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I. INTRODUCTION

B e v e Dy T p——
e e L e R L S R S SE AR BTy

The puTPOSﬁ c¢f this paper 1s to reformulate the compact single-
division method W in such & manner as to obtain non-recursive
formulae for the backwsrd eolution. The advantages of the method

are iliustrated through certain applications.

In the classical method, the matrix to be inverted, M say(2)
is trensformed into two iyiangular matrices X & Y such tha¥:

M=X.Y - SO
where X has seros above the Principal dlagonal, and Y has zeros 1

below I5. At the same time, the inverse of X is obtained, say Z=X~
This constitutes what is called the "forward golution®,

The inverce of W isil =1l 1

S A S P (2)

This latter formula reguirsés in fact two steps: the computation o
z” and the muitiplicetion of Y7+ inte Z. The claassical compact
method achieves this by earrying ocut ths two gteps simultaneously,
through what is called the "backward solution®. This might have
the advantage of giving +the Inverse in “he mMost concige number of
stepg. However 1t has some digadvantages, especially from the
bPrecedural point of view. Firal, the rules of computation are
distinectly diffsrent between the forward and backward solutions.
Purther the positions ¢f rows and columns to be used together in
the backward solution are wide apart. These ftend to make it
extremely difficult especially for ordinary computers. One might
add also that the necessary rules for checking are rather complic-
ated,

Or. the cother hand, the bBackward solution makes use of the rows
{or columns) already obtained in the Inverse to build up the rest.
This has the disadvantage of carrying over the errors of rounding
off throughout. Further in order to obtein a specific element in
the inverse one has +to compute all the subseguent ones (with
reapect to order), This makes the method rather expensive and
Lime-consuming when only certsin elements of the inverse matrix are
required, the diagonal ones only for example.

In some cases one might need also the inverses of certain.
submatrices of M. For example, in the muiltiplex method of linear
programming, there is a need %o obtain the inverses of matrices of
all consecutive oxrders gtarting from the first. As we have already
neticed, the clasaicel method starts its backward solution from the

(1) Cf.. Dwyer Linear Computations, p. 103 = See alBo, Re FriSch:
"The compact method for solving linear equations and inverting mat-
rices in the non-symmetric case”, Memo. no. 1, N.P.C. = Cairo,
24/11/1957 .

(2) We shall use underlined letters to denote vectors ang matrices,
denocting matrices by capital letters and vectors by small ones.
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last row (or column). This means that the results of any operation
will not be useful for the rest, Of course method of reduction of
the order of,?he inverted matrix, and methods of building up are
available. (2 However, these methods are rather cumberscme, especi-
ally in the process of calculating the successive moment matrices
inverses ag in the mulitiplex method.

What we propese here is the following: -1
: Since in fthe so-called “foiward” solution we obtain X, ¥ & X
we can in the meantime obtain Y + also. This will nft involve much
work since ¥, like X, is iriangular. The inverse M — can be then
computed as the product of two itrisngular matrices, a3 defined in-
(2). As will be shown later Bhis Will help to overcome the asbove-
mentioned difficulties. In particular this method avoids the recur-
give formulae of the backward solution. It helps further in the
process of building-up the inverses of submatrices in a simultaneous
manner. This is due to the fact that the building-up (or down) of
the inverse of a triangular matrix is quite simple. The method is
self-checking in a consistent and comprehensive manner. We shall
begin by congidering the asymmetric case, notiecing that the method
is most sultable for the symmetric case where i1t does not involve
any extra computations. The symmetric case can be obtained as a
special case. Applications where the method gives most suitable
resulte are given later.

