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Introduction

Economic planning is a task that can be approached by different
method and idea. As an example by the use of input-output table. But
such input-output t-bles are not suited for optimiziation and is merely
designed to achieve correct proportions between sectors.

That mean that optimization methods are used only for project analysis
but not for the whole national economy some proposals and trouls were
made in the direction of optimization to optimize the whole economy such
as those done by Ragnar Frish,Johonson Rodalf and others, but those
trails were‘complicated to be applied and solved, due to the large compu-
tion needed for such approaches. Now we have a big computers and highly

information systems.

The solution of optimization problem can now by done witﬁout no

diffcults.
The planning processe can.be dealt as a single linear programming problem.

called (main problem or center probiem).
This is the globdl problem or the overwhole problem of national economy.

After that (the problem of formulating the whole econommy) one must move

to other level of which is the sectoral Tevel of industry.

The sectors of production thus are connected to the center by some
sort of constraints. Thus it can be said that planning as an optimization
task is done on two-levels, which are the center level (center model) and

the sector level(sector model) i.e. two types of model are needed for two-

lTevel planning process. This paper will deal then with two-level planning

models.



Two-level Planning Model(General):

The two-level planning model provides some organizational
principles concering the division of functions between the center and

sectors, and with that the flow of information between the two levels.

The optumum allocation o resource can be achieved only if the
information sent up by sectors is frank and objective, because this will

effect the objective function and the constraints of both levels.

The two-level plarning model contain elements of competition,
such as the home production and import are compting with one anther, also
there is competition between direct satisfaction of domestic demand by
production and its indirect satisfaction by imports paid for by export.
Also the center of the two-level planning put and study the critera to

reallocate the resources.

At each Tevel, all units wil] have to construct a mathematical

programming model embarcing their activities and constraint prescribed.

In the two-level planning models, the results and information output of

calculation carried out with one model provides the basic data, the in-

formation input for one or more of the other models. These informations
will be as

final output obligations-material quatas-resource quatas-shadow prices-



plan estimates-etc. On the basis of information, recived by the
unit will continuously correct the individual parameters of their

models and carry out improvment of their plan.

Level I.

The General Model:

This model gives certain defenitions and provides a basis
for the economic application of the idea of two-level planning. In
that level the planning board formulate the planning proposal for the
plan targets and figures for the sector due to the general information
about the sectors. The center due to its information about the sectors
begin to distribute its avialable resources (material, manpower , etc)
among sectors as a frist run, meaniwhile demand from the sectors some of

output target are required from the sectors.

The sectors begins after reciving the proposal from the center
to propose changes to the center due to their ability. Accordingly and
on theat base the center planning board begins to modifies its original
targets and again sends this new proposals to the sectors.

Now to formulate the center model and the sector model, a briet elabora-
tion about primal and dual Tinear programming problems, since the two-

level planning will be derived us linear programming.



In such treatment one must take into account that the original
linear programming problem (center in formation problem) which is de-
composed into sectorial problems which is related to the center.

The mathematical formulation of the overall problem is given by:

Given a vector X which represents @ primal variable for the center

program then the primal and dual problem will be.

primal probiem ' dual problem
C'X == - max y'b = — — mim
subject to
AX 4 b VARSI ()
X 20 yes. 0

The dual problem will be the center shadow price system.
An optimal solution for such system will be

max C'X = min y'b = C'X* = y*'b =
where x*¥¢X g Vsl < |

which means that a feasible solution of the primal and dual exist. Now

taking the above illustration in mind the center model will be formulated

as follows
n
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where.
Vit ='is what to be produced by the sector i in the interval t

(supply task).

Zijt = is the quantity to be produced from the sector i of the project
J in the interval to (material ﬁuota).

wit = is the available manpower for the sector i in the internal t

(manpower quota).

dit = the consumption from product i in the time interval t.

all the above information is given to the sector i by the center.

Level II

The primal sector model:

First we deal with the general linear programming problem(I).

If A= [Al, Apser:Ay )
i.e. the Matrix A in the general model is divided to sub-matrices

(A sAs,. . AL)



then problem (I) will be

P .mal problem
CiXy + CoXp + veee SR T AR S
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Now let a vector u be used such that

u, +u

2 RS I  )
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i.e. u have the some size as the constraint vector b

it follows that

U=[JP.”,@{]

dual problem

VA

1 b e e

u will be centeral program and u, will be the sector componant. i.e. the

problem can be formulated.

