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Chapter 8

BRANCH-AND-BOUND REVISITED: A SURVEY OF BASIC
CONCEPTS AND THEIR APPLICATIONS IN SCHEDULING*

S. E. Elmaghraby and A. N. Elshafei*%*
North Carolina State University

8.1 Preliminaries

The term '"branch-and-bound" (B&B) has increasingly be-
come a household term among students and researchers in
the field of scheduling and sequencing. In this chap-
ter we shall take a fresh look at this approach and
assess its content, utility, and potential. In delin-
eating the subject matter of our discussion, perhaps

it is equally valid tq emphasize that which is not
among our aims. This chapter is not a comprehensive
survey of B&B concepts and applications. Several sur-
vey articles that have appeared in recent years serve
that function adequately, if not superbly, see, for
example, References [8.1, .4, .21, .36, .40]. HNor does
this paper aspire to be a comparative evaluation of the
very many B&B approaches that have been proposed in the
open literature to solve one scheduling preblem or
another. For examples of such studies, the reader is
referred to the papers of Ashour [8.2], Ashour and
Quralshi [8.3], Davis [8.8], and Kan [8.34], among
others. .

What we do wish to present is an inventory of the
basic concepts underlying the "theory" of B&B; we wish
in fact to establish that such theory exists and to
illustrate these basic concepts by examples from the
field of scheduling and sequencing. In this we are

*The preparatlon of this chapter was partially supported
by the Office of Naval Research under Contract NOOO1l4-
70-A-0120-0002, by the Natienal. Science Foundation under
‘Grant P1K1470-000, and by the Army Research Office-
Durham under Contract DA-ARO-D-31-124-72-G106, with
North Carolina State University.

*%Now at the Institute of National Planning, Cairo,
Egypt
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motivated by two objectives. The Ffirst is to summa-
rize, in what we hope is a convenient place, the mul-
titude of concepts that have emerged over the past few
years. We hope that such a sumnary will provide a
handy reference and basic understanding to student and
researcher alike. The second is to help the profession
assess the current and future poteutial of this ap-
proach. 1In this respect, one may compare B&B as a
problem solving appreoach, to simulation which is
another, and by now a very popular problem-solving ap-
proach. One may then ask fundamental questions simi-
lar, but not necessarily identical, to those asked in
the study of simulation. For instance, in Monte Carlo
simulation one often raises the question of variance-
minimizing techniques. 1In B&B one may ask questions
relative to the rate of convergence to the optimum.

As much as possible we shall draw our examples from
the field of scheduling and sequencing. However, since
problems of scheduling (and sequencing) are almost
universally modeled as integer or mixed programing
problems (linear or nonlinear), we shall feel free to*
illustrate some concepts with reference only to the
integer (or mixed) program, without the need to motivata
the model by the scenario of the scheduling problem.
Ordinarily, we shall be dealing with integer linear
problems (ILP) and, in particular, with 0,1 ILPs. As
is well known, an ILP can be translated into a 0,1 ILP
by the simple binary expansion of the variables. In a
couple of instances, we could not Ffind examples from
scheduling and, to the best of our knowledge, none
exist that use a particular concept. Then we took the
liberty to illustrate by examples from other fields of
application, such as location~allocatioa. We do not
feel particularly apologetic about taking such liberty
since these problemns are th-mselves modeled as integer
(linear or nonlinear) programs. Such models provide
the link to probleus in schaduling.

In the sequel we shall be talking about Hoareial
solutions" and "completions." The term "partial solu-
tion" is actually a misnomer, since it refers to some-
thing that provides no solution whatsoever to the
original problem. For instance, a schedule of a sub-
set of the jobs, or a series of cities visited by the
salesman in the traveling salesman problem (TSP), are



Elmaghraby and Elshafei ' 135

referred to as partial solutions, yet they provide no
"solution" to the problems posed, which are: a com-
plete schedule of all jobs in the first case, and a
complete tour over all cities in the second case. The
reader will hopefully bear with this misuse of lan-
guage. By the cowpletion of a partial solution we mean
the specification of the values of the remaining vari-
ables so that their union wirh the partial solution
yields a point in the original solution space. A par-
tial solution is said to be fathomed 1if one of the two
following conditicas is satisfied.

(1) We determine that its best feasible completion
is better (yields a better objective value)
than the best feasible solution known to date
(assuming one is in hand).

(2) We determine that the partial solution has no
feasible completion better than the Zncumbent
(this includes infeasibility, which is trans-
lated into infinite penalty).

' The concept of fathoming is illusfrated in Example 8.3.

8.2 Fundamentals '

The approach of B&B is basically a heuristic tree
search in which the space of feasible solutions, which
may contain a very large (or deaumerable) number of
points, is systematically searched for the optimum.
According to Mitten and Warburton [8.42], "the search
proceeds iteratively by alternately applying two opera-
tions: subset formation and subset elimination. In
the former, new subsets of alternatives are formed, -
while in the latter some subsets of alternatives may

be eliminated from further consideration: The proce-
dure terminates when a collection recognized to contain
only optimal solutions is reached." The search has two
guiding principles: first, that every point in the
space is enumerated either explicitly or implicitly,
and, second, that the minimum number of points be
explicitly enumerated. (We view B&B as an approach for
implicit enumeration, though we concede that, mainly
due to historical coincidences, the label "implicit
enumeration" has been applied to approaches that need
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.

not employ the "bounding" feature of B&B.)

The implicit enumeration of feasible points is ac-
complished through dominance (which may or may not
employ bounding) and feasibility considerstions. Each
of these concepts will be discussed in greater detail
below, but first we give a laconic descriptiou of them
to afford the uninitiated reader a general grasp of
the subject. The basic idea in B&B is to divide the
feasible space, denoted by S , into subsets Sl’S?’

""Sk which may or may not be mutually disjoint.

Assuming that the optimum falls in subset SR » @ bound

on its value is determined: an upper bound (u.b.) in
the case of maiimization, and a lower bound (i.b.) in
the case of minimization or, better still, both an
upper and a lower bound in either casa. Based on such
bounds two actions may take place: (i) a particular
subspace Sk is selected for more iatensive search by

further partitioning into its subsets (this is the
branching, or "formation" function); (ii) some feasibie
points (subspaces) are declared "noacandidarasg" f
optimum, and thus are eliminated from further consider-
ations. This latter idea is one of "dominance" sioce
it is based on the determination that avy element of a
particular subset Si is better (or worse), im the

ment in

sense of the criterion function, thaa any =1o
eclare the

ny 1
another subset Sj - Then indeed we may dec

s for the

M

points in Sj (or in Si,) as noncandidat

optimum and eliminate them from further analysis.
While dominance may be established on the basis of
the bounds evaluated on subsets § s LEUISES TS Erue

k
that dominance can be established independent of znv
bounding considerations. In some circles (@specizlly
in the scheduling literature) these are refsrred to as
"elimination" procedures. The Final result is the
same, namely, it establishes that certain subspaces
cannot contain the optimum because they are dominated
by other subsets. A similar idea lies behind the
feasibility considerations. They arise because in the
majority of cases one is forced tao hypothesize a rather
"rich™ original space;. S+ At Zeme stage of analysis,



Elpaghraby and Elshafei 137

if it can be established that certain subsets of S
are in fact infeasible (in the sense of violating some
constraint of the problem), then indeed such subsets
can alsc be eliminated from further study.

Heuristics enter the tree search in all three basic
phases of the approach: in the definition of the
partitioning procedure, in the calculation of the
bounds, and in the philosophy of searching the tree.
But we wish to draw the reader's attention to the fol-
lowing important and rather crucial distinction: the
forzal structure of B&B admits the use of heuristics
(as does the simplex algorithm of linear prograzming) .
However, these are '"reliable heuristics" in the sensa
that if they run to completion, the optimum will be
achieved. Furthermore, if the procedure is terminated
before it has achieved the optimum, it yields a bound
on the error committed. (This is in sharp contrast to
"heuristic problem-solving procedures’ which lay no
clain to either optimality or to measuring the error
cozmitted at premature abortion.)

A zmore formal definition of the B&B procedure was
advanced by Mitten [8.39] in 1970 which was expanded’
upon in later work in 1973 by Mitten [8.40], and
Mitten and Warburton [8.42], Mitten defines the opera-
tions of "branching,” "bounding," and "branch-and-
bounding" in terms of set functions. The necassacy
properties of each functicn were givén in terms of
operator and operands, which map all the known coucepts
of 3B into topelogical domazins. He establishes the
relations between the B&B recursive function and the
set of optimal feasible solutions by postulating vari-
ous analytic and topological conditions such as conti-
nuily, completeness, and compactness. [n the cagse of
finite solution space, the convergence of the B&B
ursive function is easily seen. However, in denumer-
e or nondenumerable spaces, Mitten demonstrates that

the B&B recursive function is a contraction mapping
1 3 corplete metric space with appropriately defined

elsments, then fixed-point theorems could be invoked
to establish convergence.

To gain more insight into Mitten's comnstructicn, we
assume that it is desired to solve the problem: maxi-
mize £(x) for x = X . (For example, X may be the
integer feasible points in an ILP.) Typically, B&B

A
o
i

-1y P_: ::r}

m y-w
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proceeds by searching the space T 2 X for the set
5 *
g Al sX i f (X)e=0f%]l 1o optimal solutions, where

f* = sup £(x) and where A means "is defined to
xeX i
equal.” The search proceeds by examining subsets
0 € X, and collections of such subsets. Let § denote
the family of all possible collections of subsets that
could be encountered by a given B&B procedure. As
shorthand notation, let \J(s) denote a subset of X
comprised of the elements in U {0} ; that is
: gEs
\U(s) A U {o} where s e S .
ges

As mentioned above, alternative possibilities in B&B
are considered in sets rather than one at a time. Fur-
thermore, B&B examines successively smaller and smaller
subsets of X (the subset formatioun operation), always
elininating those subsets that can be shown not to con-
tain an optimal solution (the elimination operation).
It is assumed that once sets are '"small enough' in some
sense, then there is a procedure available for distin-
guishing the optimal solutions from the nonoptimal solu-
tions, the so-called fathoming procedure. Therefore,

let S  denote the set of fatheomable collections {s} ;
here s 1is a fathomable collection iff o € s satis-—

* v
fles 6 Cao or oNd =¢ . We assume that a proce-
dure is available for separating one from the other.

Thatris, s'e 'S . 1FF the following hold.

%
a s = 8 s with (giE g ftor every ¢ = s
B U3,

and oMo =¢ for every o ¢ S,
(b) There is a means available for fForming the col-

lections s andSise=
1 2

As a minimum requirement, we insist that any collection
of singleton sets (sets- containing one point of X

each) is Ffathomable, since such sets cannot be sub-
divided. One may now state the objectives as: find a -

* * *
collection s € S8 such that U(s ) C ¢ and
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* : * "
U(s ) =¢ only if o =¢ . Mitten defines the B&B
procedure in terms of the set operations called branch-
ing, upper bounding, lower bounding, and, finally,

branch—and—bounding. Let SF (for formation) and SE

(for elimination) be two subfamilies of § . Branching

may be defined as a function F: SF - SE such that for

each s ¢ SF the following hold.