IT - THE ASYMMETRIC CASE
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Let M be the real, non-singular square asymmetric matrix to
be inverted. TFor purposes of computation we border it by two unit
matrices: one on the right-hand side, and the other below, each being
of the same order as M, viz,, n.n. Putting N = 2 n, then we obtain
the N,N. matrix:

4 =i (3)

f—

I
whose south-east submatrix is emﬁ%yo This matrix is to be written
on the %op of the sheet, together with two extra columns to ita
right, The first of these stands for "row sums®:
: N n ’ :
a = & o 2 &8 + 1 (i:’:lgaewn) (4)
i. J=1 1j J=1 i} ‘

The other column is for YchecksY:

n,
E m + 1 (?-: a ) (i=lgoo-9n) (5)
(:ai g Jﬁl ij ie
where my 5, /for i, J=l,...n) are read from the original matrix, M. No
checks afe reguired for the remaining (unit) rows. Below A we introde-
uce a row for column sums:

g,5 = fﬁl 843 (3=15004,n) (6)

(3T Frisch, 0p. 1%,
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n .-
which can be checked against £§1mij + 1),

A new matrix D, of order N.N. is obtained and registered below
A in the following manner., On and bhelow the Prineipal diagongl, in
the first n columns, we build up successively the following elements:

J=l
Cij = 843 = k;_}.l Gikbkj (i;:: :.Esr J+19°°°9§) (7)
goeesacopy
The elements by 4 are those above the principal disgonal of Dy in the
first n rows, agd are obtalined as follows:
k-1 :
b = o s/c Ckj = 8 .~ 387 Cppbys  (k=1,2,...,n) (8
<] kj” “kk? K3 = 8™ H1 Crxhbpj gj=kil:h,,:Ng (8)

Thus ij are obtained in the same manner as ci. in (7), and they are

transformed into b, ., by a2 simple division operation. For computat-
ional purposesgonég%sually registers the ci; in an additional sheet
subdivided in the same columns ag D, and checked direectly then
multiplied into a constant scalar = l/ck s the- products being regis-
tered in the corregponding positions in D =3 bk“’ This covers all
elements in D except those in the-rows and col-‘ﬂs Nnog.: nN+l,eea,N.
Theze latter (corresponding'tolthe null matrix in A) sre the
elements of the inverse K=M", and they are obtained as follows:

n
157 Tn+t, 003 1 Cnet,mPhipey (B 3=lyecem)  (9)
For checking purposes,we have first the row sums:

n

bin :j:gi’“i‘l bij (i=l,oooagn) (10)

k

Then we check by:
igl B
23,7b21 Cinbp, - 043Py, = o4y
Again we obtain the column sums and write them below D. It i1s
advisable here to build the sume upwardsg, in order to obtain the
sub-sums '

(i=1,,0..,n) (11)

_ngl (§=1,000,n) (12)
T,5 =i&y ®ij
which can be written down immediately and below them we write the
complete sums obtained by continulng the same operation:
: ; N .
c,j =f, +52) Cij T4&3 %ij (§=1y0e0eom)  (13)
Both sums are checked simultaneously (apart from errors in copying
down £ ,) by
OJ O&l
5o b o (14)
P -0 =
la,,J k—"-’-l cok kj nJ .
Finally, the check on the elements of the inverse in made through
checking its column as follows:

_n n _ — |
£.3 =18 iy g1 f.nPhy k5 =0 (15)
Similar checks for rwos can be easily obtained in an obvious manner.
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Our results can be summarised in the following proposition:
PROPOSITION: '

fasssBaismpl i g e e e ey

- = -] -
For the matrix M 1, the triangular matrices X and ¥ laefrinea

in (1) and (2) are ¢ -
x1 = P10 0 0 0 (16)
‘k ‘ b29n+l b29n+2 0 6 o0oaeao O
bnpn+1 bn,n+2 bn,n+3 eoere bn,N
- -
and -1 -
I = cn+1,1 ®n+1,2 °n+1,3 v ®n+l,n (17)
O Cn+292 Qn+2’3 'R Gn+29n
) L O O O [ I - CNyn
Further, 1 _ _ -
2{_‘ = golﬁ = 011 4] s o o000 O (.}_8)
021 022 ¢ o B O OO O
cnl Cn2 5 &6 80 B8O Orm-
Similarly, _ -1 : -
) ‘}L = .,.}..E i\i = 1 b12 cso om0 bll’l (19)
O 1 e @0 0 0 0 b2n
0 O o cooo0 O l N

These relations show the mgin differences between the familiar
method and ours. Both methods involve the evaluation of X and Y
whose produit is, by (1), equal to M. Ian our method, both the Two
inverses X ~and Y~ are_separately calculated, and their product is
then obtained to give M ~. In the classical method either of the
two inverses is calculated. The inverse of the other is obtained
in a rgiursive manner together with its produet into the other to
give M simultaneously. The recursiveness is due to the diagona-
lity of X and Y.