The primal problem The dual problem
C% X1 - — — max [ ¥i s (o= =man
Ak L, i A % C

X 2 0 ¥i. 29



Mathematical Formulation of the Sector Model:-

In order to get a formulation of this model we frist define the

following:

Xikt = denote the k th output of the sector i during the period t
[ = Tesss o)

Xik = the volume of investment activity in the ith sector

h

><
1

th ..
Tk the k= export activity of the it product in the tth period ,
k =exp¢{t =1,...,T)

th

the volum of the kth bounded import activity, importing the i
h

ikt

product in the tt period , k =impo (t =1,...,T).

The above variables are given according to their economic nature

The formulation of the primal problem will be.

Under the following set of constraints

The frist set of contrants
Kikt
Pt
Vi¢ £ Zfikt P 0 e Kae & Vi
k#imp k=inv
k = pro,ex (t=1,...T)
imp,o0

where



where

i = is the output cofficient

1]
—

for production

= 20 for investment

I
]
=

for export

for'import

[]
-—

k in the frist part is for production § for export, for import only, and

k in the second part for investment the above set of constraint are of

the type which shows that the sector complies with the plan figuers re-
ceived from the center.

The second set of constraints are

GRS =
E IJRtTTIkE 2o 9:5kt *ikt £ Lik

k=all k=inv
k#inv
j:]’_._’n ] J?l“i N tz],...,T

where

9ijkt = material input coefficient

1]

;0 for production and also for investment
= 0 for foreign trad activities

The thrid set of constraints
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K= all k=inv L
k # inv
where
hikt = Tabour force coefficient k) R SR e

>0 for production

2,0 for investment {agst-y &l >

=0 for foreign trade

those above three types of constraints are related directly to the
SV IISLET N0a 332 s HOLIBRTIMENSN Sf JENAS Magtd 21 3F 918

Also some types of.constraints:can be:set:up,for special, seetors

which have certain characteristic. These types of constraints may be

written in the general form.

0 0
a a . <Q b
ﬂkt Z-11|<t 1K ol

rkfi_%
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where

0
bi{ is the upper limit of production in the sector

The objective function of Tevel two will be



T
Ve N Sikt Xike ¥ 2o Sik Xg wee X \
t=1 k=all,o k=inv

where Sjp¢ » S;j are the fore 'n currency return
It is also assumed that

max Sipe & min (=Sipe)

k=exp
=l T

‘Here it is clear that the maximization of sector objective

function will leads to the maximization of the objective function on the

national scale.

The dual sector model:
The dual problem of the above formulation of the sector model is

as follow and the set of constraints
*hoet - Wit

Fike (54¢ - H4¢) ;éi %iske (it
=1 |
J=i
g o ing
> ilkt 1e ‘>,S1kt
i=spec
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where
k = production, export, import, O
107 9 - W
t=1,...,T
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k = investment only, t = 1,...T
and
L C ) (
it 2° Aut? 0 Mo
2 X' O ] .
it % 0)1[ 7 °
j=T,...n 3 #F1 s B =] gl
{ = spec.

The dual objective function is
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In the above dual sector model J/it’ is the shadow price for

the supply, task Vit ‘\ijt is the shadow price for material quota

Zijt and also Wit is that of manpower quota. Let Yit to gives the

shadow price of the upper boundary vit of the 1tl' supply task and °J1.t

0
that of the boundary bi ) in the et_h <eciall castrant.
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Economic Interpretion And Calculation Process:

The aim of thisvstudy is to give an idea of the two-level planning
models and how it can be used for planning process. The programms gf
sectors are not our subject here and it can be left for a detailed study.
Were will be an illustration of the main relations of the two-level

planning model and the iteration process to get the optimal solution.

The calculation process consist of a number of phases, these
numbers are not mor than four phases, each phase consist of a number of
steps. The phase mainly concentrate on a given objective function. The
calculations are done through an iterative procedure which depend on
upper and Tower optima. In our problem the value of the objective func-

tion will certainly fall between the upper and lower optima in any step of

iteration.

* 7
Now let u* ; Ln 1 he the uper and lower optima in the | n~1‘ iteration
n-1 =
ant Tet<, be any small incremental value. Now-the four phases are as

follows.