(a) F(s) = U {d(o)} , where d(o) 1is either a
ges
or a collection of proper subsets of ¢ whose
union is o

(b) F(s) =s iff s e §

In words, this latter conditicn (a) states that each o
in s either remains unchanged under F(s) or is
broken up into a collection of proper subsets. This

is illustrated in Figure 8.1, in which s = [01,02,03} H
9 3 5 » but o, has been "broken up"

d(Uz) =g
into four (disjoint) subsets. Clearly, lJUlj = 0q b

d(u3) =g

: J
Upper bounding is a real-valued function wu: LKSE) + R

with the following properties.

(a) u(o) > f(x) for all XxE0E u(sg)
() u(0) > u(oy) 1f a;C 0 ;5 95 5 0 eU(S)

(5) allxl) =2"8%) ., %

These latter conditions (a) and (b) Eollow from the com-
mon concepts of upper bounds and set inclusion. Condi-

tion (c) ensures that the upper bound on singleton sub-

sets is the "value" of that point under the mapping f .
Lower bounding is a real-valued function &: SE - R

such that the following hold for any s € SE .

(@) (s) < £
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o , Y
11 // \
o \“
{*’:ﬁ, T2 | A 1
N e S
b 4
T J i |
> Ml ol
© & O 5
Figure 8.1 - Partitioning and branching.
(b) 2(s) < 2(F(s))

(et (=) > £(x) for any x e s

(d) If s'C s is such that, for every ' ¢ s’

either u(o') = -« or u(o') < i(s) , thea
2(s") = 2(s)

These latter conditions (a) and (b) follow from the com-

mon concepts of lower bound and set division inzo suh-

sets. Condition (c) ensures that the lowsr tournd of a

singleton subset is tight. Condition (d) guaranceas

that infeasible sets (u(o') = -») or dominatsd sets

(u(o') < 2(s)) cannot affect the value of the lowar

bound 2(s) .

In Mitten's view, the bounding operation
ination operation through infea 15ibility and
He defines it as 'a function E: SE + S8, d&a

s
ominance.
rined for

b
s € SE y
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E(s) = s - {oes: u(g) = = or u(o) < 2(s)}

The strict inequality in the above statement implies

- - - 3 *
strong bounding, since all optimal solutions in o

are retained. . If an inequality is substituted, the
resulting bounding operation is said to be weak since

; P
we then ensure that at least one element of ¢ will
be retained. Finally, the B&B recursive operation is a
function G: SF +'SF defined by G(s) = E(F(s)) . 1In

cther words, the successive formation and elimination
of subsets is the heart of the procedure, hopefully
leading to an optimum without the need to enumerate all
singleton subsets.

[f X contains finitely many points, it can be

n 'n-1 oy ;
shown that s = G(s ) , for some finite n > 1 , is

an element of the fathomable set S , so that the pro-
cedure will terminate in a finite number of iterations.
Iz the case X 1s not finite, Mitten shows that G
will not "cycle" provided that each collection in S

F
and Sp contains only finitely many sets. (Cycling
m2ans that there exists an m such that Gm(s) = 3
znd s e€S_.-S .) Note that even though a procedure

F
=av never cycle, it may not terminate in a finite num-
ter of steps. With this formal structure established,
Micten proceeds to illustrate his concepts by two
gxamples: ILP and sequential unimodal search. This
lztter illustration is interesting since it claims to
c2 the following.

(i) An example in which neither the procedure
nor the sets involved are finite.

(ii) The only currently know:n application of B&B
methods employing a branching rule that can be
demonstrated to be optimal (the Fibonacci
search).

This led Mitten to the following two conclusions.
First, that the existence of an optimal branching rule
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for the sequential unimodal search suggests some inter-

esting avenues of {n
application. Second
the sequential searc

vestigation in other areas of
» that since attempts to extend
h method to higher dimensions

g?(n>l) have been notably unsuccessful, perhaps a

fresh .attack on the
vide a new perspecti

problem in g? via B&B would pro-
ve. We wish only to remark that

viewing sequential unimodal search as an application o:f

B&B may raise some e

yebrows, since none of the concepts

usually associated with B&B are pPresent in the standard
search pattern, including the optimal pattern. The
viewing is Justified, however, if one sticks to the
formal definition of B&B's search as composed of set

formation and set el

imination, both of which are indeed

pPresent in sequential unimodal search.

8.3 Branching
Branching proceeds b
subspaces, which are
and so forth, until
point each are reach
a tree, the search t
to the set content.

which represents in
division has taken p

y dividing the solution space into
themselves divided into subspaces,

subsets containing exactly one

ed. The graphic representation is
ree, whose numbering runs opposite
Thus, S0 is the empty set ¢

fact the whole space S before any
lace. A terminal node of the tree,

S.. s M 1large, contains a complete solution X which

il

represents in fact a singleton set. Internediate podes

of the search tree g
tions generically re

use the terus "branc
space' synonymously.
to branch is basical
ophy of searching th
heuristics.
Basically, there
innumerable intermed

enerally represent partial soly-
presented by Sk » Hereafter we
hing" and "dividiag the solution

The choice of the node from which
ly a decision related to the philos-
e tree, which is open to the use of

are two extreme philosophies with
iate variations. On the one end oL

the spectrum there are heuristics (for example, branch

from the node with ¢
the nodes higher up

Struction of the search tree will proceed "horizontally";

this is the so-calle

he smallest lower bound) that favor
the tree. In this case, the con-

d jump-tracking (or "flooding'")
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illustrated in Figure 8.2(a). The advantage of this
procedure is its econcmy in the number of singleton
sets created prior to the determination of the optimum.
Its disadvantage lies in the vast memeory required to
store all the unbranche!-from nodes. At the other end
of the spectrum there are heuristics that favor the
pursuit of search in one subset of S until it is
fathomed; that is the so-called back-tracking last-in-
first-out (LIFQ) illustrated in Figure 8.2(b). The
advantage of such a procedure is that certain informa-
tion is readily available when branching is from the
node (subset) just created, which otherwise would need
to be recomputed (such as the basis of a linear pro-
gram). Furthermore, the procedure goes directly to a
feasible solution so that if calculations are stopped
before optimality is achieved, there is available a
feasible solution as well as an upper (or lower) bound
on the optimum value.

Other procedures may be adopted which fall between
these two extremes, such as the so-called choosing up
the tree procedure illustrated in Figure 8.2(c). In
this case, branching always continues from one of the
@ nodes just created uatil eventually either final nodes
are obtained, or all descendant nodes are infeasible,
or their lower bounds exceed the actual cost of a
known solution (they are dominated).  When this occurs,
the next intermediate node is chosen as follows. Track
up the tree until a node § is found which has the
property that one of the m - 1 other nodes created
when branching took place from & 1is still an inter-
mediate node. Branching is then continued from this
intermediate node.

We are now able to state our tirst dictum.

I. The Branches lNeed Not 8e a Partition. The defini-
tion of the partitioning procedure is synonymous with
the definition of the braaching procedure. In the
majority of cases there are several ways by which §
may be partitioned: the decision is basically a
heuristic one. Different procedures lead to different
numbers of subsets of any subspace Sk and, conse-

quently, different numbers of "stages' or "levels" of
the search tree. The concept we wish to advance here
as Dictum I is that the division of a subspace Sk
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la) Jump tracking

1b) Buck tracking
@Falhomeﬂ nodes

le) Choosing up-thae tran

Futhomad ~adass

Figure 8.2 - Three patterns of search in branching.
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into subsets Skl’skz""’skr need not be a partition
fog TR e
cause the subsets may have some points in common. We
illustrate this concept with two examples.

Example 8.1. Consider the problem of scheduling N
jobs on Mt identical machines available in period ¢t

in the sense that SkiFW S This. is true be-

(say day ¢t ) , t=1,2,...,H , where H is the "plan-
ning horizon." The jobs are related by precedence con-
straints. A job j has: processing time yj during

which it occupies one machine uninterrupted; a desired
ccmpletion time (the so-called "due date") dj : and a

cost cj(T -dj) which is a function of the difference

3

between the actual completion time of the job Tj and

its due date. (The function ¢, 1is quite general

J

except for the mild restriction that it be nondecreasing
awvay from dj .) It is desired to find the schedule of

the N jobs with minimum total cost.

An ILP model was advanced by Elmaghraby [3.13].
Recognizing the computational difficulties entailed in
a frontal attack, he proposed a.B&B procedure in which
the "levels'" of the search tree correspond to the jobs,

and a subspace Sk defines a partial solution in which

the first k - 1 jobs have specified start times.
Notationally, this is given by Ais =1 for L =1,2,
i

esesk~l 1in which A is a 0,1 variable denoting the

bl

start or non-start of job 1 in peried t and h

rapresents the start time of i ., Because of the pre-
cedence constraints, let a denote che =arliest

availability of job k (its earliest start time), and

bk its latest completion time (anm "absolute" deadline

beyond which the job may not be completed). Clearly,
A =1 for some value of s in the interval

ksk k

ak_isk f_bk =3 + 1 . Hence the subspace Sk is
partitioned into bk il - Yk + 1 subsets, which may
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be represented by branches in the search tree as shown
in Figure 8.3. Note that some of these subsets may be
infeasible due to the machine availability constraints,
in which case the subsets may be eliminated from fur-
ther considerations.

An alternative approach may run as follows. Let the
levels of the search tree correspond to time periods.
In any period ¢t » @ number of jobs, say n XN, are
eligible for be'ing started (by virtue of the precedence
relations). The machine availability constraints may
limit the number of Jobs that can be started simul-
taneously to (the binomial coefficient) Q = C(n,Mt—r)

alternatives, where r < Mt is the number of machines

"committed" in period t as a consequence of the par-

tial scheduling of the first k - 1 jobs. Suppose we

enumerate all such feasible "bunches" of activities,

and denote them by § 35 Sieresiss « Ther we may
(A4 g t,Q

branch to Q + 1 subsets corresponding to the Q ways
in which activities may be initiated at time ¢ s> plus
the state in which none are initiated.

Comparing the two procedures, it is evident that in
the latter the various subsets need not be mutually

Subspace Sk

Figure 8.3 - The partitioning of Sy.
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exclusive and hence the subdivision of Sk is not a

partition. Moreover, the first procedure leads to a
tree of N levels, while the second to a tree of H
levels. '

Example 3.27. Consider the well-known traveling sales-
man problem (TSP) over N cities, modeled by the fol-
lowing ILP.

minimize E Z c x,,
5 Ty
s.t. § xij =1 for all 1 , E xij =1 for all j

u; - u TNX  SN=1,31=2. ...,

X.. =0, , u, >0 and integer for all i
ij y i ’

' We propose three modes of branching, two of which par-
tition the subspaces but the third does not. Let Sk
define a path from the home city 1 to city ik .l X

tour T is any permutation of the ¥ - 1 non-home
cities and a tour Tk is a tour that iucludes path

Sk . We also call Sk a subtour. Themn arc (1k])
either belongs to tour Tk or not. The three modes
of branching are as follows.
(1) The path Sk generates two subsets of the
tours T

k
ik} : the tours wherein 3, is extendzd by
N

for each city | ¢ {l,ii,i?,...,

continuation on arc (ikj) which we denote
1 2
by skj ; and the tours denoted by Skj

wherein Sk appears but arc (ikj) does



Chapter Eight ] 148

not. Figure 8.4(a) illustrates this mode of
branching which is basically the branching
rule proposed by Little et al. [8.37]). The

branch Sij eliminates from consideration

(due to infeasibility) the row 1 in the

k
distance matrix and any other entry (ji )

that would form a subtour with the current
partial schedule (i E{l. ‘Ll,... i }) v on
the other hand, the branch Sij simply elim-
inates the eantry (ikj) in the distance

matrix. Recalling the bounding method of
[8.37], it is obvious that the positive asser-

tion of Sij is more potent than the unegative

assertion of Skj .