Table (1) shows a schematic representation of the steps involved
in the process of computation as suggested in this proposition for
the case where n = 4.
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Table (1)
A Schematic Representation of the Invergsion of s

Matrix o¢f the Fourth-Order
: (Part 1 "Leftm)

Ordey i 2 3 4
1 211 812 813 %14
2 ap1 202 823 824
3 8sq 832 833 34
4 844 P a43 84
5 1.0 0 0 0
6 0 1.0 0 0
7 0 0 1.0 0
8 0 0 0 1.0
T [PIE By o275y, e
k—; °11% 813 PagThrony | bismeisfoqy  yymey,/en
2 1051 8y “22™%227%21012 | Y2370 cnn oy, =0y, /005
3 le,.= g Cu ™8, ,.=C_.b Copx=8 .mpo b, b, =c_ /o '
31 %31 32 732 31712 33 733 ‘% 3i i3‘__a4.__c & 33 .
H N e TLI _043”343“§°41b13°M?hf104ib14
5 (e 1.0 e_ .= =h G, = m%c b 0. == o
51 52 12 53 1 51 13 754 51714
0 Cgo=1e0 °65= “Pa3 | Cgg== Cgiby,
0 0 073 1.0 Copy == b34
0 0 0 0gy=1:0
%1 fglzgcil I,gmgpiz | L, 5"§C13 ,47%C%y
3 Col"fol+%°11 092=fa2+§°i2 043~f63+3 5 Coy fq4+c44
Checly  a a 5m¢_1bq, a037%c.1bi3 a°4f%0.1bi4
S s TR W S
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} Auxiliary Table ' ’
Hoeq= 8 °12% 810 | G13%8y3 ©14= 814
R T} %2220 12 | 23723 T021%13 | %2072, ~Ca1byy
g g T C337833~ épsibi3 ®347854"4%31 4
4 - - - ®4478147%% P4
srosmsnoasecde oo o s e b S ST e e e S
Table (1), cont. (Part II) L
| Right
5 6 7 8 Checlc
1710 0 0 0 5y
2| o 1.0 0 0 a,
31 0 0 1.0 0 s
4| o o 0 - 1.0 .
51 o 0 0 0
bl o 0 0 0
71 0 0 0 0
8! 0 0 0 0
2 TIPSR TS ENIEY N U — R Y ——
i b15=1/cl1 0 0 ¢ Olo/cll
2 b25mc25/c22 b26:l/c22 0 0 020/022
P Ps5TCas 055 | 57036 055 | P3r= Wegy 0 °5,/%53
P Pas™ous s | 2467006 %y | 24707 00 | Pasm Yo %4/
P k11=%05ib15 12 % 51 16 k13=%°51bi7 k14: c54b48 %OBibio
g k213%°61b15 ' “:Osi 16 % 61°17 | 24~ %64"ss 4C6ib1a
7 5178, ;015 | Kip= §b71 16 k33 %@71 17 34 C34048 | 207104,
B *17Pss5 4= Pye ky3= bar | K= bas | B
fﬁf»lﬁ$kil T | s CaTEy
| : .
LA s | B ?ff-iﬁ_z _____ fabas g |
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Auxiliary Table, cont.