Phase I.
This phase is a centeral level phase (i.e. the calculation

in done in the center of plan.) and as a test for calculations is that.
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then the calculation is stoped and we have on optimum,

Case II

*

U
n-1

=i 2 5;

n-1

then the calculation is continued untell we get an optimum for the

problem
n T * (S *
n-1) e n=l)oZe o n=1r Wil o
De e e R e ) 19& nax
i=1 t=1 j=1
subject to
n
Z Zijt+ dit_vitévit (i=1, net=lon a1
J=1
L
2’_ NH.' = N,it (t:]! °'T)
i=1
disY = Zijt 7 O Mins -0
(i=1,...n ; i#J Jelsabns teln . al)
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where P<_t is the supply shadow price of the production Vit
i

Bit is the shadow price for the material quota Zijt (demand price)

3

and Q{it is the shadow price for the manpower quota. all these shadow
prices are send.
In the frist phase there must be a decision about the distribution of

resources in this case we have

a- if the supply price are higher than any of the demand prices, in this
case the center dose not supply the sector wiih any raw material

Zijt = 0 and consumption requirment only is to be produced i.e.

Z...(n) =0, . Vi.(n) =d

h- if the demand price is higher than the supply price , then the all
quantity will be given to the sector which will give higher price.
This mean that the actual distrbution will be between both extrems

The frist phase in general ended with formulating partial programs.

Phase I1I
This phase begin after the frist distribution taken in phase I.

This phase is also centeral level.
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*
Let <P(n)b: 72 summtion of optimals for the partial programms

obtained.
T . o
x =R <T' max Sppans In-T s
<P (n) t/__] 2 | ﬁﬂt it it
= i=

* *
°<1.t(n-1) d.. + max ¥, (n-1) wiél

m : . ‘ e
Aspecial optium component is added to this summation, Thijs summation js

n
:g_ (N 1) Now the calculation of the upper bound of the optimal

j=1 th
value in the n= run will take place. i.e.

n
* *
M) = B+ 5 4O (1)
i=1 1
As done in the frist phase in the continuation of calculation or not will

be in this phase according to the condition.

c;(N) - L*(n—]) 4 8

or
*

*
p(N) - L (N-1) > 9B
which means that we must have real distribution instead of extrem dis-

tribution in an side.
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The centeral program send to the productive sectors will be according

to the following basic formulas.

g N-T 7 1
R s L

. (N) = N-17° (N-T) + )

L
N it

(=1 5 o wush 5 F7hsesss )

s JF1 4 =] 5 asl

this is in real simple arithmatic mean for the partial programs obtained

After phase one and two were done the role of the center is

ended.

Phase I1I:

This phase is done on the sectorial Tevel of planning (Level II).

The sectors begins to prepare there programms according to plan directive

*

v * “
it Zg (N W (N)

given to the sectors by the center.
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The primal and dual problem now can be solved to get.
a) The shadow prices at this stage for the sectors. GfJN),

Pit(N) and 5. (N).

b) The value of the objective function of the optimal programm.
Now the sumwofionof optimal programms of the sectors gives
the Tower value of the planning problem as whole in the Ntb
stage, i.e. .

* o
L (N) = 07 Li(N)'
i=1

c) Provisional special sector optimum component
1§

A
¢1‘(N) i e <P1_t+ Z }30 7 (N)
= ML
t=1 L=spec 1k

This value contains the calculated 1limit for Vit and the limt

of the constraint (special) for the sector calculated by shadow prices.

Phase IV:

The shadow prices obtained in phase III must be smited with the

plane directives given to the planning center for this reason the must be
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a real evaluation for thise shadow prices. this is done in phase IV

as follows.
k* *
- N= o< - oL
it(V) —Hﬁl- (1) lﬁ it (N)
% *
Bit(N) S A g1 1B ()
¥ >
N = N-.l ~ - ~
-[-t( ) ’)'lt(N ])+ | L)‘ (N)
where
(1'1! N ’ j:]’ n ) J#.l
B [P |

Also the special optimal component of the sector are finally obtained

by the sdme way in the above stages.

Fi(N) = N1 ‘P?(N—l) 1 Py
N ! N

At the end of phase IV, the shadow prices and also the optimum

value of the sectors are send to the center with also the mixed special



e

optimum component.

