gives ;@ﬂ Xli Vim0 This shows that the first dependent variable is not
cor:eiated with the disturbances, This can be proved for all'dependent
variables using the remaining normal equations as a starting point. I}
follows that no correlation exists between the disturbances and all depen-

dent variszhles, Thig result #an be used to substitute it in the nominator
of the corralation coefficient:

=y e (D T
1 i 3 Gl

n Az n A
g -, Lyt = ATy
4l T e ], i

The last part of this relation is equal to. zero. This is proved as follows.

Nt e e GO Ry R e e B B
by X bz Ay T 0
BT SgTym SE AT kool S

Combining this with the preceding result shows us.,
e - ap
"iY}_Y]_ :£Yl
As the nominator of the correlation coefficient imalwaye greater than or equal

to zero, the same goes for the correlation coefficient itself{%he nominator
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is a sum of equares,i.e.always 2> o; the denominator is. the gquare root

of two sums of squares mult{plied with each other, i.e;, always ;BID).
“An upperlimit for the corf-elétion coefficient can be found along the same
lines as performedin part I for the simple correlation coefficienteSo write

the variance of the disturbances as,.

i

S =1l < (Y, ~% ) ";;ivi

AT

ln ~ 5
"‘%(‘i i

Lokt | .
ex= ¥ -13F v
jel1 12 o - 1id

2 .. -
Also, the formula for R can be changed by substituting iyiy = éif .

i
This gives , 2 2 ~
£ SEHIO%. w0y

And 1 = R2 is equal to 12
AT : ,
1=R - i "Yf - 23["5-;!’.1
oot 2
2y : 2 !f

Gombining this result with the formula of S% we can write
v

: r 5 ‘-\2
= (1-R")S
( ) L

or .--.-.1--R"2

v | wn
f-::m!<:m-=:m

: AL 2’ ; o j
Again the highest value for R to be obtained here is R w 1, with Sv =0
Combining both upper and lower limit for R gives.

IR =<
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Are there reasons to consider a regression as giving a good or moderate
fit in certain cases, It is very difficult to give a definite answer to
this question, Each case has to be considered on its own merit. Some
indication can be giveno‘if we have a macro economic study based on time
series R = 058 is a lqﬁ value., A value R » 0,95 is no exceptlon here, If
we estimale Engel ;urvéé of the consumption of families, using households
budget material, R'j?6,7 in a very good result, It is not exceptional hers
_o obtain a value R<L,0,5,

Another point which has to be taken into censideration ié the level of
ageragation applied to the goods or groups. In general the correlation

ar _iicient will show a larger value according as we have a more pronoun-
ced aggregation. E.g. this accounts for the difference found in the estima-
tion of Englecurves for families and the estimation of macro economic

function;

3.% The Partial correlation coefficient

In the last section we outlined the coefficient Re This gives

ug an impression of the over-sll correlation between the dependent variable
and the explanatory variables, If we limit ourselves to the three-variable
case, a high multiple correlation coefficient does not necessarily mean a
clear association between y and %y This net asscgiation may merely be due
to the common influence of Xy ON theme The partial correlation coefficient
between g and ﬁl tries to remove the influence of xa from each of the other
two variables, The mathematical procedure is the followings

We take the linear regressions of ‘y on &l§nd Xq on ?1 o This gives the

systeme

o R .
Iy = al + oy X 29 ¥ Uy

_‘h
)
i
w
+
-
=
n
H
mn
te
&
=
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In the subscripts of b, the first variable indicates the variable on the
left«hand side of the equation, the éecond indicates the variable to which
it is attached. This system can easily be wr;tten in deviations, At the
same time we write the disturbances on the left=hand side., This gives

= b X

u EaY 02

g i 2i

Wi o3 By = bis Xy

The partial correlation coefficient is defined as the correlation between
the unexplained residuals that remain, after removing the influence of Xa .
This means the partial correlation coefficient between ¥ and xl is equal

to .

:EE.ui v,

F01.2 =

\)& ugzw f

In the subscript of r, the figures before the point denote the variables
between which correlation.ls take&) The subscript after the: pointrdsnotes
the variables which is kept canstanto It is possible to substitute S /

52 2 in this relation (see Part I,p.25), This results int

S . 8l er

y

= (¥ = by X5p) (Xyy = by Xy )

roi;é__=

2 7 2 2
Ve (1-2 5,228 (1-:2)

1) The subscript o refers to y.
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Where r o Teans the simple correlation coefficient of y on X5 0 We can

=4

write the nominator of this ccefficient in full:

2
T Y, Ky = by = Xy Xy = Big= Yy Ky + Bgp Dy R¥py

Ol.2 =

2 2 2 2
ini o(l"“roa)oixlio(lnlla)

o'

of the simple regrP%sion can be rearranged as follows,

= o0 o] ‘!it x,; S,
1 = r
EEX§ VF‘”“E“' u"_' Sy

Substituting this in the coefficient r 12,3 givess
ehim @

The coefficient

S Sy Sildhaiip
- -, OB
=F0 a2 sgxlj. foim Tia 5 “EY; Fpy * Top Frp o2 a1
Yo1.2 & d 2 : 9y

