~ THE INSTITUTE OF
NATIONAL PLANNING

~ Memo No. 876
¥ e, el
- PROCESS CON'ROL SERIES
PROCESS CONTROL SOFTWARE

By
ALWALID ELSHAFEI
OPERATIONS RESEARCH GROUP

. March 1969




INTRODUCTION.

Process environment diciabes the design of process computer software.
This enviromment: may involve chemical synthesis, metal rolling, steanm

power production, or any process susceptible to computer control.

Functions of a process computer include such things as reading sensors,
setting control devices, and logging operaiional data while operating
as a standard data processor. Design of the softiware which directs the
computer’s operation is dictated by the specific requirements of the

process involved.

The early expectation that process control computers would require
little software support (because they would be programmed once and for
all to do a specific job) was very quickly replaced by the realization
that not only was all of the sophistication of conventional sofiwars
required but, in addition, the real-time aspectis of the process control
application also had to be supported by software., This realization has
led to a complete time-shared executive system with an extensive library
of subroutines for communication between the computer and process.During
process free—-time, these executives permii use of the computer for
off-line tasks under the control of a subroutine called the off-line
monitor to distinguish it from the executive itself. The library of
subroutines represents, in a semse, a language for process control,
allowing programming of guite exitersive real-time centrol systems. Seve-

ral software designs reguirements are common to all systems, they are:

1. Computer programs must react quickly to process events. Alarms and
corrective controls must be given with litile delaye.

2. Programs must be scheduled so that computing time does mei exceed
availzable real time.

3. Input and output devices must be allowed to operaie at (or near)

their maximum speeds.



4, Actions which occur at definite times or within definite time periods
must be scheduled according to a real-time clocke.
Se Information must be gathered from the process as it becomes available

and transmitted to the process as it is needed,

Process control software may best be understood by considering the control
problem itself and the software and hardware needs it generaies.

A process computer system in a chemical plant gathers temperatures,
pressures, and flow rates from the process. A raw material composition
and marketing requirements change, programs calculate and send out changes
in plant operating conditions. When emergencies occur - such as extreme
temperatures or pressures — visual and audible alarms and corrective
actions are sent to the plant. Process information, recorded each hour,

helps determire long rangse operating sirategye.

In a metal rolling process, information is gathered beforehand from
laboratory analyses, physical measurements, and customer requirements.
As a rectangular slab of metal is converted to a flexible strip, its
position and temperature are recorded through sensors. Data are combined
by the program, and corrections in roll force, speed, and temperature
are calculated and sent to the mill, Alarms are generated when schedules

or design requirements cannot be met or when equipment fails.

When starting up or shutting down a steam power plant, the computer
system gathers turbine speed, motor position, temperatures, and pres-
sures. As turbine speed is increased, the program scans eccentricity
and vibration. If vibration exceeds an upper limit, turbine speed is
held constant or decreased, or the turbine may be shut off. Visual
alarms are sent to the operators to inform them of the emergency con-
dition. Once conditions are steady, the system monitors temperatures

and vibration and prints them each hour,



CONTROL LEVELS

Since the objective of the control systems is to successfully
operate the process despite the presence of many disturbances, it is
appropriate to partition the disturbances according to their relative
frequency and consider the control of the system in the presence of
each of these disturbances separately. The resulting control system

hierarchical in form, is shown in Fig. 1

The highest frequency disturbances which must be considered are
physical upsets which cause process variables to deviate from their
"raference! values. For example, flows, temperatures, pressures, and
the like will not long stay constant without the continual intervention
of a control of some kind. Such control is usually fast and, if accom-
plished by a digital computer, termed direct digital control (DDC), and
is generally regulatory in nature. Often this first level of control
is accomplished by analog controllers with the digital computer sup-
plying only the higher levels of control (such a control system is
termed a supervisory control system). This is especially true in ex=-
isting plants which already have analog control and add the supervi—
sory control in order to increase production, cut costs, etc.

The operator communication task in Fig. 1 is concerned mainly with this

first level of control., One of the most important tasks at this level
is alarming in case any process variable exceeds prescribed safe
limits. This involves informing the process operator and then either
taking appropziste action or turning control over to the operater. The
computer is especially efficient in alarming and displayingoverloads

and is a tremendous assist to the human operaters.

The second set of disturbances of importance are less frequent in
nature and are caused by the changing mode of operation of the process.
For example, a power system has drastically different load requirements

during day and night hours and the operation of the process differs



FOURTH LEVEL
Sell-Organization

THIRD LEVEL

Model Adaptation]

| |
SECOND LEVEL 5 SECOND LEVEL
Adaptive Control Optimiz, Comtrol
= ]

FIG.1 DIFFERENT CONTROL LEVELS

{5 |

" FIRST 'LEVEL
Direct Control

PROCESS




considerably at high and low loads. The second level conirol system
which compensates for these disturbances has two functions. First, as
the disturbance changes, it may be desirable to change the operating
points (reference values for process flows, presSures,etG-) in order
to make the operation as economically attractive as possible. Such

a control system supplies new reference points to the first level
analog controllers or digital controllers and is termed an optimizing
controller. Secondly, on the same level, the dynamics of the process
itself may change as the operating conditions of the process change,
requiring modification of the first level controllers if adequate
dynamic performance is to be retained. Adaptive control is implemen-—
ted on this level to update or adapt the parameters of the first level
direct digital controllers. This is most easily done if the first
level of control is DDC rather than analog control since the control-

ler parameters are then merely numbers stored in machine memory.

The third class of disturbance is even slower in frequency and
consists of.changes in the parameters of the process itself. This
may be due to seasonal changes, aging, corrosion, and many other

factorse.