As a feature of the two level planning is that (in case of
optimal programm the shadow prices are equal and this is done as

follows

193/:’5':.."
a) as an examp it O e }(nt

b) the spply price for certain product is equal to that of

i i PL -
demand price. i.e. it Pijt'



The purpose of this chapter iz to show how s=ome large—-scale LP
models of special angular structure can arise through the combination
of smaller LF models and how such large—-zcale LP model=s prove to ke
maore powerful as decisicon tools than scluving the individuzal smaller
models from which they are constructed.

Such 1z ge models are called MULTIDIVISIONAL LF MODELS LWITH SFECIAL
AMGLULAR STRUCTURE .

Introducticon -:

The model will be re—illustrated here through 2 very zmall
demonstrative example.

Multi=-Flant Model

Suppose we have a company consists of £ factoriez & and B . Each
factory can produce 2 types of & product ( rmormal and lux ). The
profit per unit of the normal trpe i= 10 pounds 3 while it i=s 15

tor the Jux ty¥pe 4
Each factory has 2 processes of production for producing its products.

Factory & has a maximum of 20 hours per week in process-1 and &0 hours
per week in process=-11 .

=

Factory» B has 40 and 75 hours per wesk in process-1 and process—-I11 .

m
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m
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e

time +for productiaon ==

Company
Factary & Factory B
R e G e e e e e e e e e e e e e e e e e
process Froducts Auailakble Froducts Aueailable
_______________ time per e e e e e e time p=r
Mormal Lo e sl Flormal Lo e ek
I 4] 2 20 5 3 A0
I1I z ] &0 5] & P
Prof./Unit 1l 15 10 S




In addition to the information above , zach unit of each product uses
4 Kg of material and the company hzas only 120 Ko of material per week.

Suppose that Factory & is allocated only 75 Kg of material and the
remaining 45 Kg is allocated to Factory E

Each Factory can build ite LP model to maximize its profit as
follows @

1 1 =
s.to:
4 x + 4 x (= 75
1 2
4 x + 2 x = 20
1 2
2x + 5 x {= A0
i z
&
X y » = 10
1 2

t % represents the decired quantity of normal product and
1

* represents the desired quantity of lux product X
Lo,
F 4



Factory B

Max . Z = p E1 I + 1S %
z 2 <
s.to:
4 i i e {= 45
3 4
i i g e {= &0
3 4
5 + & % {= 7?5
3 4
&
® o >»>= 0
3 4

The optimal solutions of theze individual models are @
For Factory A : For Factory B

Z = 225 pounds , 2 = 142.75

1 z
#x = 11.25 units , and ® = 0.0

1 =
%o o= Fa9 undts s X = 11.25

i 4

Notice that

At Factory A @ There is a surplus capacity at Process 1

20 hours

Aat Plant B @ There is a surplus capacity at Process I =
There is a surplus capacity at Frocess 11



Suppose now that amn overall Company model is built in order to
maximize the total profit of this company

Azzume also that the Factories remain distinct and geocgraphicall»
zeparated . Moreover , no longer allocation of 75 Kg of material to

and 45 Kg to B . Instead , the model will decide this allocation .
o, thers will be & single material constraint limiting the Company
to 120 Kg only per week .

The Company Model can be illustrated as follows @

Mayx . Z =10 % o+ 15 oW £ 10 = + g ¥

1 2 = 4
S b0
4 x + 4 x + 4 x + 4 u = 120 {Aavailable Materiall
1 2 3 4
4 x + 2 {= g0
1 2
2 % b =8 .x <= &0
1 2
a % + 3 x <= &0
3 <
B x + & X = 73
3 4
&
# = 0 o = A 2aEhd
]
We want this model to split the material cptimally between the

the Factories A and B since it would be expected that a more efficient

split would be happen which maximize the cverall Company profit .



The optimal solution of this maodel i=

rJ

Mot

404.15 pounds

= 9.17

e also that

~
' s

There is a surplus capacity of 22.5 hours at Factory B.

The total preofit is 404.15 pounds which is > the combined profit
from Factory A and Factory B acting independently
225+ 168.79 = 322.75 ).