N=+v2 N[Esenoun . B G e P

3 11 02

l'his can be changed intos

20 S 5.8
P P ‘ S TR W pasS S ¥ x
r 011% “riFoagteun 8y 8. 8 G 5 02"y “x; Toz" 125t nS,
01.2 Xé P i 3 2 =2 2
(] ( -
Bl Sxav (LiniEgs ) e 12 )
Hence Vo .
. i % Sy_sxl LE ras 552 )
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Thus r® 1 ro 2 rla
T =

0102 w 2 w 2

1 ¥ roa 1l = rla

Similarly we can develop the partial correlation coefficient between ¥ and

ind x, and X, « This gives the following farmulae,

*29 1 2
4 koA e TD ] o
;61 s S y 3
: 2 2
l e To1 l - ro
and rl2 - T
¥12,0 = ortoz
2 2
\[ l = rOl \[1 s r02

Without proof we present another formulation of the partial correlation.

coefficient, This will help us in understanding its meaning, We find

2 2 2 2 2
2 S LR e ) R = r
r01‘2= y 02 i " 02

2 2 : 2

Sy Gali=ipiaiy, 1 - r,

Now the denominator S2 (1= rgz ) shows us the variation in Y unexplained

by xa(see above), In the same may it applies to the multiple correlation
= R2 is the variation in ¥y explained by X and X5

2

coefficients, i.ee, Sy
Combining the two last statements gives us that S?r (. R rga ) is the
increase in the explained variation in y due to Xpe From this we derive
that the partial correlation coefficient between y and X, measures the
proportion of the variation in y unaccounted for by Xo9 that has been

explained by the addition of a2 varishle Yye
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In the same way the partial correlation cofficient between y and x, can be

formulated as,

2 A
r2 f R bncd rol
= 4
020 1 2 ; 4/‘-
1l = o1 5

4, aibernative geometrical representations,

4.1, The partial Scatter diagram,

As we have seén in Section 2 it is generally not possible to draw
a scatter diagram when we have more than two explaratory variables in our
regression, We can partially overcome this difficulty by drawing so-called
partial scatter-diagrams;
After computing the regression coefficients and the constant term a; we
can arbitrarily choose one of the exﬁlanatory variables, e.g; X1 ; and
-correct the dependent variable for all the remaining explanatory variables,
After correction the dependent variable is equal to

y -“Eaxz ~ se00s = bk xk

According to the general equation for the multiple regression, this form

is linear dependent on xj3j
Y= b2x2”‘ soc0e ™ bk ng a + blxl
As this is a simple regression, we can construct a scattemdiagram. We have

% on the horizontal ax and the corresponding " dependent™ variable
y - bax - ;; bx ) on the vertical ax. This enables us to discover if this

relation approximates a straight linel), This diagram is called a partial

scatterdiagram.2) We can deal with the remaining dependent variables

I- Due to the disturbances, not all of our observations will generally
be on the straight line,

2~ This diagram is called partial as we use only One e;planatory:varééble,
while the dependent variable is corrected for the other explanatory .

variable.
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analogously. Altogether, this gifes us k pertial scatterdiagrams,. one for
each dependent variable, The aim of thls procedure, is to find a llnear.
relation in all cases. If we find a curved l;ne in one of the scatters,

we have to- revise the - functlonal relation, E,g,, if the partial dlagram
for X, shows’ us, that x% rather than X, may give a good approximation of a
straightline in the _partial scatter diagrams, we 1ntroduce x% in thefmul—
_tiple regreeelon-lnstead of . xl.and repeat the caICulatlonS for all the -
multi;y e regression coefflclentso After doing so, we draw the partlal sca-

tter diagram for the new relation and correct p0551bleurema1n1ng deﬁects.

4,2, Regression Charts,

Iﬁ'many occasions, the observations are in the form of time
~series, In that case the index i relates to years, months etc; Then the

regresgion can be illustrated with the use of regression charts; On the

horizantal, ax we present time3~en the vertical ax the dependent variable
is shown. The observations are plotted successively and coneected with
;each other. This gives us the value of the dependent variable 1n the -
course of time, Further we do the same for ¥, the - regre551on value of the
dependent variable, Then values are connected with a dotted llne. Compa-
ring the dotted line with the line representing ¥, glves us an indea
‘about, the fit of the relation over time.. In successive panels after the
1rst, we present the numerlcal value of each explanatory variable multi-
piied by its réspective c efflclent In this manner we obtain a picture
of the contribution of each 1ndependent variable _to the. explanatlon
of " “the dependent varlable e~ In-.the - bottom panel we present the
: reeiduals ), As we mentioned above, these can also be ascertained from
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the top panel showing the regression and cbserved values of the dependent
variable,

This idea will be illustrated by an example taken from,LoR; Klein and A.S.
Goldberger: An Eccnometric Model of the United States 1929-1952, In this
economic research the avthors present a model for the United States . In
Chapter IV we find regression charts for each of the estimated relations.,
Tor our example we chose the labor Market Adjustment Equation, This equa-
tisn explains the increass in the incex of hourly wages ( Wy “Wt+l)o The
unemployment in number of persons (N, ) played a very important role during
that time of recession. For that reason N, was introduced as an explanatory
variable., Generally, workers will bargain for a wage increase, because

thie general price level increased, To show the lag in wages and price level
(pt_l 2400 5 ) was used as an explanator

7 variable (p, « priceint’) As we

1
lived in a time of general in inflation, momey wage rates showed a general
re

=

upward trend. This resulted in the introduction of a trend factor ()4

g

After estimation, the equation took the fellicwing forme.