Su;;uur Sk
l %"fﬂ’ :wntn
|

[Ejblour Sk

——

T
¥

e = A =,
ls“ : (-wc’rkJ Sk e e s . n ]_Sk,m-k: Gk LE T,
s = Sy e et
Ell:tonr :J
== ﬁE e L
Srt tigip b o, [su: it T ] .. .. [';““- iyl £ :
Z (e}

Figure 8.4 - Threa modes of branching.

{
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(ii) Still assuming that Sk defines a path to
city ik » specify the subsets according to

the next arc included in the tour Tk . Thus

Sy T S OV (dy) 5 Sy = S N 3y,
Sk,N—k =S, N J,) » and there are as

many branches from § as there are cities

k
still to be visited. This mode is illus-
trated in Figure 8.4(b).

(iii) Specify the subsets of Sk by the arcs not
in the tour. Then we write Skl to denote

the set of all tours Tk in which the arc

(ikjl) does not appear; Sk2 denotes the

set of all tours Tk in which the arc

(1qu) does not appear; and so on. Clearly

this is not a partition of the tours Tk

since, for instance, both subsets Skl and

Skz contain all completlons of the subtour

Sk which contain neither city jl nor city
j2 . Figure 8.4(c) illustrates this mode.
IT. The Desirability of Nonredundancy of Completions.
Undoubtedly, a desiratum would be that the branching
scheme generates a sequence of nonredundant partial
solutions; that is, that no completion of a partial
solution in the sequeace ever duplicates a completion
of a previous partial solution that was fathomed. To
heed this second dictum, it is obviously necessary and
sufficient to have in all future subsets Sv sV ke s

at least one element "complementary" to one in Sk .
This, in turn, is indeed satisfied if we store Sk and

K+l EO be exactly Sk but
with its last element the complement of the last element

of Sk » and indicate in some fashion that Sk was

generate the new subset §
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fathomed. (The storing of 8, is to comply with the

k
requirement of (implicitly) enumerating all points in
the solution space.) Compliance with this dictum is
extremely difficult, and is rarely accomplished except
in those instances where "complementarity"” is obvious,
such as 0,1 ILPs. The alternative to modeling the prob-
lem as a 0,1 ILP is to Store all subsets in the tree
(not just the unbranched-from subsets) and compare them
to each newly-generatad subset to eliminate duplication.
(This is of fundamental importance in dynamic program-
ming. In some sense, B&B relaxes this requirement, and
the price paid for such relaxation is the possibility

of duplication.) oOur example to illustrate this con-
cept is indeed taken from solutions to 0,1 ILPs,

Example 8.3. 1In the Geoffrion-Glover Approach to 0L
ILP [8.26, .29], the problem is stated as follows for

Rk sl nf

minimize cX

s.t. AX+b >0 ; ok 0,1

An Sk is a set of variables whose values have been

assigned as either 0 or 1. The remaining variables are
called "free variables." Suppose S, = [x, ,x, ,...
< k ll b ] 12 3

,» and S is fathomed. Then create § = {xi g

e K kil

.
> s S where x. =1 - x, , and the
¥ -1 Xik, e i
underlining of Xy is simply a visual indication that
k

Sk has been fathomed. The following illustrates the

two concepts of fathoming and nonredundant comple tion.
The general logic may be shown schematically as in Fig-
ure 8.5. The application of this logic to the ILP
proceeds as follows where the step number refers to the
box number in Figure 8.5.

1. The most effortless completion of Sk » lgnoring

feasibility, is to put xj =0 for all the free
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@

Determine best completion of
Sy,. ignaring feasibility,
through a simple calculation.

@ Not feasible . Feasible ®Cl

A 4

Therefore abandon the search for best completion.
Instead, try to establish that no feasible
completion of Sy has a lower value than the
incumbent, This should also be determined

through a simple calculation.

@ True False@

[
<

Therefore Sk is fathomed. Therafore Sk cannot b fathome:d.

Augment Sk in a nanredundant

fashion.

Figure 8.5 - General logic for fathoming.

variables. (Recall that we assumed all ¢, > 0.)

]

Clearly, if the resultant solution is feasible,
then indeed it is the best completion of Sk .

Its value is easily determined, say z, - 162

2, < 2 (the value of the incumbent, assuming

one exists; otherwise z = @ ), theun we adopt
the current feasible solution as the best, and
put z = 2, + Otherwise, et z and, a

fortiori, no feasible completion of Sk has a

lower value (of the object%ve function) than
the incumbent; hence Sk is dominated, and

again it is fathomed.
If the completion is not feasible, then instead
of seeking the best completion of Sk (which

may require extensive calculations) we try to
establish the proposition stated in node 3.
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4.

T

If the proposition is true, then it must be

impossible to complete Sk S0 as to eliminate

all the infeasibilities of the comﬁlation of

Sk and improve on z . To demonstrate this

impossibility, it is clearly sufficient to con-
template the value 1 only for variables in the

set T¢ defined by Tk é,{xj free: cX# + cj
< Z and a4 >0 for some 1i such that

vs <0} , where Y¥aakkep . 1f ok 4
empty (which is implied by the coandition Di

= yi G ) X max(0,a

I jeT 1
Vs 0) then there can be no feasible completion

) <0 for some 1 with

of Sk that is better than the incumbent, and

Sk is fathomed,

If the proposition is false, then S, cannot

k
be (easily) fathomed. Then the partial solution

Sk must be augmented, Here, heuristics are

adopted such as: add the variable that reduces
total infeasibility the most; or add the variable
that reduces infeasibility in the most number of
constraints; or add the variable with the small-
est cj > 0 that still reduces infeasibility of

at least one constraint; and so on. The appli-
cation of these concepts to an I[LP is givea in
the trze diagram contained .in Figure 8.6. There
the variables are denoted by their numbers;
writing j as, for example in S. = {3,~2}
means that xj =1 while -j means xj =0

the underlining of a variable means that its com-
plement was fathomed. Notice finally that the
first of the stated procedures in §5. is used in
Figure 8.6.

III. Alternate Criteria for Branching. 1. relating
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minimize Sxq * 75'1 * 10:1 + h‘ * oxg S,= 6 YO . 2.0-1) * o
(N 3 :1—312* 513" 16-4:5—2"0 = (134
T=2xy * Bxy — Bx, — 2x, F 2x o
1 2 3 _4 5 D;=-2+7>0; Dy=-1+2>0
- Nyt MMa— Ry — xg —-120
- ¥
. 3 * 5 X 1 -1-2-1 =-4;
© %2 0:integer
xq s 1: @-—
Xy 1:-1-2-2=25
r
S k2 ¥4 o t20-1 20
T =17 ™o na i
5,73 ¥'-@3anto
By --2+1+120 |
] tezm
03 =-1<0
02 =530
Therefore, no improvement in
completion. EPRRE @._
Eathomad xg = 1 ~1-13-2
y —
. 2,
s3=3-2 v3.gano S22 ¥*=i030>0
7 17 -5 7 a@ Tharatork, completion % *0forjs145
is feasible. Therefars, 2317,
Dy--1+2<0 x%+(0,1,1.0,0.

Therefara, no feasible completion.

Fathomed!
e

ul
=

athomed
el |

:

Figure 8.6 - Solution of an 1LP.
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their experience with UMPIRE, a proprietary computer
package for the solution of mixed linear programs (MLP),
Forrest, Hirsh, and Tomlin [8.23], referred to below as
FH&T, treated some of the problems encountered in
branching and suggested several approaches to their
solution. Their insight may prove of invaluable
assistance in Structuring future computer codes. To

set the stage, we are dealing with an MLP of the fol-
lowing form.

Program Q

maximize xo
8.t. Ax = b, xj.i DJEEs <) 00 B I8 K S L

xj Integer for j e I C {1,2,...,n}

where A = [aij] (i=0,l,...,m;j=0,1,...,n) sy Tow 0 1is

the cost row, and column 0 is the unit vector with 1 in
the first (Oth) position. Variables may be subject to
simple or generalized upper bounds. The solution of the
above MLP as an ordinary (continuous variable) LP

~ results in a final simplex tableau which may be stated
(in standard simplex Cerminology) as follows.

X, = a0 B § aOj (—xj)

i e L
3 i0

+ z ar, (—xX.) for 4= L
i 1] J

By the simplex criterion for optimality, we have

8.0 20 and ) B i 00 Eorea IS ond i . For every
10 — 0=

e T ot

10 {aio] diE pa 0 8 gia
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where [;16] is the largest integer not exceeding

P

i0 . ;

" The solution of Program Q by B&B involves maintain-
ing a list of LP. problems or subproblems derived from
the original IILP, obtained by imposing tighter bounds
on the integer variables and always recording the best
integer solution obtained so far and its value xg .
The basic steps in branching are the following.

1. Problem (Node) Selection. Select a problem with
: fractional values from the list whose objective
.function satisfies X > xg . ILf none exists,
terminate.

2. Choose A Branching Variable (the "Arbitrated"
variable). Among the variables in the selected
problem, choose a fractional variable for branch-
ing. Dencote the chosen variable by xp .

3. Branch (Arbitrate).’ Create two new subproblems
(nodes) by adding the following new restrictions.

Xre [?Nﬁ to yield subproblem pl

x > |a + 1 to yield subproblem 2
p—[po] ? P P

The procedure is "straightforward" except for the fact
that each step is in need of operatiounal definition
(which is the subject of the FH&T paper).

Consider Step 3 first. One may solve each descendant
subproblem, or one may solve only one of the two LPs,
postponing the solution of the other to later in the
hope that it never need be done because of dominance
considerations. Alternatively, one may ''jockey' between
the two new descendant subproblems pl and p2; the authors
refer to the alternation between the two nodes as 'node
swapping.' For example, one may investigate the other
subproblem as soon as the degradation in the first branch
is found to exceed the ‘penalty' of the second as
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explained below.

Three questions are to be resolved before Step 2 is
successfully executed. How does one choose the branch-
ing variable? How does one decide on which branch to
postpone (if branch postponement {s desirable)? How
does one bound 'its solution? To this end, FH&T discuss
the following approaches.