Ll C1571.0 0 o 0 o
1,
2 0253 m221b15 626: 1.0 ) 0 ag,“cglbl,
= 2 1 . = -c_ b b =1, 0 £c. b
% 1°35 %Gﬁi 35+ %36 3032 o6 | C3771e0 85,7903 "5,
fe3 BE exs b o [ DRew = F O @ b
b 1o45™ 71%24P15 | %467 1%41°16 [Ca7"Ca3%37 | C4e™ T B9 %1%,

In the actual grocess of computation,. one_ starts with the firgh
column of c's, and the first row in the auxiliary table, from which

the first row of b's is obtained. Then we calculate the second
column of ¢'s, and the second row in the auxiliary table, from
which the second row of b's follows. Similarly for the third, then
the fourth columns and rows,

A slight variation on the order of the table can he made as
follows. First, the unit matrix below the M matrix ( and the null
matrix beside it) can be dropped to spare space without affecting
the resulte, since we bear in mind that it is thers. Puther, we
can insert the elements of the auxilisry table in the main table in
rlace. of the corresponding h's. This will help to retain the same
type of operation both row-wise and column-wise. The corresponding
b's would be then written in a transposed manner on another sheet. .
Using +this shest by folding it so as to have the required b's
apparent and putting the column thus exposed beside the relevant
c-column, we can obtain the products reguired for calculating the
subsegquent rows and columns of the c's. For obtaining the inverse,
i.e., the k's, we can use the relavant b's 1ln the same manner. This
would relieve the computer'’s eye from moving row-wise and column-
wigse at the same time. DBut the underlying formuwlae and method will

remain unchanged.

1II. THE SYMMETRIC CASE

e T o

It is clear that the general formulae given in the previous
section can be directly applied to the case of inverting symmetric

‘matrices. The symmetry introduces a lot of simplifications which

can be summarised as follows. Pirst, it would be natural to write
A simply as (M I). Further we can neglect the elements lying
on one side of the prlncipal diagonal, e.g., ‘those below it. Thus:
i=1 n
= A, } 1 i‘al 500 gll ’ 20
io 21 34 21 ij—r ( i o 70) (20)
and similarly for the check (5% There will be no need to add the
two rows of checks and sums defined by (6).
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The matrix D is calculated as follows : the c,s are calculated
as in (7), using the property of the symmetry, vi%a, ‘

°13 7 %31
i.e., we can use (8) instead. It follows that the elements bkj can

be obtained by: y ( ) (21)
b . = ¢ ¢, . k=l,2¢000y21 21

SIS S=kALs oo o N

Tn other words, after calculating each column of c¢'s and writing it
down, we obtain the corresponding b-row by dividing the c~-column by
itz leading term. The elements of the inverse are obtained accor-
ding to (9), neglecting again the elements on one gide of the
principal diagonal. Equations (10)~(15) still hold except that in

(15) we have:
=1 n
k = Eak + 5. k
3 1=h i 1E1 4

Owing to the symmetry of M, eguations (1) and (2) can be adjus-
ted to exhibit this property. ITet us define a dimgonal matrix Q

W o= [wijjz[gijciﬂ | (22)

which is obtained from the diagonal elements of X as defined in (18).

Then: -1
I = "X _ (23)

Thug we obtain the following factorizations:

= X E w - xx (24)
Comparing the present method with the classical, it will be
clear that the extra work invoived here is the registration of the
matrix (17), which had to be calculated in any case to obtain (16).
Again we can register the b's on an additional sheet in a column-

wige form, as was mentioned in the asymmetric case.

IV. ADDITION & DELETION OF ROWS AND COLUMNS

If it 1s required to obtain the inverse of a submatrix of K
occupying the first n' (<i n) rows and columns, the only step needed
hesides those involved in the previous two sections is to calculate
the elements of the new inverse as:

n=1

- 5

| j= 660 ‘
ij b=l ®pit, b h, nt ] (1,3=1500058)  {25)
This formula is analogous to (9) and it is related to 1% through:

n
[ P R
kij B %j +h£%“+lcn+ighbn9n+j
This latter formula can be used to obtain the k!, from k, .. If the
decision on n' & n is taken before computation 1315 star$dd, both
k{j and kij ecan be obtained from a single sum-product machine operation.