If the optimizing control is to be effective, it must have an
accurate mathematical model and consequently the objective of the
third level ‘controller is to make use of process data to update or

adapt the parameters of the mathematical model of the process itself.

The highest level of control compensates for the lowest frequency
disturbance of all, changing process structure (in contrast to
changing process parameters}), This fourth level of control is seldom
automated but rather supplies appropriate information to management
and operators of the process so that they can make the proper decision
as to structural changes in the overall control system and process

(Fig. 1); This level might include emergency restart of the process,



emergency shut down, etic.

Observe that this breakdown of the problem results in hierarchical
control system in which each level of control effects directly the level
of control directly below it and in turn is controlled by the level
immediately above it, This structure is gitracilive noi oxly from.a
conceptual viewpoint, but also because each level can be designed
somewhat independantly of each other level, thereby permitting the
design of a complex conirol system by means of building blecks which
are easily changed and improved upon as the approppiaie technology
becomes available.

From a software point of view, this division of a large task into
many independent gubtasks 1is very desirable since the programming of
each subtask may be done independently and is then easily documented
and updated at later times, However, the various subtasks are not
necessarily performed at the same rate or even in the same sequence.
In fact, various tasks may be performed under emergency conditions
or upon demand of management or the process operator. Censequently,
the software must permii the programmer to efficiently control the
sequencing of these tasks and to change the sequence easily when
it is desired. Of particular interest is the observation that the
computational load is approximately the same for each level of
control. That is, going up in level decreases the frequency at which
the computation must be performed, but the complexity of computation
increases with the result that the load (product of computation time

and frequency) remains aboui constant.

The design requirements of the controclled process systems dictate

the following program design characieristics:

- Since both time and memory are limited, programs share both.
- Some programs voluntarily give up time and space to other programs

when it is necessary to wait feor input or other actions.



- Some programs involuntarily give time to other programs which operate
input/output devices, allowing the devices to operate at or near
rated speeds.

— A real-time clock is used to schedule actions which must occur at
definite times or time intervals, and to generate a tiie-of-day
display. There must be a provision for resetting the clock through
an externszl device.

- Core memory is fast but expensive, and bulk meiory (drum or disc)
is slow but relatively cheap. Programss in the system arrange for

sharing the limited core memory between the programs in bulk sotirage.



PROGRAMMING FOR DIFFERENT CONTROL LEVELS:

There is a significant difference in the programming requirements
of the first and higher ievels of conirol. The simple algorithms of
first level control are zpplied %o processes in which there are many

variables, zall of which gre regulstzd in a siuwilar fashion., Consequently

et
=
(]
:
=
ok
L3
pae
o]
=]
W
b
fd
=
o
(&N
(RS
t
<
tﬂ
5
g
T
\
s
]
gl
o
|-
ol
({4
b
s}
=]
ot
[+
11
f
E
=

cificient

prograwiing and core allocatlon zre necessarye. On the obther hand, the
higher levels of control are relatively couaplex ana noarepetitive in
nature and it is more advantageous here to use an algorithmic lanzuage

in order to provide flexipiliiiy and good documentatioxn,

The extensive input-output facilities of a process control computer
may be needed by any one or all of the levels of control, since all make
use of process data during their eperation, Consequently,many decisions
must be left to the programmer to make for each particular installation.
For example, rate of scan of analog inputs, type of scan (sequential or
random), changes in scan rate, strategy in case of input or output error
detection,; etc.., 2ll vary from application to application and in fact

from one level of control to another witin a given application. Thus

any software systen necessarily must permit the programméf to communi-

cate easily with all of the hardware in the computer and cannot iacorpo-

rate arbiirary decisions about these problems in a single executive.

Most of .the software systems currently available for process copirol
are designed to support the higher levels of control (the so-cailed
supervisory control levels) rather than the first level, and are in the

form of an executive system with real-time Foriran as the basic lanzuazge,

Two factors peruit such executives to be used with supervisory conirel
systems, First, the spsed of machines has significantly increased so
that Fortran-—level programs can compete in terms of speed with machine-
language programs in the earlier machines. Secondly, secondary stcrage

has become readily available, permitiing large executive systems and



efficient storage and saving of programs outside of core. The problenm

of servicing the first level of control can be solved without sacrificing
the executive if a two-computer system is used: one computer doing
primarily first level control (DDC) and the second, under control of the
executive system, performing superivsory tasks as well as backup of the
DDC computer,

CONTRAN LANGUAGE:

One exception to the real-time Fortran approach to process control
languages is the CONTRAN system being developed by Honeywell. This
language is an outgrowth of the Consequent procedure language developed
by Fitzwater and Schweppe. Their language called TASK 64, is a modifica-
tion of ALGOL 60 to include task processing statements and consequent
procedures (procedures which are initiated when prescribed conditions
are fulfilled). Such a language operates within an exécutive system as
does Fortran, but goes a step further than the subroutine library approach.
Control of sequence of various portions of the control program is obtained
by the specification of set of Boolean variables or switches for each
program so that the program will be executed when, and only if, these con-
ditions are fulfilled. Thus these conditions, rather than the order of
program statements or routines, determine the sequence of their operation.
Control of interrupts and communicationbetween the process and the com-
puter through input—output devices are obtained through subroutine calls

as in real-time Fortran,



10 =

CONTROL PROGRAMS :

Program sequence control (PSC) - controls the sequencing and initiates
the loading and execution of user-specified process core loads.
Master Interrupt Control (MIC) - automatically determines the type of

each interrupt as it is recognized and transfers control to the proper
interrupt servicing routine.

Interval Timer Control (ITC) - provides a programmed real-time clock,

a timer for TSC, nine programmed interval timers, and control for two

machine-interval timers.