Factory A alone contributes 187.50 pounds to the Company total
profit as a whole , whereas before , it contributes 225 pounds only.

unds to the Company profit whereas

Factory B contributes 214.45 po
es 1&8.75.

before , it only contribut

Factory A& now uses 70 Kg of material and Factory B use= S0 Kg.

It is clear that the Company model as a whole has biased production
more towards Factory B than before . This has been done by
allocating Factory B 50 Kg of material instead of 45 Kg and so
decreased what allocated to Factory & by 5 Kag.
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The above example shows how a Multi-palnt model can arize . It is
a method of using LP Models in COORDIMNATION between Flante in a
large Organizations with many Plants as well as in helping of
Decision-Making within Flants,

The same cituation is valid for the COORDINATION between the
different Sectores in a MNATIONAL PLAMMING.

This Model waz a very simple example of a common sort of structure
which arises in Multi-Plant Maodels.
The structure of such models is Known as Block-Angular-Structure

e e o — — — — — ———_— e,

10 e H 15 l

4 4 4 4 | (= 1z

4 2 ¢= an

2 5 (= 40
5 3 (= 40
5 y ¢ 5

The first raw iz the Objective functian r o,

The next rows ¢ here i= only one row ) are Known a= the Common
constraints.

The two diagonally blocks are Known as the Sub-models constraints.
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For a more general problem with a number of rarely shared resources

and N Flants, the following General Block-Angular-Structure could be
obtained

C C B
1 2 I~
A A £ b
1 7 N 0
B b
1 1
B b
z2 2
B b
N Il




where
£ 3 B % @ & @ B are row wvwectaors representing the coefficients
1 2 & of the Objective function.
e R < T L T Ve
1 2 I
E T By = E are Blocks of constant coefficients.
i 2 R
Blerg B 5 G b are column vectors of coefficients forming
0 1 Il the right-hand-side.
T < T T T = represzent the common ¢ shared > constraints in
| 2 M

Multi-plant Models and usually involve allocating the scarce resources
( materials , processing capacities , manpower , . . . etc. ) across
Flants.
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Mote that :

I¥ the problem of Block-éAngular-Structure has no common constraints,
it should be clear that optimizing it simply be equal to optimizing
each problem with itz appropriate portion of the Objective function.
For the present example, if there is no material constraint, each
Filant’s model couid be solved independently and an overall COmpany

optimum would be obtained.

Sometimes there are common constraints, but thizs will ke no longer
the case as in the =mall example illustrated here. Howeswer,; the
more common constraints there are, the more interconnected the

separate Plants must be.

In the next chapter, a discussion of how =a Knowledge of the optimal
solutions of the Sub-models might be used to obtain an cptimal solution
ta the whole model. This can be quite important computation ally since
such structured models are often of very large—-scale type and takes a
long time and a very large computer memory to colwe if treated as one

farge-scale model.



The DECOMPOSITION ALGORITHM

The importance of dezomposing & large multi-divisional model is
not only computational, but alsoc economic. Uzually a Decomposition
algorithm applies to LP models of Block-Angular-Structured practical
problems. If the structured model represents, for example, & multi
plant model, the decomposition procedurs reflects the idea of
DECENTRALIZATION IM PLANMING.

Consider again the small demonstrative example in the previous
chapter

Max . 2 =10 % + 15 % + 10 x + 15 x

| 2 3 [l
z.to
4 v + 4 x + 4 x + 4 % {= 120 { material ¥
i 2 3 4
4. & 2R {= 80
i 2
Zox. ¥ D <= &0
1 724
5 + 3 % {= &0
2z 4
5 M + & {= 735
2 4



It was =een that splitting the 120 Kg of material between Plant A
and Plant B in the ratioco 7S5 / 45 led to a non-optimal overall
zolution. The optimal overall zolution showed that this ratic
should be 70 / S0. Unfortunately, the overxll model will be solved
in order to find this optimal =split. If a method of predetermining this
optimal “plit, it could be able to solvwe the individual models for
Plant & and Plant B and then combining the zoclutions to give an
optimal sociution for the overall model.

For a general BlocK—-Angular—-Structure Model, we would need to find
optimal splitse in 11 the right-hand-side coefficients { b P

0
the common constrainte.

Decomposition Algorithme of a Block-Angular—-Structure based on this
principle do exist. Such Algorithm=z are Known as Decomposition By
Allocation. One such Algorithm is the algorithm of Rosen ( 1%&4 ).