(1) The Penalties Method. Penalties give a lower
bound on the change (degradation) in the objective
function as a consequence of forcing a currently non-
integer variable to its adjacent integer values. From
the theory of parametric LP it is evldent that, assum-
ing no change in basis, the imposition of a new %£.b. of

épo il Son xp must decrease the objective func—

tion at least by the "up penalty"

toiE j,%';:}o (1=£ ) an/("ap:I)

LENSGS 25 0 Eoraal Tiaodly SIS 1T =i St is a
P — P

. P
monotone decreasing variable, Similarly, the minimum
'down penalty" incurred by placing an upper bound

a on X is given b
0 p g y

D! N
=" o0 %03'%j

P .
a .>0
sty

LE d oot 0] pEorbal Tt e TE i e y and Loens el g
Pl e P p
monotone increasing variable. The ,penalties are lower

bounds on the decrease in X, because we assumed no

change in basis; hence the value of the objective func-
tion for these two branches must be bounded from above

by 390 Up > 359 =
dant node is not dominated as a consequence of the new
bound, theun the above penalty calculations may be used

Dp s respectively. If the descen-
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in the selection of the subproblem to be solved, post—
poning the other to later. Presumably, the subproblem
giving the smallest degradation is the one selected. .
The authors argue against this method since in many
instances it leads to the wrong decision, thus prolong-
ing the search. Garfinkel and Nemhauser [8.25] recom-—
mend the capitalization on monotone variables to reduce
the size of the search tree. In particular, if row p
is chosen as the partitioning Tow and xp is monotone

(increasing or decreasing) , then it will have only omne

successor, and one ueed only to consider xp > [;p]

e i2R oY xp >'[5P6] . They also pbint out; correctly,
that the penalties Up and Dp were derived without

taking into account the integrality requirement on the

nonbasic variables. Taking such requirements into

account would generate new bounds on the penalties. For

instance, in order to have an integer solution, some

nonbasic variable must become positive and therefore not

less than one. This immediately yields the %2.b. on

penalty min a9 ; which, incidentally does not depend

e

on the partitioning row. One may wish to carry the

jdea of penalties a little further and determine a

stronger bound on the penalty i{ncurred. Two approaches

suggest themselves. : E

(a) Assume that the current basis does not change,
and determine a feasible solution when xp is

rounded up or dowm. o

(b) Assume that the basis will change with the
introduction of some nonbasic variable at a -
positive level. Determine the cheapest such
transformation that .retains primal feasibility,
and its associated cost.

Naturally, the price paid for improved bounds is the
additional computing. The efficacy of such approach is
currently under investigation by the authors. Also see
Breu and Burdet [8.6].
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{i1)  The Method of Priorities. Priorities are accord-
ed to variables a priori, and are based primarily on

the analyst's knowledge of the physical problem. Then
one would select and branch on that variable not within
Sowe tplerance of an integer valua (the "arbitration
level’) which has the highest priority.

(iii) The Best Projection Method. While this method

is more appropriately related to Step 1 (Node Selection)
rather than Step 2 (Variable Selection), it finds its
Place here because of the bearing it has on the next
method of variable selection. The logical justification
of this method is rather lengthy, albeit intuitively
appealing. But its statement is rather simple. Suppose

*
that an estimate of x0 can be made. Let g denote

the‘"sum of integer Infeasibilities,"

8 A ) min(f

jel Jo;lwfjo)

and let

' g . : ; -
where X, 1is the value of the objective function of

Program Q wien sclved as LP, and where 'so is its
corresponding sum of integer infeasibilities. (Note
that the xo's measure degradation from Program Q.)

1)

£

Then, for any node k with objective value % and
k !

sum value s , we define the "projection”

lem xk G A"k

P 0 =

The best projection (8P) criterion for Step 1 of the
B&P algorithm is now to choose the outstanding node
with the largest valus of P, - The rationale for this

1s that P, measures the approximate value of the

integer solution we can expect to attain from node k .
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' - The term "projection" stems from the fact ‘that A

essentially projects the sum of integer infeasibilities

ék on.the s =0 axis in a particular direction
(namely, a direction parallel to the line joining the

points (50 xo) and (b x*) in the s - x
0’70 % _ 0
(iv) The Pseudo-Costs Method. A close scrutiny of the
definition of ) in the above method rasveals that it
can be interpreted as the 'cost" of removing one unit

of infeasibility. In fact, the last equation mayv be
rewritten as

domain).

v

k k k )
Xg = As = X5 = z mln[AEiO;A(l—f

Hence, in using this expression to estimate an obtain-
able integer solution we are implicitly "costing" the
change in the variable at the same cost per unit changze
(whether up or down). Since this may not be true in
general, we are léd to the new estimate

Tt e iy Al
R, %) igl minfd, £, ,5u,(1 £t

where d, and u, are the estimated costs per unit

i 1. z
decrease or increase in variable X respectively.

The determination of the values di and u, , as well

as their revision as the iterations proceed, are dis-
cussad at length in the paper of FH&T.

(v) The Percentage-Errocr (P.E.) !éthod. We have the
definition

P.E. = 100 (kg—ek)/(xg- S)

for each node k . Essentially, it measures the degree

of error if the current solution x; is not optimal.

If the P.E. is large and positive, it implies that a
better integer solution is very unlikely to be found
from this branch.
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8.4 Bounding

We are always interested in the greatest lower bound
(least upper bound) in the case of minicization (maxi-
‘mization)-, Unfortunately, this is oftentimes aciiieved
at the heavy price of extensive calculation. Hence,
there 1s the ever-preseant trade—off between a tight
bound obtained at a consicerable cost, and a- loose cne
that is easily calculated. The only dictum that can
be stated relative to this choice is that it may be
worthwhile to put the effort in bounding nodes "higher
up the tree," because then if fathomed wa would save
the enumeracion of all their descendants. On the other
‘hand, it is always advisable to obtain both upper and

lower bounds on the value of z* and preferably the
tightest such bounds. Since a feasible solution always
provides an u.b. (a £.b.) in minimization (maximization)
problems, it behooves the analyst to start the search
procedure after having obtained as ."'good" a solution

as possible, without the expenditure of an inordinate
amount of effort in obtaining such a solution. Bounds
on the value of the optimum ars obtainaed by relaxing
one constraint, or several coastraints, of the original
problem since the optimum of the relaxed problem is a

bound on z* - In certain instances the constraint

to be relaxed is almost self-evident--such as relaxing
the integer requirements in an ILP problem and solving
as an ordinary LP. This is the relaxation adopted by
Land and Doig [8.35] in their ploneering work. Often-
times, though, the constraint to be relaxed requires
insight into tha problem to gain the "most mileage,”
by remeving the more complicating constraint, without
too much sacrifice in the value of the objective func-
tion.

We illustrate the concept of bounding with the fol-
lowing three examples. The first is, more or less,
straightforward; the second exemplifies how a bound
may be improved, that is, made tighter; the third
exemplifies the need for the judicious choice of the
constraint to be relaxed.

Example 8.4. Consider the problem of minimizing the
total "makespan" in scheduling N jobs on three
machines in series. We shall davelop the %£.b. estah-
lished by Lomnicki [8.38], which was apparently arrived
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Lomnicki puts the lower bound max (g',g'',g''') om
the partial schedule. \

Example 8.5. Consider the problem of scheduling N
Jobs on" M identical machines. Each job j has a
fixed-processing time yj and a penalty coefficient

pj + A penalty pjt is incurred if job j is com~

pleted at time t (in other words, all jobs have a
due date equal to zero, and they accumulate penalty
starting from that time).' Eastman, Even, and Isaacs
[8.10], referred to below as EE&L, derived a lower

bound on the optimum as follows. Let Ci be the

symbol for the optimal cost of scheduling the N jobs
on 1 machines, 1 <1 <M Thus Cl is the:known

optimal cost on one machine and ‘CN is the known

optimal cost on N machines. In particular, the
minimal cost (of scheduling N jobs on a single
machine when a linear penalty is accumulated starting
at time zero) is given by scheduling the Jobs in their
natural order, that is, in order of nonincreasing
values of the ratio pj/yj . If the jobs are so aflaty

bered (if we have pllyl > pz/y2 T i-pV/yN ) then

the minimal cost is given by

I v,

O Selnh I
R

J

On the other hand, CN is evidéntly given by I pj?j
i

Then EESI assert that the desired lower bound on S

is given by

1 M-1 ]
M[Cl e

A sharper 1.b. was developed by Elmaghraby and Park
[8.16] for the slightly more generalized problem in

which each job j has a due date dj = yj . Their

development was based on the remark that EE&I's Z.b.
is based on the assumption that all the machines are
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and Mallik [8.14] addressed themselves to the following
specific version. There are N items to be produced
on the same facility. In any period (say, day or week),
the facility may be devoted to the production of only
one item. Item i is produced at the rate Py per

period, but, is dontinuously consumed at the rate r,
per beriod where Ty <Py . Given the initial "on hand"

stock of each item, and the desired terminal inventory
at the end of a planning horizon of length H , deter-
mine the minimum cost schedule (if one exists), where
cost is defined in terms of inventory cost and back-
order penalty, which vary from item to item. The con-
straint that Elmaghraby and Mallik chose to relax in
their B&B approach is the noninterference constraint.
Then the items are independent, which implies that the
facility is devoted to the production of one item only,
The determination of the optimal schedule under such an
assumption 1s an intriguing problem in its own right,
and was treated by Elmaghraby and Dix [8.15]. Fortu-
nately, it proved to be of extremely simple form which
requires a nominal amount of computing.

In relation to bounding, we wish to advance several
dicta,. ;

IV. The Use of the Previous %.b. Calculations (for the
Parent Node) as Lead-0ff to the New 2.b. (of the
Descendant Node). The pertinence of this concept in-
creases with the amount of effort rtequired in the calcu-
lation of the 2£.b. The concept was used by Land and
Doig [8.35] in their treatment of ILP, and by Elmaghraby
[8.13] in his treatment of the problem of scheduling
activities subject to resource constraints. 1In both
.instances the £.b. at a node is determined by solving a
(continuous) linear program. The L.b. of a node is
constructed from the parent optimal basis.

Another excellent example of capitalizing on the
optimal solution of the previous iteration was provided
by Srinivasan and Thompson [8.44] in their treatment of
the traveling salesman problem (TSP) by the so-called
"operator theory." The reader will recall that the TSP
is a restricted assignment problem, restricted to
assignments that are tours. Consequently, the search
for the optimal tour in the TSP may be viewed as the




Elmaghraby and Elshafei ' 165

search for the optimal assignment (in the assignment
problem) that is a tour. (This is not the only way to
interpret the TSP. For example, Held and Karp [8.31]
interpret it as a one-tree problem, hence the search
for the optimal tour in the TSP is reduced to the
search for the optimal one-tree. B&B methods are then
used, and they report excellent computing results.) By
utilizing the established properties of parametric
linear prograrming, specialized to the assignment prob-
lem, the authors achieve the capability of probing the
consequences of increasing a nonbasic variable (at the
expense of a basic variable) in the optimal solution of
the assignment problem, without in fact undertaking
such changes. Because of the ease with which bounds
can be established on such probes, the authors report
excellent computing results.