Pime-Sharing Control (TSC) - Controls the timesharing of variable core

between process and nonprocess core loads.

Error Alert Control {EAC) - provides the following functions when-

ever an error occurss

1) Optionally saves core for future reference,
2) Optionally branches to a user's program for further error analysis.
3) Prints an error message.

4) executes a specified recovery procedure,

Communications Control (COMC) - controls communication with the PSC

and the I/0 prograus.

Bulk Transfer Driver (BTD)

controls transfer between bulk storage and core
SEQUENCE CONTROL:

Statements which permit the programmer to control the order in which
tasks are performed interrupts serviced, and off-line jobs permitted.
Such control is important, since the various levels of control are
necessarily carried out in sequence rather than in parallel and the order
is critical. For example, a sequence of tasks might be to collect cer=

tain data, use a statistical identification routine to determine



—l)ie

parameters of the process, and finally to use an adaptive routine to
change the controller parameters. An optimizing routine too large for
core can be executer in parts if the programmer has control over the
sequence of prograise.

Program Sequence Conirol (PSC) is a control program that handles the

flow of control from the mainline core load to the next. PSC functions

are initiated by execution of PSC CALL statements in the user's

program. The specific functions of PSC are:

1- Execute the next sequential mainline core load. The new core load
overlays the one that contained the call.

5~ Save the mainline core load in progress (on disk) and load a
special core load for execution.

3- Restoresthe core load that was saved in item 2 and continue ex—
ecution from where it left off(the statement following the CALL
SPECL).

k- Queue mainline core loads associated with interrupis whose
occurrence has been recorded.

5- Execute the highest priorigy mainline core load listed in the
core load queue.

6— Insert mainline core load entries into or delete them from the

core load queue,

For PSC to perform the above functions, a CALL statement must be
executed for each one., The specific CALL statements and their para-

meters are described below.

Commands giving this type of comntrol can be categorized in three
groups used to:

1- CALL the next mainline core load to be executed.

2- SAVE the present mainline core load (or disk) and CALL a special

mainline core load for execution.



-] T

3— RESERVE and CONTINUE execution of the saved mainline core load

consequently, those commands can be classified as follows:
1- CALL STATEMENTS, including:

— Normal Call - CALL CHAIN ( NAME ), specifying next program
to be executed,

- Special Call - CALL SPECL (NAME)
—-Return Saved Mainline - CALL BACK
2- QUEUING STATEMENTS, including:

— Insert Into Queue - CALL QUEUE, entering program in a

waiting queue.

Delete From Queue — CALL UNQUEUE, removing program from a

waiting queue.
— Bxecute Highest Priority Core Load - CALL VIAQ

—~ Queue Core Load If Indicator Is ON - CALL QIFON
— Clear Recorded Interrupts - CALL CLEAR :

3- SHARING STATEMENTS, including:

-~ SHARE, indicating availability of free time in which
non-process programs may be executed under the conirol of

the off=1ine monitor,

Such statements may be fresly inbedded within process prograus
written in FORTRAN. Through use of these commands within programs,
the programmer can control the frequency and order in which the various
levels of control are performed. Even when various levels are not
performed on a regular basis (for example, when a certain function is
performed only upon operator demand), these commands permit control
over the sequence. In response to an operator-initiated interrupt,

the interrupt subroutine can decode the request and call for the



-3 =

appropriate program to be entered in the queue and then executed when
it has the highest priority. Of equal importance is the ease by which

sequence is changed as the process control problem changes with time.

INTERRUPT CONTROL:

This includes the control of the routines which service interrupts
and the control of the interrupts theaselves. For example, during cer-
tain routines it may be advantageous to delay the serviving of inter-
rupts to minimize exchanges of prograams or tc prevent certain inter=
rupts entirely (as when a routine cannot be used recursively and may

be called from more than one level.

The program in charge of such control is the MASTER INTERRUPT
CONTROL program (MIC). It controls the servicing of interrupts, an
interrupt may occur at any time but it will not be recognized by MIC
unless the interrupt is on a level that is not marked and is of
higher priority than the present level of machine operation. The
user-assigned interrupts can be delayed from being recognized by
masking the level to which they are assigned. The servicing of process
and COUNT:subroutions: can also be delayed by recording their occurrence.
There are, basically, two types of interrupts:

EXTERNAL INTERRUPTS:
are those associated with the process and programmed interrupt
features. They are serviced, or recorded, by one of four types

of user — written routines:

1- Skeleton Interrupt Routine
2- Mainline Interrupt Routine
3- Interrupt Core Load

4~ Mainline Core Load



e i

INTERNAL INTERRUPTS:
.are those associated withs:

1- I/0 Devices Control

2- Interval Timer Control, for four types of timers:

a. A timer for time-sharing control
b. A programmed real time clock
c. Nine programmed .ipterval timers

d. Two machine intervals timers

3= Trace Control

L Error Control, some of whose functions are:

X Optionally, dump core storage to disk
II a. If in a nonprocess program: Terminate the program if the
error cannot be operator corrected.
b. If in a process program: branch to the user-written error
subroutine that is with the core load.
III Update error counters maintained on disk
IV Execute a subroutine for the device or error condtion print
an error message on the printers, and set up possible

recovery action.