(i9jzla°°°9n1) (26)
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The only necessary condition is that the order of the -
columns” and rows 1,2,...,n permits obtaining the requirec submatrix
by merely deleting the columnsg and rows nos. n'+l,...,0n. Extensions
t0 more than one submatrix, possessing the same property are obvious.
The checks (15) on the elements of the new inverses can be easily
obtained on replacing n by n'. These rules apply whether the matrix
i is symmetric or not. -

Equations (21) serves to obtain the inverse of a bordered matrix
using the inverse of the matrix itself. The extra rows and columns
are written below and to the righ of N bcoupying positions nos. @
n+l;...sn'y, (n'Y n), This requires The calculation of the c¢yy for
j=n+tl, nt2,..%,0" {(j = L,...,n being already computed), then
rewriting n+l,...2n as n'+l,..,n'+n and adding similar elements up to
on', In all cases the extra i's are i=nzl,..,n'. Similarly the extra
b5 are those corresponding tos k=n+l,..,n' and j=ntl;..,n & n'+nt+l, . .20t
asahaa been shown asbove. The elements of the inverse can then be obta-
ined through the relations ?25) and {(26). .

The Applications of Rules of Partitioned Matrices:
Suppose that we have a matrix P which is partitioned as follows:

P= U b (M & E square) (27)
Let: 9 1
M= K, Q= (- G.K.F) (28)
then the inverse of P can be written as follows:
R=2"1=[E+ (KFQ (5.K) -(£.1)Q (29)
-Q(8.K) Q
Now suppose that H is a scalar, h say. Then"g can be written as:
- el £
g h

where f' isg & column-vector, and g & row-vector. Since K has been
already computed, we calculate the vectors: '
r =gk & 8' = K.£!
and the scalar:
t = g Kf' = . = g.8'

The matrix Q becomes also a scalar snd is found as:

1/9 = h =%, o g=_1

c [ h - t

This scalar is then to be multiplied into r & g'. Further we calc-
ulate the matrix obtained by

s' (g.r)
The inverse is then:
R= [k +s'qr -gfq]
p il qo£ q

by (29).-
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Thus we have used the above-mentioned rules of inverting parti-
tioned matrices in building up the inverse when one row and one
column are added. The same rules can be applied to the case where
H 19 not a scalar but a square matrix If P is of a high order and
a number of computers can be employ@d laws of partltloning cah be
applied according tec similar steps.

The rule can be also applied to the case where P is triangular.
Suppose that F = 0. Tor P to be trilangular, both M and H should be
triangular alse, but we need not assume that for the moment. The

inverse R becomes:

R=1| K 0 (30)

St S o

This relation can be applied sitarting from the first two rows and
columns, then building up the complete inverse step by step adding
one row and omne column each time. TIf the matrix P can be partit-
ioned according to (27 Ylth M triasngular and F = Og we can apply
(30), calculating X & H - by The previous methcods Then obtaining
R from (30). These rules were used by the present author to obtain
The inverse of & 33 X 33 technical matrix

Let us now congider the case of deletion of rows and columns.
Suppose that after the inverse R of P Nas been obtained we want to
obtain the inverse K of & submalrix W of P, (Rearranging rows and
columns we can bring M to the position indicated in(27) The
inverse R ls now partitioned as follows: _ :

E=1[s I
U9

Comparing this partitioning Wlth (29) it can be segn that:
T = -K.F.Q , U= -Q.G.K_ %

hence, ]
5=K+1.0°¥
This means that we can ob#ain K ag follows:

melmsmTQU (31)
This means that we have to invert Q, and calculate the product in
the second member of the R.H.S. of (31) and subtract the product
from the part 5 of the inverse. If Q is a scalar the same rule
applies noticing that T will be then & column vector and U a row
vector.

e T T T S S T e R eI __“-'....'..ﬁ..__.u._-.,......__

Let the (n') independent variables be denoted by z, (1~1gooo,n )
and the dependent variable by y. The matrix P defined*above is now
replaced by the matrix of the moments ( ﬁXthkt) where the x's are
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the deviations of the z's and of y from their respective mesns. Thus
P can be partitioned ag follows:

P= M m
- bt 4 —-Zy (32)

an m
Y% gy
where y is treated as the n~th variable (n = n'+l). To the right of
£ we write the unit matrix of order n'n' in the first n° rows leaving
the n-th row empty. Row sums and checks are computed as before,
{equation 20), except for the n-th row where the unit element iz
replaced by a zero.