V. <Choose an Easy-To-Calculate Bound. The value of
this concept rests on the fact that bounds are evalu-
ated a large number of times over the life of a search,
and if it is time-consuming it will render the search
impractical,

Example 8.7. Nowhere is this concept more apparent

than in the solution of tne (linear) knapsack problem

by the so-called "Creedy Algorithm.'" The setting of the
problem is as follows. '

maximize Z VX

Sivibis [ a,x, <b, x, =0,1 for all i
1 1

B i

and where the Vios the a , and b are given positive

. :
integer constants. The rationale for the Greedy Algo-
rithm is the well-known observation that, in the absence
of the integer requirements, the optimum is readily
obtained by renumbering the variables in order of non-
increasing vi/ai s and putting xj = min (1,b

j-=1
= -Zl ai) , j=1,2,...,0n . The Greedy Algorithm
l=
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approach to the knapsack problem proceeds in exactly
the same fashion, but then it branches on the frac-
tional variable, denoted by X thus creating two

subsets corresponding to ks 0 and L Ly OF

these two nodes, we investigate (branch on) the node
with the best (fractional) solution, which is an u.b.
on the optimal value. In case of ties, apply any
heuristic to break it, such as random choice among the
tied nodes. Continue the process of dichotomizing the
solution space; each time an integer solution 1is
achieved it provides a new %.b. on the value of the
optimum (Lf it is better than the incumbent)., If all
the u.b.'s of the unbranched-from nodes are smaller
than the current (integer) L.b., it is also optimal.
Otherwise, branching and bounding continues from othar
nodes until the optimum is achieved.

To 1llustrate, consider the following knapsack
probles,

maximize 2z = 5%, + 4x2 4 3x3 + 2x

1 4

8.t. xl

f 2x, + 3x3 * 4x4 <9

xJ = Ok Tor all 4.,

The search tree is shown in Figure 8.7. In this exam-
ple we explicitly enumerated only 8 solutions out of the
possible 16 solutions. 1In lacger problems, the savings
are, fortunately, more pronounced than in this small
example,

VI. Relax the Objective Function Instead of a Con-
straint. Sometimes bounds are easily computad by re-
laxing the form of the objective function, rather than
a constraint. Perhaps the following example illustrates
this concept best.

Example 8.8. 1In the field of project planning and con-
trol, a problem that has been extensively studied is
that of reducing the duration of a project (the so-
called project "crashing" or "compression'") at minimal
cost. The optimal reduction under the assumption of
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xtepirzam |
x‘ =11
2340 l ng=1
%3 = (1,1,0,1/2) x3 = 11,172.1,00
‘2210 310
Xy =0 xg=1 xy70 LPR
x7 = (1,100 x® . (1,001 X3« (1,0,1.1/4) x5« 0,100
S L g1z =7
Integer Solution Integer Solution; ZLEy
Implies | b, =97 2° Dominated :m S'-:l:.h-o;.
Dominated
Xy =0 xg 1

X" =(1,0,1,0)

Infeasibia

2618

Integer Solution;
Implies | b =8,
Daominated

Figure 8.7 - Search tree for a knapsack problem.

" linear or counvex costs for the individual activities
has been treated by several researchers, see Clark
[8.7], Elmaghraby [8.12], and Fulkerson [8.24], among
others, who used algorithmic approaches. However, the
case of concave cost functions was treated by Falk and
Horowitz [8.21] using a rather ingenious B&B approach,
first proposed by Rech and Barton [8.43]. Their basic
idea was to relax the objective function into the
largest linear function that underestimates the concave
cost of each activity. This reduces the problem to an
LP problem, which can be easily solved; whose optimum
is a 2.b. on the optimum cost desired. Also, by virtue
of it being a feasible solution to the original problem,
it also provides an u.b. More importantly, the LP solu-
tion suggests the partitioning of the solution space,
the branching process, which is proved to terminate in
a finite number of steps. Briefly, the procedure is as
follows.
Let the duration of activity (ij) be denoted by

, and assume its upper and lower limits are denoted

13 and Eij The cost of activity

by u ,, respectively.
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(1j) 1s given by cij(yij) s assumed concave in the
interval [ﬂij,uij} » as illustrated in Figure 8.8.
The problem may be formally stated as follows.

Program P
minimize C = E ey
(ij)ea 174

5.t ty + yij j_tj for (1)) = A

0 f-mij 5-Yij :-uij LToren(ti)ie A F

Here, t1 is the time of realiiation‘of node 1 ,

A 1s the set of activities (arcs), and T is the
specified duration of the projects. The approach is
simply the following. Suppose that the concave cost
function of Figure 8.8(a) is approximated by a linear
function as shown by the dotted line in (b), which is
the highest linear function which underestimates

cij(yij) . Denote such a linear cost function by

cij(yij).. Then we nay take Cl(Y) as a first (lower)
approximation to the objective function of the Program

P, and formulate the first "éstimating problem"” Ql
as follows.

Program Ql

minimize Cl(Y) = -z C..(Yij)
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A >
Vi
'ij uj ij
{a)
L
'S A n;Y'I n 1 1 >
=11 " 2w 2 1 a3 3 i
L=t %" Lo Yigiy Yigi iy “ Uiy iy Yy
{b) e}

Figure 8.8 - Approximating a concave cost function.



Chapter Eight : 170

s.T. ti + yij‘i tj for= (1]) & A

1 1
Eij ;-yij f-uij for (ij) e A} F

S
Here, the upper and lower bounds on the duration y

1 1 1
are Eij - zij and uij = uij s as shown in Figurs
8.8(b).

Interestingly enough, the Program Ql is a linear
program which can be solved by the Fulkerson approach
detailed in [8,24]. For the sake of simplicity of
notation, denote the feasible space of the Program P
by F , and denote the feasible space of the Program

Ql by Fl « Clearly, Fl = F and consequently, if P

is feasible, so is Q1 . Let Yl denote the optimal

Lol - o
ij(yij) is a lower
bound on the optimal value of the Program P, which we

o

solution of Q1 ; then Cl(Yl) = Jc

#
denote by C . Furthermore, since Yl is a rfeasible
solution for P , C(Yl) = Zcij(yij) is an upper Sound

*
on C . Thus we have succeeded in bounding the optimal

s
value C based on the optimal solution of Ql as

follows.

ctiehy < ¢ < erh (8.1)

Clearly, if equality holds throughout (8.1) then th=
current trial solution is optimal. This remark holds
for all subsequent iterations, and hence will not be
repeated. Now suppose that strict inequality holds
above; then there is room for, improvement. This is
accomplished by producing a closer (albeit still zm
underestimating) linear approximation to the cost func-
tion c(y) . Consider the difference

15 1t s
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which is always > 0 and suppose that éctivity (11j1)
yields the maximum such difference, that is,

‘c yl- _C]_' y1 — [c (yl)
L, L3\ ()ea L13VES

¥ Cij(yij)] =

Such an activity must exist, for otherwise the differ-
ences of (8.2) are zero for all activities, implying
equality in (8.1) which is a contradiction. (In case
of ties, any tied activity will do.) Divide the
feasible ‘domain of Yi j into two subintervals:

1551

1 14
% oy b and y Ja; . (Recall that
[:1111 113;] [: iy 1131:]
1

v is the value of the duration of activity (ilj

e )
134 ' 1
obtained from the.optimal Solution of the Program
‘Ql .) Construct the two cost func¢tions: c? ol & o

e 13,04

and c3 i (yi i ) as the maximum linear approximations
1=1 .

139
which underestimate the original cost function

i
(o S in the two subintervals {5 s :]
i131( 1131) ' ydy Ty
and [%} st :] illustrated as in Figure 8.8(c).
e ) '
Now define two linear programs as follows.

Program QE

minimize 1 2
Wil ) 13y “1151(5'11::1)
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8.ty t:i + yij j_tj forfalls (13) e A
bg SV Sy for (19) # (14)) 2
- 2 2 1
L =Sy £y, ST =y
Jsaviendy o S Lpl SR e G T
J
tl =0, tn =T
3
Program Q~
1 3
minimize Y c.,. (y..) +c (y. : )
@y fesein rad b N iy
o . 4
shits £y + yij-i tj for all -(13) e A
21j -<-y1_-1 2 uyy for (13j) # (iljl) _’
p =
bl 3 3
y =3 S Y S L
LA hgdy L=
y

The logic of these two programs rests on the observazion
that the duration of the activity (iljl) must lie in

either of the two subintervals of Figure B.8(c). Not
that the only difference between these two programs i
in the definition of the range of the duration Y.

Lo«

U

Both programs are feasible since the point Yl is scill
a feasible point of either of them. Let F2 denots the
space of feasible solutions for the Program Q2 and

let F3 denote the space of feasible solutions for :zhe

Program Q3 . Clearly, F2 and F3 are defined by
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' 18 1

I-'2=Flﬂ(Y,t):£ . S <y,,‘
L1y = 43y iy |
: (8.3)
F3=Fl.ﬂ§os,c):y?. <y, . <u.f Y
\ : L0y = Ay Ay
Furthermore,
o ¥y ) = % (v, ;) = o (y. ). Eor (13}
11 13 154 1400
# (1,3 . (8.4)

Therefore, Problems Q2 and Q3 may be succinctly
stated as:

2
Program Q2: minimize C2(Y) St LY ,B)e =

Program Q3: minimize CB(Y) S.bul (X 8) e F3

‘ 2 "3 »

Now both problems Q and Q7 may be solved by the
Fulkerson algorithm, yielding optimal duratious YZ

and Y3 , respectively. By virtue of the fact that the

. 2 3 :
cost functions C and C° serve as tighter under-
estimates of C over thelr domains, and that the fea-

= P2y Pl , we have

1l

sible space F
*
cteel) < min {czcyz),c3(Y3)} < &l min {s;(vl),cwz),

ch3>} < arh

2
The rightmost inequality follows from (Y‘,;z) and

(YB,t3) being feasible solutions to Problem P . We

have thus achieved improved bounds on the optimal value

*
C
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From this point onwards, the algdrithm Proceeds in

4 series of stages. The zeroth stage, just detailed
1

above, consists of Problem Q° and its solution Yl .
The first stage consists of Problems Q2 and Q3 and
their solutions Yz and Y3 + The kth stage consists
of Problems Q™ and Q%% i thetr solutions. The
Process is conveniently depicted by a typical binary-
search tree whose nodes correspond to the Problems

QS - Figure 8.9 depicts such a tree with four stages

and nine nodes. Branching occurs when a particular
activity is selected to have one of its (duration)
intervals divided into two subintervals, as exemplified
in Figure 8.8(c) with costs and bounds redefined as in
(8.3) and (8.4). A branching node : g may be selectad
according to some heuristic rule; for example, it may

be done by choosing that Problem QS whose optimal

8,.8 : S ;
value C(Y) 1s minimal over all cost values associated

al

o3

a4

e

a?

ab i
o

ol

a?