Commands to permit this control include SPECL (to stop the program in
progress, save it in secondary storage, and execute another program),
BACK ( to service interrupts which were not serviced at the time they
occurred) and CLEAR (to ignore. interrupts which occurred but were
recorded rather than serviced immediately). These commands are most
useful within interrupt subroutines which can determine the present
status of the process (alarms, overloads, etc.) and decide what actions
to take, including complete restart of the programs, aborting of

certain actions, or even turning control over to the operator. Control



- 15 =

over the interrupts themselves implies actual irhibiting or allowing of
the interrupts to occur. This control is obtained through commands such
as MASK, UNMASK, SAVE-MASK, and RESTOREMASK, which inhibit or allow
specified levels of interrupts and permit determination of the status

of the interrupt levels (inhibited or not) at any time. Through

selective use of masking, data channels can keep operating for the
transmission of data in and out of core while process interrupts are
inhibited until the short routine in progress is complete (assuuing the
hardware permits this). These masking control commands must be available
4o the programmer, for only he decides in a given situztlon whether or not
it is permissible to delay servicingof certain interrupis from the process.
These commands give the programmer the opportunity of increased efficiency
of execution of his program, but also place on him the burden of insuring
that essential process functions not prevented by indiscriminate masking

of interruptse.

INPUT/OUTPUT CONTROL3
This division includes statements which create communication between
the process iiself and the computer.- These statements are included in
what is known as I/0 SUBROUTINES (which are included in the SUBROUTINE
LIBRARY)., These subroutines were originally designed to reduce the amount
of time spent by the programmer in accomplishing the imput and output of
data from and to the various input/output devices aittached to the computer,
They handle all of the details peculiar to each device (incl?dgng complex
=

interrupt functions) and are capable of controlling many I/0 devices

at the same time, The subroutines permit the programmer®s attention to

be directed to the problem—solving aspects of each individual job rather

than regulating different I/0 units.

(%) I/0 devices = Input/Output devices,



Determine
Device

Return to User
at LIBF +2

Set up for
Illegal Call
Error

Set up for
Device Not

Ready Error

Set
Busy Exit to EAC
Indicators

Save Calling
Sequence

Parometers

v

Determine
Requested
Function

!

Iniate
/0
Operation

Set Any I/O
- Bugy

Indicator

FIG2: :CALL ROUTINE




- 19 =

The following characteristics are common to all the I/O subroutines,

they are:
METHODS OF DATA TRANSFER, they include:

- Direct Program Control
- Data Channel
I/0 SUBROUTINE OPERATION, describes briefly the internal makeup of the
I/0 subroutines, they include:
- Call Routine, with the following functions:
1~ Determines if any previous ovperaitions on the specified device
are still in process.
2- Checks the calling sequence for legality
3~ Saves the calling sequence

4w Initiates the requested I/0 operation

Fige 2 1is a typical illustration of such a routing

-~ Interrupt Response Routine, which is entered as a result of an

1/0 interrupt, it functions as follows:
P

1- checks for errors
2- does any data manipulation
3- initiates character operations (and, retry operations in case
of errors)
Then, returns contrcl to MIC which then returns control to the user.

GENERAL ERROR HANDLING PROCEDURES :

These routines categorize the error and choose an error procedure.
Errors belong to either of two categories
- Brrors detected before an I/0 operation is initiated.
- Errors detected after an I/0 operation has been initiated According-

ly, there are two types of checks to be performed:



- 18 =

— Pre—operation checks

-Post operation checks

BASIC CALLING SEQUENCE:
Bach of the subroutines is entered via a calling sequence. These
calling sequences follow a basic pattern. There are some parameters

which are common to most of the subroutines,such as:

— Nzme parameter
= .Conirol parameter
- Special condition parametfer

- I/0 area parameter
ANALOG TO DIGITAL CONVERSION ROUTINES:

At any level of control, data from the process may be neccesary,
requiring that any program be able to request analog or digital inputi
data from specified locations in the process. Commands which permit
this are various subroutine names which are programmed to convert one
or more analog signals into digital form and store them in prescribed
locations or to take prescribed variables, convert them to digital
form and output them to the process. Such routines make use of the
INTERRUPT STRUCTURE of the computer and DATA CHANNELS (if available)
in order to perform such tasks asynchronously.

These subroutines include:

— CARD SUBROUTINE

DISK SUBROUTINE

PRINTER SUBROUTIHNE
PRINTER-KEYBOARD SUBROUTINE
PAPER TAPE SUBROUTIHNE
PLOTTER SUBROUTINE

DIGITAL INPUT SUBROUTINE



-19 =

DIGITAL/ANALOG QUI'PUT SUBROUTINE

ANALOG INPUT-SEQUENTIAL SUBROUTINE
ANALOG INPUT-SINGLE READ SUBROUTINE
ANALOG INPUT-RANDOM READ SUBROUTINE

i

Extensive presentation for each of these subroutines is behind
the scope of this article, still an example is given with respect

to the IBM-1800 compuTEr ),

(=) For full details refer: to the #IBM 1800 Time-Sharing Executive
Sy’stem-



DIGITAL/ANALOG OUTPUT SUBROUTINE

This subroutine transfers digital/analog information to a number
of addresses, under direct program control or data channel control,
Table—-chalining is permitted on the data chaanel; however, continuous
scanning is not permitied.

Contrcl Parameter
This pzrameter consists cof four hexadecimal digits used as shown
below:

1/0 Function

Adressing Mode

Channel

Test Option

FIG 3

1/0 Function
The I/0 function digit specifies the operation to be performed by
the digital/analog output subroutine., The functions, associated

digital values, and required parameters are lisied and described

below.

Digital
Function Value Required Parameters®)
Test 0 Control
Write 1 Control, I/0 Area,special condition
Write Pulse 2 Control, I/0O Area,special condition
Write Buffered 5 Control, I/0 Area,special ccndition
Reset 4 Contirol

(%) Any parameier not required for a particular function must be omitted.



Test. Depending on the test option, branches to LIBF+2 Af test indi-
cates busy, or to LIBF+3 if test indicates not busgy.