The ¢'s are calculated in the first n columns for the following
N = 2n"'+]l rows as in the symetric case. The b's are calculated by
(21) for the first n' rows only, i.e., leaving out the n-th row
corresponding . to the n-th column of the c¢c's. The elements Chts n;
; ¢

in this latter column give the regression coefficients
: \ -1 -
Coriyn) = - m (1=1,0.,n") (33)
The element Coal.1 = 1 is the coefficient of the dependent variable
g

¥y in the regression eguation:
c_ . 2. + C = u
n+ign”i 1\T+19ny

where u is the residual in the eguation.

(34)

The residual variance is simply:

52 = Chn/ (T=n) - (P = no. of ob-  (35)
servations)
This can be seen from the expressions (28) and (29) for inverting
partitioned matrices., Tor if H in (27) stands for the scalar myy

then G = F' = d 0 will b N T
en @ =FE'=m  and Q will be (mw L. ngy) But Q will

element_bn¢N+ (which has not been calculated):

be obtained by the

bl’lgN'f“leN“}"lgI’l cnn =1 Cnn
iaeag ) _1
Con T ‘myy - Eyzggzgﬁy} = sumsquare of residuals

as is well known from least-squares theory. Hence (35) follows.

In order 1o obtain the covariance matrix of E?e regresgion
coefficients, we first compute the inverse K =M by'(25)o‘ We then

calculate the scalar T .c ., The covarisnce mat%fx is

T = (qegec,, )oK (36)
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Finally, the goefficient of multiple correlatlon is:

B= {(myy B TE” °cnn By (37)

In some cases we are interexted in estimating the regression of
g vector of m dependent variables y,., on & vecor of independent
Varimbles 2. 1IN 3Uch cases the vedtor m__ is replaced by a matrix
M of ordef m.n'.,, occupying the first ~ 92 n' columns of the rows

nosﬂo n'+1,n'+2,.0., n'+m=n, and similarly for its transpose M o
The element L in (32) is replaced by the m.m matrlx.ﬂyyo To®

right of P we again write the unit matrix of order n'm, The elements

¢y 4 for j=l,...,n' are obtained by (21). The inverse of M, is

found by (25).

Defining the elements Qij for 1,j=n'+l,..., n ag:
n _
Oij = aij “kmlz Oikbkj (igj—‘nv“l'lgoougn) (38)

we obtain the elements of the residual covariance matrix:

=1
W =M -M M M (39)
=YY “yy TyzTzzTzy
The elements oy 1j calculated by {(38) for i=n+l, n+2,...,n+n’ and
J = n'+lyeca,n;“give the elements of the regression coefficients

matrix o1
~M "M (40)
~Rgry
These relations are simply straightforward extensions of the one-
variable case.

Example:
Let %Ee moment mable be

Z" 2

7 i 2 y
Zy [ 5.864665
z, 6.,602500 8.250000
b 4.734635 5.564500 3.983969

Suppose that we want to éalculate.the regression of y on the z's,
knowing that T = 20. The computations are represented in Table (2):
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Table (2) - Calculation of regression

O°OO68631

R

I

o

9721

Por the multiple correlation coeffiociont:
(3.983969 ~ 20 x 0.005557)/3.983969 = 3.872829/%,983969

e i e L e e S S I NN It I I o T s

1 2 3 4 5 (&Check)
11 5.864665 1.000000 0 18,201800
21 6.602500] 8.250000 0 1.000000 [21.417000
%1 4,734635] 5.564500 %.983969 . - - 14,283104
1]5.864665|_ 1.125810 | ©.807316 0,170513 | 3,103139
121 6.602500] 0,8168%G §__0.286716 | -1.378252 | 1.224231 ] 1.1%2695
Al AT34635] 0.2%4201 0.094473en= Residual momsznt
4] 1.000000)-1,125810 | =0.484528% 1,722163 -1
5 0 1.000000 | <0.286716% | -1,378252 1°22423i}1nvefse Myz
%] 1.000000 -0,125810 0.343911 |-0.154021
: = =5 ‘.__,:::zzzmi
% 118.201800] 0.925230 | -0.676771
# Regression Coefficients
§2 = 0,094473/17 = 0,005%57
Hence covariance matrix is: - 0.009570
~0.007659