~

c
Figure 8.9. A binary search tree.
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~with intermediate nodes (nodes from which no branching
has occurred, denoted by I(k) at stage k )« ‘The

rationale here is that Problen QS has the smallest
lowey‘bound-on C* and, hopefully, the feasible space
F° will contain a point yielding a value to C approx-
imately equal to CS(YS) . Another possible heuristic
rule is as follows: choose that Problem QS whose

. o S $ 7
optimal solution Y  yields the smallest interval of

*
uncertainty on C . In any event, having chosen a
s
Problem Q at stage k from which to branch, we
2k 2k+1
create the Problems Q and Q in a manner

exactly analogous to the wmanner in which Q2 and Q3
were created from Problem Ql . The feasible spaces

F2k and F2k+l are thus defined by

M . PN

(X ) Ei j

S
87s iSJS iSjS

=F N

Fxi
l

LE e
gl gl 13J5£

O A L A
15 =
8'Ss S S

Furthermore, cikj is the highest linear function
s7s

underestimating 4 o over the subinterval Eﬁ 1.9
3 s s

y? 5 while c?kTL is the highest linear EFunction
*sds tsls '

4.5 iy [

7 ; ] s
underestimating c, ., over subinterval [?
878 S8

u, j ] . The sets sz and F2k+l are feasible, since
s”s

the point (Ys,ts) lies in boch sets. The new prob-

lems QZk and QZk'+1 are linear problems with network

constraints similar to those of Problem P and thus
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may be solved by the Fulkerson algorithm. The optimal
*
value C is found at stage k + 1 by

: \ *
kal = min {CS(YS)} B (RS - min {C(YS)}
sel(k+1) $=1,2,...,2k+1
=,,Wk+1

" § ; ke k
The process continues until either v = w at some

stage k , or when the interval bounding C* is deemad
small enough for practical purposas.

Three remariks should now be made. First, the choice
of the subintervals on the duration Yy i of Problen

s's

QS is arbitrary; the division indicated above seems to
be a reasonable heuristic. Second, the above approach
is clearly applicable to piecewise linear functions,
whether concave or convex; in fact, the numerical
example worked out in Falk and Horowitz [8.211 contained
arcs in both categories. Third, the proof that the g
algorithm is finite rests on the fact that the function
C 1s concave and defined over a convex polytope: it
must assume its minimum at one of the finite vertices

of the feasible Space F . Most of the subproblens Qs

nave their solutions at vertices af F . But since
new vertices are created when new upper and lower

bounds uij and Rij are addesd, some Q-problems may

have solutions at points which are not vertices of F§ .
The proof that only a finite number of such problercs
exist is given in Reference {8.22].

VII. Local Optima Provide Excellent Bounds. The dic-
tum seems pedantic, yet its application, whers possible,
yields significantly improved results. To some dagrae
this dictum, which advises the analyst to seek che
optimum of the subspace under consideration, seems to

be antithetical to Dictum V which advises against such
optimization. Nevertheless, this dictum should pe

taken to read: if one can easily derive a leocal
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optimum, then it is worth implementing.

Example 8.9. One of the more recent illustrations of
this dictum was provided by Mitten and Tsou (8.41]
referred to below as M&T. They addressed themselves
once more to the problem of scheduling N tasks on a
single facility to minimize an objective cost eXpres—
sion. Their approach was to combine simple bounding
with local optimality to achieve efficiency and fast
convergence. We introduce their terminolegy and
netation.

S : a finite set of N elements (the tasks)

g Cs : a subset of elements of § (a subset of
the tasks)

Pd : the set of all permutations of 7 ,» With
P =P
U g
G
peP : apermutation in P , p = {wl,:,,...,wn) 5

n < N, in vhich wi is the tasik occupy-

ing the ith position in the ssquence

S : the unordered set of elements coatsined

in and S =8 - §
P, 5 p

P e (wl,wz,...,wm) 5 the set of the “irst o
; ) :

elements of p & P with p the aull
permutation

(p,q) : a permutation formed By the concicenation
of the two dispoint permutaticns p and
qQ , both in P

o : the ith element in the permutatica

l .

(wl’WZ""’wm)

To each element - x ¢ S there are two given r2al and

finite constants: e, > 0 , denoting tha cost of task



Chapter Eight 178

I 3 ¥

x discounted to its start time, and’ dx.i 0 denoting

its duration. For any permutation pepP  lat

D= [ d . with D, =0
XeS p

Assume that "now'" is the start time of the scheduling
process. Let f£(£) > 0 be a real-valued bounded func-
tion, say a discount factor. Let C{p,t) denote the
cost associated with the permutation p when initiated

at time t . For any real constant D0 , 0 i_DD < @

the cost associated with permutation p ¢ P is given by

" n
C(p,DO) = Z cp f(D0+D m—l)
m=1 “q p

Note that

Cl(p,q),0] = C(p,0) + C(q,Dp)
The optimum is defined by

C*(D ). = nin  C(p,D.)
0 0
pEPS

% E3
which corresponds to some p P (DO)

Let us now turn to the generation of bounds. Tt is
well known that a condition For local optimality of a
permutation is that any contiguous binary switch‘(CBS)
does not lead to improved objeective value. The state-
ment of this conditidn in M&T terminology is as follows.
Let q and r be two disjoint permutations not con-
taining the two distinct elements x and y - Let
P = (qsx,y,r)and wpl = (§7:%,2) 5 that is, pl is
the permutation p with the elements X and y inter-
changed. Then
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0) - . = - s
C(p,0) - c(p',0) cy[f(Dqu) .f(Dq)J cy[f(Dq+dy)

= f(Dq)]

Let Rw(D) = [f(D+Qw) - f(D)]/cw' for any w e S and

0 <D <=, Then it can be seen that
R (D) <R (D

() <R (D)

is equivalent to

C(p,0) < C(p',0)

from which M&T obtain the following CBS condition
P* only 1f B (D) < R (D) (8.5)
E only i < [ .
o 4 AL gT T ARG

Furthermore, p is locally optimum if condition (8.5)
holds for every adjacent pair of elements in p . Tais
condition leads imediately to the following construc-
-tion to establish an upper bound B on the optimal
value. Construct a complete permutation g = (gl,gq,

...,gq) by iteratively choosing g; satisfying
L

Rgl(O) £ Rx(O) for all. = &S

D & F 1 = S -
Rgi(“ni_l) £ Rx(Dai—l) for all - -.=x'g 5 2

S

i-1

Clearly, the value of any complete permutaticn is an
upper bound; but this value C(g,0) of the particular
permutation g is usually a very goeod upper bound,

if not optimal value. It is equally well-known that the
cost of any partial permutation p is itself a lower
bound b on the walue of the optimum. However, if

f(£) 1is monotona in & ,'which is usually the case,

we can do better. For, let o be a nouempty proper
subset of S which contains no elements of p .
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Suppose that £(£) 1s nonincreasing in £ (the case
of a discount factor). Consider the two partial per-
mutations u and v defined as follows

-

I

u (ul,uz,...,un) erPSwrithse St onic mat= e o

b P n

v = (vl,vz,...,vn) € P with dvl 3_dv

| v

;
Vi
o

%)
o)

Then a sharper 2.b. is given by
n
b(D ) = C(p,0) + } ¢ f(D +D )
P ! u, =
d==i i,

In case f(£) dis monotoue nondecreasing, reversa the
order of elements in both u and. v .

Thus the u.b. is established on the basis of local
optima. The 2.b. is based on a well-known inagualicvy
that presumes the relaxation of the parameters -7 rha
problem. The reader has just besn introduced to 2
third form of relaxation!

8.5 Dominance and Feasibility

The ultimate in efficiency of search techniquss
be able to rule out, or eliminate from the set
tenders, all points but one based on logical arzusx
alone. Unfortunately this happy state of affa‘rs
rarely occurs, and when it does, it rules out t=a very
need for an iterative search procedure such zs &i
cussed here under B&B. Still, the concept is zz3o:
and eminently useful. We have alrsady witnesse: such
elimination (fathoming) through the use of boir=Es. Tha
two other avenues are: the establishment of de—inance
relations between subsets of the feasible space, znd
the establishment that certain completions of pe-tizl
solutions are infeasible. This latter comnsiderzcion
arises as a consequence of the fact that, mora cf:an

than not, the original space being searched is "=nriched'
through the inclusion of infeasible points. Thus t“e
words '"dominance and infeasibility" refer to ths du
activity of weeding out infeasible points and, z—ong the
feasible ones, demonstrating that some subset is

J[l
i

n

e

lf’
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preferred to another.

The above use of dominance and infeasibility is
essentially a process of elimination.. Such elimina-
tion-is motivated by one of two considerations: by
inclusion, or by exclusion and decomposition and it is
accomplished through the use of cuts, surrogate con-
straints, ahd relations. The following discussion
elaborates on these notions.

VIII. Adaptive Cuts: Value Cuts and Configuration
Cuts. By a "cut' is meant an additional coanstraint to
the original statement of the problem. Such cuts are
usually "adaptive' because their form and content de-
pend on the stage of iteration and the particular par-
tial solution being coansidered. The concept is based
on the elementary observation that having arrived at

a partial solution the analyst should, and usually can,
augment the set of constraints on the basis of addi-
tional information available. These additional con-
straints "cut out" portions of the original feasible
space. This results in sharper (lower or upper) bounds
and reduced search effort. The concept is not new:
it was first used by Little et al. [8.37] in their
solution of the TSP. For instance, they asserted that
given a partial-permutation (1,12,13,...,ik) of the

first k cities in a tour, then any completions which
contain a city ir in the subset of cities 1,12,

als s

x are inadmissible; that is, such completions

are "cut out’' of the feasible space since the complete
permutation would then contain a subtour. The genera-
sion of cuts in B&B procedures demands ingenuity and
insight into the problem since the nature and form of
cuts vary from problem to problem.

In general, there are two kinds of cuts: '"value
cuts" and "configuration cuts." The former type of
cut is generated from knowledge of the value of the
objective function, or knowledge of its bounds. The
latter is gleaned from either the constralning set of
equations or the set K of "other" restraints. Value
cuts are illustrated by the following two examples.
Example 8.10. Consider the following general MLP prob-
lem which crops up regularly in the field of faeility
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location-and-allocation problems:

Program L
minimize ¢'= fy + cx

Shiti. Aly + A2x =b
X >0ty ).r:i =0,1 and y e K

Hexrel,« ~f e iave given vectors, A1 and A2 are

given matrices, and K represents additional con-
straints on the Vi - For a physical interpretation

of this model, one may consider the binary variable
Yy to correspond to the dichotomy: have a facility

in location 1 (yi=1) or do not (yi=0) « The fixed
cost for establishing the facility is fi independent

of its size. The vector X may represent a lewvel of-
the activities, with corresponding cost vector c ..
The matrices A1 and A2 are the coefficients of the

variables in the constraining equations. The set K
represents, for example, the so~-called ”bunching con--
straints" of the form

AR
1€Sk

which reflect the peed for one, and only one, .facility
in a given subset of locations Sk . For sase of nota-
tion, denote by B the set of additional constraints
imposed on the y and «x vectors

BUA Miyists e g Fi = 0ty e k)

To illustrate the concept of value cuts we proceed to
establish a sequencz of lower and upper bounds on costs.

(a) A 2.b. on the total cost (LBTC). Solve the LP
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minimize ¢ = fy + cx

- s.t. y +Ax=0b

Ay 2

y , Xx € B!
B'__@xz{y,x:xio,oiyif_l,

y € K} |
In other words, the LBTC is obtained by solving
the original problem but with the integer
requirements on the Yi relaxed.