Write. Writes the requested number of digital/analog values. If direct
program control is specified, no interrupts are involved in the opera-
tion. Therefore, the subroutine does not return control to the user
until the entire operation is complete. After each value is written,
when using direct program control, the word count is checked. If the
requested number of values has not been written, the subroutine writes
the next value. If the requested number has been written, the subrou-
tine returns control to the user. This routine only operates in the
sequential mode.

Write Buffered. Same as write, except that the control for buffered

output is given after the write function has been perforued.

Reset. Resets all digital/analog output operations in progress and
resets all indicators.

Addressing Mode:

The addressing mode digit specifies one of four addressing options for

data channel operations only.

Q0 - Random addressing

Single addressing

b
I

~ Random addressing with external synchronization

2
3 = Single addressing with external synchronization

his digit specifies the method of data transfer used for this

0 - Direct program control

1 = Data channel control



Bl =

Test Option:

If zero (0), DAOP tests to see if the previous call has been completed.
If one (1), it tests to see if the pulse output timer is on.

1/0 Area Parameter:

The I/0 area parameter is the label of the control word that precedes
the user's I/0 area., If the function is direct program control, the
word count is the number of points to be written, plus one for the
first DAO address. If the function is data channel conirol, the mode
determines what the word count should be. If the mode specifies randou
addressing, the table contains interleaved digital/analog addresses
and data to be written. Each address precedes its data word. If the
mode specifies single addressing, the table contains one address

followed by all the data words to be written for thal address.

The word count is equal to the number of address words and data
words in the table. If the mode indicates random addressing, the word
count is twice the number of data words to be written, since there is
an address for each data word. If the mode indicates single addressing,
the word count is the number of data words to be written plus one,
since there is only one address word. The subroutine expects the 16-

bit digital value for output to be in the following format.

Bits 0 Sign
1- 13 Data bits (DAC Models 3 and 4)
1- 10 Data bits (DAC Models 1 and 2)

Special Condition Parameter:

If the I/0 area and the I/0 subroutine are in the system skeleton,

the special condition routine must be in the skeleton.



- 23 -

MEANS OF ERROR DETECTION:

Because all of these subroutines make extensive use of data
channelsy device indicators, and interrupts, the form of the subroutines
themselves is not under the ceontrol of the programaer. For example, a
call for an analog input may find the multiplexor busy, in which case
the subroutine may simply wait until it is free or return to the calling
Prograft ...... depending on the particular.routine. Detection of an
error in transfer of data may result in repeated attempts to read the
data, the number of attempts being built into the subroutine, In some
application these subroutines might not be suitable bhecause of the
speed at which they run, the arbitrary way they respond to error con-

ditions, etc.

It is, of course, possible to provide additiocnal simple subrouti-
nes which test indicators for various error condition and to call these
before attempting to use a device. An extensive set of such routines
is available in THE GENERAL ELECTRIC GE/PAC EXECUTIVE SYSTEM, including
routines for saving machine indicators and registers, An iaportant
device is the interval timer, a counter which may be set up to cause
a program interrupt at any desired time. This pernits a watchdog type
of operation for maximum reliability. For example afier performing
some operation, an interrupt z2fter a given length of itime may be reqﬁes-
ted which will call out a program which determines if the operation
actually was carried oude

The interval timer can be used to sequence certain operations by
requesting an interrupt afisr a specified time interval followed by
execution of the task. In the hier-archical control system, the higher
the level, the less often the tasks are performed. Frequency of ope-
ration of the optimizing function, for example, may depend upon the
detection of disturbances by a lower level and/or may be done at

fixed time interval through use of the interval timers,



COMMUNICATIORNS.

Associated with the executive software is a family of subroutines
and interrupt drivers which allows the programuer to communicate using

standard calling sequences.
These subroutines provide for:

(1) Initiation of one prozrau by another

(2) Timing, either by interval or tiuse of-day.

(3) Linkage between interrupts and progrems.,

(4#) Requests for input or output of data.

(5) Status checks on input/output devices and request-progress.
(6) Store and fetch from bulk storage.

Communication between a specific application program and the
executive software is effected through standard calling sequences
clearly documented for the user. For programmers working at the com=—
piler level, the same calling sequences are generated either by the
equivalent compiler input/output statement or by some extension to

the compiler language.



ON-LINE
PROCESS PROGRAM

PROCESS CONTROL SOFTWARE

ON=LINE
MONITOR

FF=LINE
MONITOR

-25 =

r— SIMULATCR PROGRAM

— DISK UTILITY PROGRAM

LIBRARY

FORTRAN COMPILER

—|  ASSEMBLER PROGRAM

—OFF=LINE PROCESS PROGRAMS




- 26 =

PROCESS CONTROL EXECUTIVES:

The objective of an executive system is to relieve the programmer
of the more burdensome tasks connected with real-time operation. It
responds to interrupis, saves and restores partially executed programs,
allocates primary and secondary storage, sequences programs, and res-
ponds itc error conditions. In additiorn, if any time is left after the
process control programs are executed, the executive oftern permits
off-line use of the machire. That is, the executive permits the machine.
to be shared by the process and an off-line user. Thus non-process
programs may bhe assembled, compiled, simulated, and debugged without
interfering with the process. Such a use of the machine is usually

called time-—sharing by the computer manufacturers.