T Tt TR e e M it e} et s e s i e e e it
O R D S I o S I S T I ET

5¢ THE MULTIPIEX

==

METHOD

For the purposes of the multiplex method of linear programming
successive inverses are regquired to obtain regressions for sets of

variables increasing by one each time.

For example, Table (3)

contains a part of the data included in Prof. Frisch's Memo. no. 8
(of 4/1/1958) "Data for a numerical example of multiplex method in
macroeconomic linear programming®.
we are interested only in the regression coefficients and not in

thelr covarisnces.

It ig noticed that in this case

Hence we do not add the unit matrix as usual.

The successive sets of regression coefficients are registerad below
the table, while the 6-th column (and row) stands for the "dependent®
variable - in the regression analysis sense.
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Table (3) - Claculation of Successive Regrassions( ™)

1 2 o3 4 5 6
1 1.0000
P2 0 1.0000 0
3 0. O 1.0000
43 =1 ,1750 0.4800 0.2260 2.9193
5 0 0 0 =0,5490 1.0000 §
6f ~1.B0B4 0.3155% 0.5786 2.58%6 -0.4189 1 3,.0019
1| 1.0000 |.__ .o __| 0 ~1.1750 | o Li.5054 |
2 0 1.0006 L __ o __ 0.4800 0 }0.3155
3 G 0 1.0000 _ . 0.2260_ _ 0 0.5784
4] -1.1750 | 0.4800 0. 2260 1.2572  |L<0.4367_| 0.42%6
5 0 0 -0.5490 | 70,7603 [0.2450 _ _
6l =1,5054 0.3155 005786 095326 =0,1863 | 0.0301
71 1.0000 0 0 1.1750 0,5131 L1.1334
8 0 1.0000 0 =0, 4800 i =0,2096 | 0.1635
g 0 0 1.0000 =0, 2260 =0,0987 | 0,5070
1.0 0 0 0 1.0000 0.4367 | 0.3166
11 0 0 \ 0 0 Te 0000'moa?459;ﬁ
(Sums & Gheeks to be_igclué;d here as usual)
The ?e?ressidi agefflclents
1 “l 5054 “105054 ﬂ105054 “100077 5101334
2 0 00,3155 00,3155 00,1122 00,1635
3 G 0 0.5786 0.4829 0.5070
4 0 0 0 0.423%6 0.3166
5 0 0 0 0, O = 2450
61 1.0000 1.0000 1.0000 1.0000 1.0000
The regression egquations are:
(1} =, - 1.5054 x; = 0, (2) x; = 1.5054 x, + 0.3155 x, = 0

(3) X, = 1.5054 X1'+ 0.3155 x, + 00,5786 Xy and so on.

{#) Sums and checks can be introduced in the usual manner.
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The first line of regression coefficients is obtained as

.follows H

We multiply . row (7) in column (6):
(1,0000) (~1.5054) + (0) (0.3155) + (0) (0.5786) +(1.1750)
(004236) i (055151) (”Oo2450) = “1&1334

After adding. each product we write down the sum-product in line (1)
of coefficients. Thus the first product is -1.5054 the second is
~1.5054+0 = 1.5054;0.00, the fourth is the third - -1.5054+(1.1750)
(0.4236) = =1,0077 and 80 on. Bach set of coefficients is register-
ed below the last indepondent wvariable included in the equaticn.
Thus the coefficients of the equation containing X,,X , X, (besldes
Xgs the dependent variable) are written below column 2no. 2 (3), and
80 on. The sixth line is composed of units, being the coefficients

of X6o