(b) A 2.b. on the cost associated with the con-
tinuous part (LBCC). Solve the MLP

minimize y = cx

= + x =1
s.t Aly Azt b

%x; vy B

Note that here we are demanding that ¥y be

a binary variable. Xn some cases the retention
of this requirement poses no computational
difficulty (see [8.17]); otherwise, substitute
the set B' for B

(c) An u.b. on the cost associated with the integer
part (UBLC) :

If at any stage of the search tree there is available

an estimate of the upper bound on the total cost (UBTC),
such as a complete feasible solution, it can be utilized
to calculate an UBIC as follows. Define TIC (TCC) as
the total integer cost (total continuous cost) asso-
ciated with any seolution vector y of the integer part.
Clearly, we are interested in considering only the vec-
tors y which could improve the current UBTC, that is,
those which yield
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TIC < UBTC - TCC
Since .TCC.3_LBCC » then, a fortiori,
TIC < UBTC - LBCC

and the quantity UBTC-LBCC is an u.b. on the value of
the integer costs (UBIC). We have senerated a value
cut of the form

fy < UBLC (=UBTC-LBCC) .

This cut is updated once a better UBTC and/or a bettar
LBCC is obtained. The cut is incorporated, upon its
generation, in the restraining set,

Example 8.11. The second form of value cuts is exempli~-
fied by the well-known Benders' cuts [3.5] which are
based on a partitioning approach.. Because of their
frequent use in MP problems, we briefly review their
construction in the context of the abovs facility loca-
tion MLP. Consider the mixed Program I stated at the .

beginning of Example 8.10 and let yo be any non-
negative integer vector, The resulting problem is an
ordinary (continuous) LP.

Program LC

0 0
minimize ¢(y ) = fy + cx
B 0
Stak s A2x =.b Aly
x>0
The dual is

Program DLC

maximize ¢ (yo) = fy0 + q(b—Aly)
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u>0

If DLC has no feasible solution, then the vector yo
is inadmissible. On the other hand, if DLC has an
unbounded solution, then the primal LC is infeasible

for all x , and again yo is declared inadmissible.

This leaves yo admissible only if DLC possesses a
finite maximum. Assume that to be the case, and sup-

pose that it corresponds to uo(yo) . Clearly
() * 0 *

iy ) = (y) 2 ¢

and we may write

3
g = min fy + max u(b—Azy)

wihere 'min'" is s.t. y = 0,1 , and admissible, and

Umax't dsh s b qu <£¢ ;u>0 . If T deénotes ‘the

set of extreme points of the constraint set of (DLC)
then T is of finite cardinality and

*
2°6% = 50 + nax u-ay))
usT

In order to restrict attention only to adrmissible y ,
we must guarantee that the solution to DLC is bounded.
Suppose that it is not. Then it must be true that

0 . .
u(b—Aly ) increases along some extreme ray. In other

words, there would exist an extreme point u' and a
direction v such that every point on the extreme ray

u +9v, 08>0
is feasible for DLC and (u'+8v)(b—Aly0) incraases with
9.t JEor 6v(b~A1y0) increases with 6 , implying that

v{b—AlyO) >0 . To prevent this eventuality, let
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R={v:u+6v, 8 >0 is an extreme ray for some

wie T}

-

Then we require yo to satisfy

e

v(b—AlyO) <0 for every veR

Incorporating this into the original MLP we obtain
’ ;

g = min fy + max qu:Aly)

where "min" is s.t. y =01 5 and “"max’ is 8.8, we'T
and V(b—Aly) <0 for every ve R . The original

HMLP may be transformed into an equivalent MLP by intro-
ducing the objective function of DLC as a variable )
such thzat

b > fyo + u(b—Alyo)' ek g

Then the equivalent MLP is given by

Program EL
*
¢ = minimum ¢
s.t. ¢ > fy + u(b~Aly) Foriou| e

0

[ v

v(b—Aly) FOE + VvV ELR:

Vi = 051

This '"mixed" program has all integer variables but one,
namely ¢ . It is usually approached as an ILP with

the understanding that any algoritim for ILPs would have
to be modified slightly tc solve it. Essentially, the
MLP of L has been partitioned into the continuous
linear program LC and the "almost integer" linear
program EL. Theoretically, EL can be solved only if all
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the extreme points and extreme rays of. DLC are known.
Practically, EL can be solved iteratively by generating
consftraints only when they are needed.

= : ®
Let ¢ (possibly + = ) be an upper bound on ¢ ,

obtained perhaps By a feasible solution. Let Tk and

k %
R~ be any subsets of extreme points and directions of

extreme rays of {u: uA <c , u >0} known at itera-

tion k (at the start, both TO and Rp are empty).
R i

Since ¢ < ¢ and

&
¢ < fy + u(b—Aly) for every u € Tk

then we may impose the constraint:
- k.
> £y + u(b—Aly) for every u e T

which replaces the first set of constraints in EL. To
_ restrict the enumeration to admissible y , we further
" have ’ '

v(valy) <0 for every- 7 & Rk

Equivalently, we have

1

(—f+uAl) v 3_—5 + ub for every u € T

1 - "lk
vAly > vb for every veR

y=10,1

The sets 7 . ‘and R®  increase in size (iwplying
additional constraints) as iterations proceed, which is
one possible drawback of the Benders' partitioning
algorithm. Of course, the number of iteratiouns is

limitad by 2" , the number of possible binary values

of the vector y . However, empirical evidence shows
that terminatiomn is achieved long before the sets



Chapter Eight 188

Tk and Rk contain all feasible extreme points and

extreme rays. -

Configuration cuts are usually implicicly embedded
in the definition of the problem, residing either in
the constraints set or in the definition of the set
K . However, if a cut in the solution space of the
integer is sought, these implied restraints must be
made explicit. For instance, in capacitated plant
location problems, the set of constraints nmay specify
that all demands at the various destinations nust be
met. Thus thz following constraint is implied

yq > RTDMN

where q 1s the vector of capacities at the wvarious
locations, and RTDMN is the residual total demard. The
efficiency of this cut is data-dependent, but it has
proved to be most powerful in some applications [8.17],
For another instance, the set K implies mainly the
"multiple choice" constraints of the form

Y Ypsl forall 8 o kw12l

iESk K

where Sk is a set of possihle choices for a facility.

These "bunching constraints" are adaptively updated as
the search proceeds and partial solutions are obtaine..

lﬁ;ﬁ_éﬁitﬁﬁﬁﬂfflfﬁﬂﬁiﬁEﬂiﬂEﬁ' Surrogate constraints do
not augmeni the set of restraining equatioas, bhut
rather substitute for them. The surrogata ususlly
increases the search space. Hopefully, the solution of
the problem with the surrogate is much =2asizr than the
original problem, which more than compensates ror the
loss in efficiency dus to the expansion of -ch2 search
space. Of course we are interested in tha “tichrest"
surrogate, in the sense of minimal enlargecant of the
search space. If that is achieved, the resultant

would be a tighter bound, which is always desirazble.
Example 8.12. To fix ideas, consider the following ILP
where ¢ <0 and b 200

¥
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Program R

maximize 2z = cx

SLiEas AN <sh

=,

Suppose that at the kth stage of iteration we have a
partial solution: some of the variables fixed at 0

[ad

- 0
form the set 3, ; others fixed at 1 fomm the set
k

1

Sk ; and the remaining variables are still free und

form the set Fk . At that particular node in the

search trec, the problem may be stated as follows.

Progranm Rk

maximize =¥ ek - F (e

: It e jzsl J.

L k
: o da : S 2
s.t. .ZF 2;5%; < By ‘Zsl S (8.9)
1 i=e] o i am
xJ = J.¥ 5 F € Fk

Suppose we substitute for the inequality constraints
(8.6) the single coanstraint

u. u.s : 2 (8.7)
i 5 I
i b

W r~1g
™ )

IIME

e

k 1

i
where = (u ’UZ""’um) >0 . Clearly, (8.7) is
weaker than (8.5) since any set of xj's satisfying

the latter also satisfy the former but the converse
need not be true, that is,
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Sk(u) 2 S,

whére Sk' and Sk(u) are the set of binary feasible

solutions to (8.6) and (8.7), respectively. Clearly,
-1f Sk{u) = ¢ , then Sk = ¢ also. To achieve the

*
best surrogate constraint, we seek the multipliers u
which yield

min  max  Je,x
w0 xjsSk(u) i1

xj = 0,1

Let g(u) = 'max X (IS Ut Sk(u) and let g'(u)
" jEFk J j 3

denote the maximum with the integrality restricticns c¢a
the xjﬂs dropped:

g'{u) = maximum § ¢ x

jeFk 3 j.

m .
s.t. X ui Z

m
Y e e T
{=1 SiEEn Rl oy

g j_xj S T Fk

Tuen the best multipliers to this continuous versicn of
Qk provide an excelleat estimate of the multipliers

Feer ;
a- oV TE we denqte the best multipliers by uo , then

Vo) = i)

u>0

09~

It is easy to demonstrate that u0 is given by the
optimal (dual) variables to the dual LP to Program Qk
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with the integrality requirements removed that is, the
optimal dual variables to the LP

ﬁiﬁimize E u sy + Z W

dalts z a;.u o, > e fort e F

u s W

1 >0 forall 1, ]

3

Ouce the (best) surrogate constraint is generated, it
can be used to geperate bounds and to fathom nodes as
explained above.

X. Introduce Relations Where None Existed. While
constraints and relations complicate mathematical
prograrming problems, in the sensa of increasing their
complexity and time to solution, constralats and relar
tions may in fact be of great assistance in B&B methods
because they limit the space of search. After all,
considerations of infeasibility are among. th2 most
powerful methods in the B&B approach.

Consequently, one always seeks to establish con-
straints and relations among the unknown variables of
the problem in order to reduce the space of search,
Cuts and surrogate constraints, discussed above, are
such devices. Here we wish to highlight the concept
of generation of cuts that are based on derived rela-
tions from logical arguments, where none existed before.
The reader may wish to view the (dominance) relations
emphasized here as added examples of cuts, which indead
they are. However, there is a generic differeace be-
tween the cuts discussed here and, say, those based on
Benders' decomposition: these latter are based on
mathematical programming arguments, while the former
are based on permutational arguments without recourse
to the mathematical programming model. Two appiicacions
illustrate what is meant here. The first is due to
Emmons [8.18] and the second is due to Elmaghraby and
Park [8.16]. We briefly review the lattert.
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Example 8.13. 1In their utudy of scheduling N jobs on
M machines in parallel, Elmaghraby and Park [8.16]
developed a set of dominance relations that helps reduce
the search effort drastically. Their approach exempli-
fies the concept of dominance by inclusion, namely,

a schedule with a particular property dominates all
others that do not possess such property. (Below under
Dictum XI we discuss an approach that_exemplifigs
dominance by -exclusion.) Suppose job j has process-
ing time Py and due date equal to its processing

time. Furthermore, suppose there is a linear penalty of
tardiness given by the product of w, and max (0;

i
Tj—pj) for job J . It is desired to determine the

schedule that minimizes the total penalty for tardiness.
We use the following notation.

Qm - (ml,mz,...,mk) denotes a séquence of k jobs

on machine m , m = 1,2,...,M
Subscript mj tefers to the jth job on machine n .
The subscript mE' refers to the last job om
nachine m

8;¢ the start time of job i . The start time of
the last job on machin: m is denoted by
= i

')

{

T.: the completion time of job 1 inl a given
sequence. The completion time of the last job
on machine m is denoted by Tm

: 2

L. = wri/pi and we assume that the jobs are numberad
in nonincreasing ratio ri , the so-called
natural order

The dominance relations are presented in terms of prop-

erties of the optimal schedules or as precedence rela-
tions between pairs of jobs. (These latter assert ions
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‘can be easily translated into dominance relations.)