A diagram of a typical process conirol software structure is
shown in Fig.4 The key program is a monitor which responds to inter-
rupts, determines the appropriate action to be taken with respect to
servicing of an interrupi, seguences programs, and in general takes
care of the book-keeping and interprogram communication tasks in a real-
time system. When free time is available, the monitor calls the off-line
monitor, which is similar to any stack-job monitor system except that
all calls to input/output devices are trapped and prevented unless there
is no possibility of interference with the process. All assembling,
compiling, and debugging is done under the control of THE OFF-~LINE
MONITOR.A particularly interesting and useful routine is the SIMULATOR,
Which allows the testing of process programs without interference with
the actual process. Input-output requests, interrupts, analog data,
etc. are simulated sllowing efficient debugging of process control
programs and interrupt routipes while the computer is on-line. It is
the rule rather than the exception that process contirol programs
change often and it is very desirable to be able to do this at the

installation without taking the computer off-line., The value of



e

changes made at the installation far outweights, the slow running speed
of such simulators. Within the off-line monitor are the usual utility

routines which permit the control of programs stored in secondary meumory
and the changing of prograns which are used for on and off-line process

control,

The main task of theexecutive is the running of user written pro-
cess control prograns which necessarily are greatly concerned with the
many input-output devices. Although the executive cannot pernit direct
programming of input-output devices, it does permit their control
through calls to a library of real-time subroutines. The cotbination
of the fortran language and these library routines results in something
akin to a process conirol language which permits prograuming ol any of

the higher control problems,

Elements of this language vary, of course, among different com-

puters, but the basic functions are similar,
NCNPROCESS MONITOR:

The nonprocess monitor provides the user with a programming tool
that simplifies the task of generating, organizing, aznd testing prog-
rams executed under centrol of the 1800 TSK System and to supervise
execution of nonprocess programs. The nonprocess monitor can be ope-
rated on~line under control of the system director, or ii can be
operated off-line., Off-line operations ars possible after system
generation. Initial assemdly of certain system prograus and user's

beginning rcutines are done under TASK control.

The primary function of the nonprocess monitor is to provide
continuous processor-controller operation during a sequence of jobs
that might otherwise involve several independent programuing systems,
The monitor cocrdinates the processor controller activity by estab-

lishing a common communications area in core storage, which is used

AP e



- 28 -

by the various programs that make up the mecnitor. It zalso guides the
transfer of control betiwesen monitor programs and the user's programs.
Operation is ceontinuous and setup time is reduced to a minimum, thereby
affecting a subsitantial time savi in processor—coniroller operation

ng
and allowing greater programming flexibility.

Control records, which zrs used to dirsct the sequence of jobs
without operztor intervention, musi be prepsred prior to ihe actual
operation. The control records are included in a stacked input arrange-
menti,

The nonprocess monitor (Fig, 4 )} is composed of five programss:
D g J P prog

(1) Simulator Program. This program is designed ‘o provide a means

for simulating a process control or dsestz zacgquisition program
without interfering with the normal coperation of the process.
Each input/output call sequence of the program being simulated
is analyzed and simulated individually.

Various options are offered throughocut the simulator. For
example, an analog input call sequence can obtain input from

either cards or a random number generator. The option chosen

:

is specified in a control record read by the simulator program.

(2) Disk Utility Program (DUP). DUP is a set of routines designed

to aid the user in performing the functions of disk maintenance.
That is, it is capable of storing, deleting, and outputting users
prograns and defining system and machine parameters. DUP updates
the location equivalence table (LET) when a change is necessary

and also maintains other communicaiion areazs.

(3) PFortran Compiler. The compiler translates programs writiien in

the FORTRAN language into machine language and automatically
provides for calling the necessary arithmetic, functicnai,

conversion, and input/output subroutines,



4)

(5)

=E e

Assembler Prograll. The gssembler translated programs written in

symbolic language into machine language. Basically, it is a
one=for-one type assembly program. That is, the assembler usually
produces one machine language instruction for each symbolic in-
struction of the sourge program. Provision is also . included for
the user to easily made use of input/output, convérsion, and

arithmetic subroutines that are a part of the subroutine library.

Off-Line Process Programs, This is a group of programs whon

are executed during process-free time, They include programs for
different managerial and accounting purposes such as:lanagement

Decision Making Techniques, Statistical Analysis of Obtained

(Record-Keeping Systeml, <..etc.)

The operation of those five programs is perfectly organized usin
5 J o

a master program called the "SUPERVISOR PROGRAMY™, It decodes the

monitor control records in the stacked input for nonprocess Jobs and

calls the proper monitor program to perform the desired operation.

For example, a typical sequence of jobs might be execution of a

payroll program,compilation of a FORTRAN process conirol program, and

simulation of a core lcad that includes the program just compiled.

The supervisor program calls the program loader, FORTRAN conpiler,

and simulator program, respectiively, to handle these jobse.



- 30 -

JUSTIFICATION OF EXECUTIVE USAGE:

The supervisory executive described zbove is a very significant
advance in process control scfiware and should service the needs of a2
majority of comirol installstions. t are the disadvanizges of such
executive sysitems which prevent their application at times 7 Three

types of installations are nov efficiently serviced by these executives.

The first are the very small systems which cannot justify the
additional core storage and secondary storage necessary to use the ex-
ecutives. HMany installations (at least in the past) started out small
and, consequently, with special programming systems writien especially
for that job. Later  they grew large enough to justify the us= of an
executive system. However, it is difficult to decide %o scrap a great
deal of working software in corder to use an executive. BEven though in
the long run it mighit be the best solution. Often a middle of the road

solution which is not satisfactory to anyone is chosen.

The second type of installation which cannot directly use the exscu-
tive is a system which is primarily firsi-level (DDC). Efficiency,
reliability, speed, and quick response time are the objectives here rather
than simplified programming and convenience., As mentioned, when this
function can be delegated toa separate computer with its own soft-ware
the executive can still be used in the supervisor computer. This may be
the solution in the long run as indicated by several installations in

which this is now being applied.