SN 13 Bl el R ;
t fel u B o e

Fig. 2 Regression Chart
of the Labor Market Ad-—
justment Equation.

: i ot B
10 1 p g i ! -"-" --I E\_._-“.“ /\
O'Kﬁ‘/ﬁ\//x\’/h\\\}+f4 | S x{
e |

=‘}.0 At e e e et 1ty
el

I". R S RS T [eralligpat]

1929 1934 1939 1941 1946 1952
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Figure 2 shows us time on the horizontal ax. Due to the exceptional circume
stances during that period, observations for 1942-1946 were not included
in the computations. Thus they are not represented in the chart. On the
vertical ax the values are in index points (1939 = 122,1 ) The top panel
gives the comparison between the actual and the regression value fcr the
change in the index of hourly wages. Further, the influence of the number
of unemployed, the change in price level and the trend factor are shown
in successive parts of the chart, The bottom panel shows the disturtances.
The disturbances show a stochastic pattern . This points to the absence

of serial correlatlonl)o In general serial gorrelationrlsvthe correlation
between memberg of a time series and those members -lagging behind or
lead®.g by a fixed distance in time .If the series is vy o0 b2 s see the
serial correlatlon'of order k 15 the correlation-between the palrs

(vl il vl+k )9 ( vg 9 v2+k} g eee

1-) Serial correlation affects the assumption of mutual independent dis-

turbances: In that case the residuals are mutual dependent in time, By
making the assumption of a first-order Markov scheme for the disturbances,
we find new values for the regression coefficients, This approach was
first applied by L. M. Koyck in "Distributed "lags and Investment Analy81s"
ch 2,
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Appendix: The application of matrix ﬁotation to regression analysis

If we assume a linear relation between a variable y and (k=1)
explanatory variables; the i-th observation of a sample of n observations

can be written as
e :
Yy = + J&xi + Jé xzi + so00 + J&FI xk“li * ny

As we have seen in section 3 the constant &<« can be interpreted

& the coefficient of a factor which has a constant value in all instances.

Slightly changing the notation shows us the general formula in that case.

y =B +B x O TN I
h 1 2 21 B 031 k ki i

Introducing matrix notation shows for the same relationl)

e T i
whers [y e e e

y 1 x sosoe X B u

2% o R R S 1 1
155 shbwe & u
ye ARe k2 B2 2
Yei 1o X = ‘.‘ ':- ‘; B = V= :
yn _1 in oooeeo an Bk un

This means that the rows of the system relate to the observations

The columns of X show the values for a certain explanatory variable in
successive observations. Usually we draw a sample of observations to esti-
nate the coefficients of the relations., The estimates of the regression

coefficiénts are denoted by b = ( b1 s Do s ees Dy ) Now we may write the

system as
Y = Xb +v
le Usually in a bogk a matrix notztion is denoted by bold letters i.e.,
X is printed as %.It will be clear, that this is impossible here,
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where Y is a n x 1 wvector of the dependent variable ( n denotes the numbers

of observations)l,-x is a matrix of order n x k , and v is a n x 1 sector
of disturbances corresponding to the estimates for ﬁ? . Applying the

principle of least squares, we first show the matrix notation for the sum

of squares:

v'v

= v
im]l
(T=Xp)Y . (Y=XKB)

Y'Y - Y'Xb - b'XY + b'X'XDb

i~

Boyn the second and the third term of the last relation are a scalar; This

allows us to take the transpose without changing the value. Hence:

n i
iv? = Y'Y - 2b'X'Y + b'X'XD
iml

To find the estimates for the regression coefficients we differentiate

this relation with respect to the vector b., The necessary condition is

%(-‘br'_vlgu2X'Y+EX'Xb:O.

This gives us _ Tl e
Y'Y = X'Xb,
or ;

= ._.l
Notice, we used the assumption k «n, i.e., the number of observations
exceeds the number of parameters to be estimated. This assumptions is nee-

ded in order that X'X is a non-singular matrix (X'X is of order k; the rark
of X'X is equal to the rank of X; if n «& k, X will be of rank n and hence

1- In estimating time series we use T instead of n for the number of
observations,
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X'X is of rank n; then X'X is singular.and no solution exists), The ini-
tial system can be written as:

v = Y - Xb,
Premultiplying this relation by a matrix X' and using the condition for a
minimum gives: ‘

X'v = X'Y - X'Xb =0,
We obtained the same result as shown in section 3, namely, the existence

of a zero correlation between- the explanatbry variables and the distur-

.bancesa. .
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