An alternative approach i= Decompeosition be Pricing. In a Block-—
ysuch as= the one above, where the common constraints
represent constraints on material availability, we could try to seek
for a fixed-values of that limited reszcurces ,materixl, . These
fined-values could be used as internal ( shadow ) prices to be directed
to the sub-models. If accurate fixed-values vwaluatiaone could be
cbtained, we might hope to get each sub-model optimizing to the cverall
benefit of the cverall model. One such approach is the Dantzig-Wolfe
Decomposition Algorithm. & full description of the algorithm i=s given
in Rantzig ¢ 12488 ).

This paper dealt with & less rigorous description, paying attention
to the Economic anclogy with the Decentralized Planning.
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Mow

14 the material was not in limited supply , we would have the following

csub-models for Plant & and Flant B as follows :

For Plant A @

1 i 2
ewto:
4 ¥ + 2 % {= &0
1 2z
2 X + 9 (= &0
i Z
&e
S X =0
1 2

For Flant B :

Max . Zz = 10 % + 15
2 = =
. tos
5 - 3 ¥ {= &0
3 4
o X + & % {= 73
3 4
2
% P »= 0
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These sub-models should not be confused with the sub-models for
the zame problem menticned in the previous chapter except that the
material availability constraints were included there in both
zub-models with a giz==ing allocation of material between them.
Here, such constraints are not included. Instead, an attempt
is made to find a2 suitable internal ¢ =shadow ) price for the materisal
and to incorporate this internal price into the sub-model=.

Suppose that the material were to be internally priced at p pounds
per Kg. If we have taken the material availability constraints
multipiied by p and then subtracted them from the Objective functions,
then, the above Objective functionsz of the sub-models become

Y]

= ClU-4p) x. + (15-4p) x (1>
1 1 Z

Z = CLIb=Apa: 5cot C15=an) % £2)
2 4

P

Mcow, if p has & very small value, then the combined zolutions tao
the sub-models use more material than is available in which cace P
should be increased.

Example
I+fp=0, ¢ i.e., there is no internal price for the material ),
the following optimal soclution could be obtained
For Plant A : For Plant B
Z = 250 L Bre s
! z
e =075 # = 0
i c
¥ oo=S X.o.= 12,5
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These solutions are clearly unacceptable to the Company as a whole
zince they demand 140 Kg ¢ 4 x + 4 x + 4 x + 4 x > of material
2 3 4

which is more than the 120 Ko awvailable.

pory

Therefore, it is necessary zeel for some way of estimating
a more realistic value for the internal price p.

Wkatever the value of p, Flant A& and Flant B will have optimal
solutions which are Extreme-point solutionz of the =sub-models
presented abovs.,

Since the =ub-models only invaive 2 wvariables each, they can be

represented graphically as folliows :

Y e /)
b

/]
X
e
o] fo,12)

N (e,i2-5)

(4,5 )

\
x

i

- 2
\29“)\ 1 \(’219)

With p =0, it can bhe e
)

. ¥ verified that the coptimal szoclutions
above are ( 17.5 , 5

1
{0, 12,5 2 recspectivel ¥,

fAny feasible sclution to the overall problem must be feasible

to both sub-probliems ¢ az well az additionally satisfying the material
availability limitation J.

The walues of x and in any feasible
1 2
problem must therefore be a convex linear
{ extreme—-points > of the f=as
above.

zolution to the ocverall

combination of the wvertices
ible-regicon shown in the first figure
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158y
[ ~ - — - - — - o
3 0 20 § 255 o !
1
== iy + g + g + G (3)
¥ i1 12 1:3 14
2 0 Q | q
ad o - J s -~ == . - J
where,
sd y © il el are the weights attached to the vertices.
i1 i2 13 14

They must be non-negative and catisfy the convexity condition :

g + ¢ + g + = 1 (@
11 12 13 14
The vector equation (3) is a way of relating » and x to a new
i 2
set of variables ¢ as follows
iw.i
W =0 ¢ + 20 ¢ i BT ) +3 0 (S
i 11 7 13 14
X = 0 +° 00 C + 5S¢ . ) idl (&)
2 11 12 13 14
In the same manner , x and x from the second figure can be
3 )
related to more variables & o] s ¢ 4, and ¢ by the
21 22 23 24

following equations :