The third exception application is a critical process where special
programming requirements are necessary. For example, the nuclear reactor
control system supplied by Control Data placed so great an emphasis cn
reliability that no executive now available could efficiently satisfy
the requirements, Of importance here is that such unique applications
will occur more and more often as the volume of process control applica-

tions grows and some software support must become available,



& 30—

sxejndmwoy

‘T0a3u0) 8S800xd Joj jusmeSueaay: £rowey 16§ DI

MEMORY

¢
m SENIINOY IdN¥YIINI TWOS

=

I~

3

=3 (sevr3noy gndynp/indur ewos Suypnyouy)
=

(&)

- FAILOOAXT NOLATINS .

4 (@8ex03s hnuﬁnooom ul sIey3Q)

=

g ¥SYI OI FIVIYdOWddV SANIINOY IANHIINT
(=]

g

-

|-

govsn INIT=-HO




-32 =

With sufficiently large core storage (8K minimum) one of the ex-
ecutive systems can respond efficiently to process demands. A possible
allocation of core is shown in Fig. 5 The skeleton executive program is
permanently resident in core and includes all routines necessary for
communication, with secondary storage and the servicing of interrupts
with very shorit response time requirements (mostly high speed data trans-
fer devices). The non—permanent portion of core storage includes process
programs and interrupt routines whose response time is slower than that
of the permanent routines. Any interrupt which is not part of the skele-
ton executive system or loaded with .the process program is serviced by
exchanging the process program for a service routine in secondary meiory
followed by restoration of the interrupted program. To minimize secon-
dary storage exchanges, such routines are usually not interruptible except
by interrupts whose service routines are in the skeleton executive., Thus
there are basically three response times for interrupts and the programner

may choose the combination which is best for a given application..



REAL-TIME TIMPLICATION:

Tuplementation of such a control system in real time regquires
certain hardware which significantly affects software requirements,
Most important of these are the analog input and output hardware which
requires relay and, possibly, solid state multiplexing devices together
with a multilevel priority interrupt system. Since reliable operation
of the control system is very important, it is necessary to make maxiuua
use of the hardware to insure that the control system will seldom fail,
For example, it is inexcusable to permit failure because of a card
reader jamming or a relay multiplexer receiving an illegal address.
Hardware interrupts and indicators are provided to check such contin-
gencies and to obviate them., This of course complicaies tremendously
the software requirements since they generally must be written for the
"yorst case™ situation. Moreover the slow operating speed of the analog
multiplexor (50 to 100 poin%s per second, for instance) and the need for
data in real time necessitates careful consideration of the real time

control programming problenm,

As control systems (such as those described here) were implemented,
it became apparent that not only was the control system not to be prog-
rammed once and then run for many years but rather that it would probably
be changing constantly throughout the life of the process and control
systems. This is due in part to increasing knowledge of the process
which permits better control systems to be designed for various levels,
and also to the ever—changing charecteristics of the process itself as it

undergoes improvements, new insirumentation is added, and the like,

Early real-time process computer systems used drum computers with
no autcmatic interrupt ability. The programs produced included a rudi-
mentary form of time sharing in which peripheral devices were actuated at
intervals. The intervals were determined by counting drum revolutions at

coding time,



The first drum/core process computers, which included automatic
priority interrupts, introduced new dimensions to process programming,
Time sharing of core memory between programs ig standard., Systems of
executive, timing and input-output conirol programs were develcped and

refiped until a ressonably standard set czlled a real-time monitor or

control executive was produced. Currently, time and space sharing are
well established in the process computer field, Recent advances in other

areas should contribute greatly to future development. of process couputer
systems,

SPECIAL CONFIGURATIONS OF PROCESS CONTROL COMPUTERS:

Basic components of a computer system are: memory, arithmetic unit,
input, and output.

Process coumputers differ from free-standing scientific computers in
memory arrangement and input/output. They resemble scientific computers
in most other ways: types of memory, instruction repertoire, speed of

execution, and input and output devices.

Process computers, almost always binary machines, usually have word
lengths of 12 to 24 binary bits and most arithmetic is performed in single
precision (one word per number)., In contrast, many scientific computers
have word lengths of 32 bits or more, allowing great accuracy to be main-
tained. However, data received from process sensors usually preclude
the need for exireme accuracy. Most process computers use magnetic drum
or disc memories - not only as backup and file storage, but also as a
dynamic extension of the faster, more readily accessible cores. While
some recent scientific systems are using this approach for time sharing,
the more traditional scientific machines use bulk storage only at the

beginning and end of program runs.

In addition %o such conventional input and output devices as card
readers and punches, type writers, line printers, and cathode ray tube
displays, process coumputer systems include equipment which communicates

directly with the process and its operators. The primary input devices



5

for process couputers are analog and digital scanners., The analog
scanner a matrix of relgys coupled with an analog-to-digitzl conveter
and other signal conditioning equipmeni: - operates under program control
to trensfer digitized process measurements into the couputer uedaory.
Such Legsureunents are used as process conirol feedbacks as well as for
data logging. The digital scanner allows contact information such as
open or closed as well as panel settings and the contents of digital

counters to be transferred directly to computer memory.