(1)

Ereesy

(iii)

(iv)

(v)

(vi)

For a schedule Q to be optimal, it is
necessary for Qm = (ml,mz,...,mk) to be

.sequenced in the natural order.

There exists an optimal schedule in which
job 1 is scheduled first.

For a schedule Q to be optimal it is
necessary that

Toe o> 8- for every pair of machines i
% N1

and j

Using the couvention, job i precedes job
j means that s, <s, , we have that if

hims ]

w0 S d S
Py :‘pj an T2

J
then job 1 precedes job j in an optimal
schedule. :

Iif ﬂj = 1 , a constant for all jobs, then
there exists an optimal schedule in which
jobs are assigned in their natural order
from machine 1 to machine M in rotation.

. N

Let H = E pi/M , representing the pro-
i=1

cessing interval if job splitting (includiag

parallel operation on two or more machines)

were permitted. Then in an op-imal schedule

‘on two machines, job h precedes job k if

the following two conditions are satisfied.

(a)y = = and r >F

h h+1 k-1 k
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h-1 1
(b) § Py SH-Smaxp -

p
ieN 1

®og

As' an example 'of translating the above statement into a
~dominance statement, consider (1i1) above. Suppose we
have a partial schedule of k jobs, denoted by P(k) ,
on three machines as shown by the solid lines in

Figure 8.10. Then the completion of P(k) which has
job  (k+l) on machine 2 (the broken segment) domi-
nates all other completions. In fact, if Pryy (the

Processing time of job k+l ) is such that T2 + Py

2
<min [T, , T. s which is the case represented in

o )
the figure, then the completion of the partial schedule
P(k+l) itself which has job k + 2 placed on machine
2 dominates all other completions!

XI. Exclusion and Decomposition. Exclusion and
decomposition constitute another form of derived
relations based on permutational arguments, The only

Machine 1 - 1 = T1'
(k +1)

Machine 2 7oA } -—.;_rz-.. —
A1

Machine 3 — f— + 5 o T

" Figure 8.10 - A Gantt chart.
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difference between exclusion cuts and the cuts dis-
cussed in Dictum X above is that here dominance is based
on excluding a possibility. This is a weaker counditiom..
than the inclusion arguments.discussed in X. On the
other hand, decomposition arguments essentially "break
up" the original space into subspaces with the links
between them established optimally. Clearly, such
decomposition reduces the burden of enumsration con-
siderably. For imstance, in a ten-job scheduling
problem on a single facility the original space has

10! = 3,628,800 points to be enumerated. 1If it can be
established that optimality requires that a subset of
four jobs must precede a subset of six jobs, then the
enumeration is reduced to only 4! x 6! = 17,280
alternatives!

Example 8.14. An excelleut illustration of such exclu-
sion arguments and decomposition procedures was pro-
vided by Mitten and Tsou [8.41], referrad to below as
M&T, and whose paper was previously discussed in Exam-
ple 38.9. They utilized the CBS condition (8.5) to
establish some exclusion conditions as well as a con-
dition for decomposition.  Let p = (Pl’pZ""’pn}

-be a partial permutation of n elements (n<N) .. Let

z € Sp , where §p =S - p . The issue is to establish

the conditions under which 2z is not a candidate for
the (n+l)st position after p.. Let s be the set

of elements of §§ whose R-value is not less than Rz
at. Dz
p

i {we Sp: Rz(ap) i.Rw(Dp)}

Clearly, =z ¢ g and gp T _is the set of elements

of '§p whose R-value is less than Rz at Dp o EeE

Az = I dw - min dw. Then Az 438 .4 %.2. on Ehe

WEQT wed
A z

duration of g, beyond Dp and the following can be
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established. If

(a) oz # §p s that is, if there exist elements

3 u e Sp for which RZ(Dp) > Ru(Dp) . aod e
(b) RX(D) < Ry(D) for all x ¢ Sp - Gz SV E 0,4
and-all D sk, Dp SDie Dp + Az (that is,

the elements of §p whose R-value ig < Rz

retain that inequality for all time periods in
the interval [Dp,Dp+Az])

5
then (p,z,q) ¢ p (0) for any permutation q of the
remaining elements of the set §p =zl St particu-
lar, 1f o, = {z} then 2z cannot follow p in posi-

tion n+ 1, fThe immediate consequence of this result
is the formation of a preference table that gives for
each value of D (there are only finitely many) the
elements ranked 1in order of increasing RX(D) « A check

on conditions (a) and (b) is then facilitated, and would
normally result in the elinination of candidates
(branches in the 3&R search) for position n + IR 7o)
achieve decomposition, let: pe P be 3 partial pernu-

tation and o g nonempty subset of §p to be parti-

3 . 7 e
tioned into two nonempty subsets ¢ and g - As
i v 1 .
befate, dot A S Insyns mind_ -, and D'= % <
WEQ WED, WE &

Finally, suppose there exist two partial permutations
%

*
(ol PU, and ‘r & Po" for which the following hold.

% ;
.C(o ,Dp) j_C(q,Dp) for all q ¢ P
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* | 1l ¢
C(r ,D 1_~D') a C(r,D +D') for alliicie P .,
BNy P o
R, (0) <_‘Ry(0) ‘for all xec' , y'e ¢'' and all
De [D,D+A ]
p’p o

* *
Then we conclude that C[(p,q ,r ),0] < C[(p,u),0] for
all u e P_ . In other words, the completion of p has
S & =
been decomposed into two parts, q and r , with

* *

q definitely preceding r . Naturally, the check
for such decomposition is guided by the (sufficient)
condition of its realization. In particular for any

' and

given 0 € §p one determines the two subsets ¢

¢'' based on the R-values; then one proceeds to seek
* *

the subsequences q and v . M&T report excellent

computing results using the approaches outlined above.

8.6 Miscellaneous Dicta
In this final section we present three dicta.

XII. It Is Sometimes Better To Use a Not-So-Economical
Model Because It Is More Amenable To Computing "Tricks'.
Geoffrion and CGraves' treatment [8.28] of a multi-
commodity distribution system provides an illustration.
Example 8.15. The problem statement from [8.28] is as
follows. There are several commodities produced at
several plants with known production capaclities. There
is a known demand for each commodity at each of a num-
ber of customer zones. This demand is satisfied by
shipping via regional distribution centers (DCs), with
each customer zone being assigned exclusively to a
single DC. There are lowet as well as upper bounds on
allowable total annual throughput of each DC. The
possible locations for the DCs are given, but the
particular sites to be used are to be selected so as to
result in the least total distribution cost. The DC
costs are expressed as fixed charges (imposed only on
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the sites actually used) plus a linear variable charge

which is a function of the "throughput" at the DC.
Transportation costs are taken to be linear,

' The mathematical model adopted was the following

MLP.

minimize Z ] o) X + X[E z
%> 0 o 1jke “1jke k k"k
and
Yz = 0,1
W o yu] (8.8)
1,2
8.t, k)'z % ke < sij a1l .- (8.9)
i »

e g

xijkﬂ i Di% Yieq RLAAGE o led. (8.10)

Eykl'- Lo el (8.11)
jkzk < %g D12 s szk all I (8.12)

Linear configuration constraints on
one or both of y and 2z (3.13)

The notation is explained as follows.

X s1q :  the amount of commodity i shippad trom
i plant j through DC k fo customer
zone £ -
cijk? average unit cost of production and ship-
ping Qorrespondlng to xijkﬂ
2y diaiort variable, equal to 1 if a DC is

-acquired at site k , and 0 otherwise

fk : the fixed cost associated with acquiring
the facility at site k



Elmaghraby and Elshafei 199

Yieo : a 0,1 variable, equal to 1 if DC k
serves' customer zone & , and Q0 otherwise

Dii ¢ demand for commodity i 1in zone ¢

Vi Jvariable unit cost of throughput in a DC
at site k
Sij ¢ production (supply) capacity for commod-

ity 1  at plant

Ek,vk ¢! minimum and maximum allowed total annual
thruughput for a DC at site 'k

It is not difficult to see that this model is too liber-—
al in the number of equations, a condition usually
avoided by workers in LP (continuous, integer or mixed).
There is an obvious opportunity to economize on the
number of constraints of type (8.10) without changing
the logical content of the model in any way: replace

. (8.10) by : . i

Y X 51g = Dig all 4" % Ik (8.10a)
i,k

Y X ke T (E_Dii)yki all k , 2 (8.10b)
i,j i ,

This formulation handles the two functions of (8.10)
separately, ensuring that all demands are met, and
forcing the appropriate logical relationship between
the x's and y's. But in any particular application it
presents a saving in the number of constraints over
(8.10). For instance, suppose 1 = 100, j = 10 ,

k =20 , and 2 = 1000 . Equations (8.10) would yield
(100) (20) (1000) = 2,000,000 equations; while (8.10a)
and (8.10b) would yield only (100)(1000) + (20)(1000)
= 120,000 equations! However, the program of (8.8)-
(8.13) is actually easier to solve than the program
with (8.10a) and (8.10b) substituted for (8.10). The
reason lies in the application of the Benders'
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decomposition algorithm which yields excellent "cuts"
and easy-to-solve transportation-type subproblems in
the first. case, and extremely weak "cuts" in the second
casel . :

' XIII. Do Not Optimize the Relaxed Problem; Just Obtain
a Bound on Its Solution. In spite of the rather elemen-
tary nature of the councept, its implementation may spell
the difference between an operational scheme and a
difficult, albeit correct, one. The dictum is best
illustrated by Eastman [8.9] and that of Little et al.
[8.37] in the calculation of the bounds for the TSP.
Both treatments approached the problem from the polnt

of view of relaxing the tour constraint, which leaves
the standard assignment problem. While Eastman solved
the assignment problem to obtain its optimum, Little

et al. were content with a 2.b. on its value. Clearly
z* 2 opt. value of assignment problem > 2.b. on assign-
ment problem

X1V, Preconditioning: Limit the Size of the Original
Space To Be Searched. This is a manifestation of the
well-known motto: "an ounce of prevention is worth a
pound of cure." It draws attention to the need for the
proper "conditioning" of the search space before the
search is initiated. Two examples are provided in the
literature. The first is due to Held, Karp and
Sherashian [8.32] in the study of assembly line balanc-—
ing, and the second is due to Elmaghraby [8.11] in a
scheduling problem. We briefly discuss this latter.
Consider the scheduling of N jobs on a single
. facility, in which each job j has a processing time
pj s, due date dj » and a penalty:function ﬁj max

(O;Tj—dj) which penalizes tardiness, where Tj is

the completion time of jeb  j deduced from the schedule.
It is desired to determine the schedule that minimizes
the total cost of tardiness. At the outset there are

N! different sequences, and as many points to be enu-
merated. However, through developing a dynamic pro-
gramuing model of the problem, the size of the search

space was reduced to only ZN - Branch-and-Bound was



Elmaghraby and Elshafei 201

then applied to this smaller space, with excellent

 results.
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