Output from the computer to the process is in the form of analog
signals (voltage) or the opening or closing of contacts. This infore
mation, sent through an output controllere allows the computer system
to maintain contrcl over the process. Digital output is also presented
to operators in the form of warming lights, horns and numeric displays
Concerning memopy configurationg,we need sufficiently large core storage
(8 K minimum) so that the executive can respond efficiently to process
demand, For memory arrangement, g possible zllocation of core is shown
in fig. 5.~ The skeleton executive program is permamently resident in

core and includes all routines necessary for communication, with secon-

u

dary storage and the servicing of interrupts with very shori response
time requirements (mostly high speed data transfer devices). The
non-permanent portion of core storpge includes process programs and
interrupt routines whose response time is slower than that of the per-
manent routines., Any interrupt which is.not‘part of the skeleton ex=—
ecutive system or loaded with the process program is serviced by ex-
changing the process program for a service routine in secondary memory
followed by restoration of the interrupted program. To minimize secon-
dary storage exchanges, such routines are usually not interruptible ex-
cept by interrupts whose service routines are in the skeleton executive.
Thus there are basically three response times for interrupts and the

programmer may choose the combination which is best for a given appli-

cation,



- 36 =

OTHER CONTROL SYSTEMS:
Beside the previously described control system, there are several

other control systems being used in the field of process control.
Two of these systemns are the following:

1- Fixed Core Areas . A process couputer system in which prograus

have fixed core areas lay be similar in many respects to the systenm
described above. Tiaing, input, output, and program selection are not
sighigicantly differeni. Howevey, core memory allocation is much more
restrictive since each program must be assigned a permanent starting
location., The starting location is not assigned at execution time, but
at assembly time. If one program is being executed in a given core area,
other programs which must operate in this same core area are effectively
locked out. At times of high computing load, this may impose a severe
restriction on system response time. Fixed core areas are used with
computers which do not have the ability to automatically execute programs

regardless of their memory locztions.

Both the fixed and floating core area programming systems have seve-
ral programs resident in core at any time, except the one being executed
in a partial state of completion., These systems tend to reduce the

numbers of bulk/core transfers per unit time,

2—- Single Program in Progress. A programming system which requires

a much simpler executive program for memory and time sharing allows only
one program to be in progress at a time, The program runs from initiation
to completion with .interruption only for input/output actions. Response
times will normally be slower than in the systems described above. The
only noticeable advantages of such a technique are potential simplicity
and the low memory requirement of the executive program. These systeus
may be entirely adequate where rapid response to process demands is not

needed,



R R

Process control pregrams provide the framework for a process couputer
programning system. Such prograus operate in a real-time environment.
They respond to process, operator and time demands. Thelr access to com=

puter memory and input/output devices is limited by other system demands.

A sysiematic approach to process programming provides a way to meet
the reqguirements of a computer controlled process. ther benefits of
this approach are: maximum use of the available core space; ability to
write programs with minimum attention to the real-time enviromment;
communication links for all pregrams whithin the system, and be trans-

ferred from one system to another.

(SPECIAL PURPOSE EXECUTIVE
WRITTEN IN RTL)

(RTL COMPILER)

{GENERAL SUBROUTINES L E ] tve ' Object
=T xecutivgjr——m—mm=
WRITTEN IN RTL) Program

(RTL Statements Compatible with

{POL STATEMENTS] Special Purpose Executive)

RTL = Real Time Language
POL COMPILER WRITTEN ML = Machine Language
IN RTL POL = Process Oriented Language




==

FUTURE TRENDS:

With the rapid increase in the number of computer control installa-
tions and the shortage of qualified systems engineers and programmers to
install these systems, process control software will quickly develop in

the direction of further simplification of the programming problem,

A primary and essential step iowards this might e the developuent
of 2 irue process control language. The main difficulty with the Foriran
library - system of subroutines is that the prograiuer has no control
over the inner workings of the executive systeu and the interrupt and
error handling characteristics of the individual subroutines. It might
be desirable to develop a real time process control language which is
algorithmic in nature and sufficiently powerful to produce the executive
itself together with the subroutine library. Such a real - time language
must permit control over the allocation and freeing of core and secondary
storage specification of interrupts and responses to interrupts and other
functions which are normally reserved for the executive rather than being
under the control of the prégrammed;lf such a real time language were

availabe, the programming system showing in fig. 6 could result.

If the language were sufficiently powerful and efficient the ex-
ecutive could be written in this language, thereby permitting easy
changes for yarious applications which cannot use a standard executive.
Special purpose languages for DDC and other applications (process orien-
ted languages) could then be designed and @ompilerswritten to produce
the real-time language as an intermediate rather than machine language.
This would decrease the cost of producing such special languages and

decrease the problem of obsolescence because of hardware changes.

The importance of simple flexible software in DDC cannoi be over-
emphasized,, since it must be used by phant enginneers, for example, in
all process phases from startup through regular poant operaticn., A

number of manufacturers are considering a DDC compiler sysiem whose



- 30 =

input language is a block diagram specification of the control algorithus
to be implemgnted.. The outpuit of {thecempilep woilld then be a machine
language program which could run by itself in a DDC computer. Such a
block diagram language is similar to digital simulation languages such

as Midas and pactelus, Changes in the first level of conirol would then
merely require perhaps a recompilation of the block diagram statements.
One advantage of this approach: this type of programming is familiar to
plant engineers, since it is used in analog simulation., This approach

is very attractive in that different seis of blocks could be supplied for
different industries and applications, making it very easy for customers
t0 make use of the computer., The problem is one of economics. Although
the language may not differ much from one application to another, the
implementation may be quite different because of diferent operating
speeds required for scanning and output of data. Consequently, a diffe-
rent compiler might be required fordifferent applications, making the

approach uneconomical,

Within whatever DDC software is supplied, there may be included a
routine which permits communication with a supervisory computer ope= '’
rating under an executive system. Such systems are now availabe. For
example, the PCP-88 system supplied by Foxboro is made up of two PDP-8
computers with Foxboro interfaces and a compleie real-time Foriran ex—
ecutive system for the supervisory computer and DDC sofiware for the
first level computer. Two big advantages of such an approach are the
separation of the programming problem into two parts, with each servied
by the most convenient language ... and the increased reliability of the

system because of the duplication of central processors.