*x =0¢ + 12 i ? a3 + a < (72
2 21 22 23 24
x =0¢ .+ 000G + 54 % 12,5 ¢ A (&>
< 21 22 23 24
&
) + 0 + 7 + =1 ¢
21 22 23 24
wheres & are the weight for vertices in the second sub-model.
2]

Nate that :

A slight complication arizes when the feasible regions of some
of the sub-models are cpen as follows

tfeasible region

= L 7 r AN A A ‘_;_

Anyhow, this complication is easily dealt with and fully explained
in Dantzig ( 1943 ).
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e can use equations (3) , (&) , (7Y , and (8) to substitute for
X 4+ X 4 % 4 and x in the objective function and the single

i 7 3 B e e e e e e i ==
common constraint of the cverall model.

The proceses I and process II constraints of the two sub—-models
will be satizsfied as long as the ¢ are non—-negative and satisfy
iJ
the convexity constraints (4) and (?) .

In this way , the multi-plant model can be reformulated as
follows @
Max.

fC ¢ ) = 200 ¢ + 250 ¢ £ 1800 * 120 ¢ + 165 ¢ + 187.9 ¢

12 13 14 22 23 24
s.to
Material :
80 ¢ + 90 ¢ + 48 ¢ + 42 ¢ + 56 ¢ & 80 ¢ {=
12 i3 14 22 23 24
Convexity 1 :
a1 -+ (4] + g + [+ =
it 12 13 14
Convexity 2 :
g + lo + g + ol =
21 22 23 z4

This model is Known as the MASTER MODEL. It can be interpreted as
a model to find the optimum mix of extreme-point sclutions of sach of
the sub-models.
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A&t any internal price ¢ shadow price > p directed to Plants A and B,
each of these plants produces an extreme-point solution. Such solutions
are Known as PROPOSALS since they represent PROPOSEd solutions from the
sub-models given the provisional internal price p for the material.

The PROPOSALs are the columns of the coefficients in the MASTER Model
corresponding to 2 particular vertex of a sub-model. For example, the
PROPOSASL from the third vertex of the first sub-model is the column :

-,

{zs0
20
1
0
. A
Thie PROPOSAL is given a weight of ¢ in the MASTER Model.

13

The role of the MASTER Model is to choose the best combination of
211 the PROFOSALs which have been chtained.

Note that :

In practice, the MASTER Model would bhe of impractical use. It
would generally have far fewer constraints than the original model.
There will ke the =same number of common constraints as the aoverall
madel . Each sub-m 1y however, has been condensed down into a
=ingle convexity constraint such as convexity | in the example above.

(]
B Rl |
1]

Unfortunately, the zaving in constrainte will generally be maore
than offset by a2 vast expansion in the number of variables. We will
have a ¢ variable for sach vertex of each sub-model.

PJ

In practice, the great majority of PROFPOSALs corresponding to these
variables will be zero in an optimal s=olution.
For a MASTER Model with a relatively =mall number of constraints but
a very ltarge number of variables, the great majority of variables
will never enter the BASIS.

We therefore go to a practical algorithm more widely used in
mathematical programming. Irn this algerithm, columns are generated in
course of optimization. & column ¢ PROPOSAL ) is added to the MASTER
Model only when it seems worthwhile,
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We therefore deal with only a subset of possible PROPOSALs. Such =
truncated model is Known as a RESTRICTED MASTER Model.

PROPOSAL=s are added to ¢ and sometimes deleted from 2 the RESTRICTED
MASTER Model in the course of optimization.

In general, only a very s=mall number of the potential PROPOSALs will
eyer be aenerated and added to the RESTRICTED MASTER Model.

In order to describe this new Model, consider again the small
muiti-plant model mentioned above. Instead of using the MASTER Model
( we were lucky enough to be abie to obtain it from the graphical
conzideration in this very simple example 3, we will waork with a
RESTRICTED MASTER Model.

To s=tart with, take only the FPROFPOSALs corresponding to & and &
3l i3
from the sub-model of Flant A and ¢ and @& from the =sub-model of
21 24
Plant B. This choice is largely arbitrary ¢ how it is made is not

In practice, a number of good FROFOSALs from each sub-model would be
used to make up the first version of the RESTRICTED MASTER Model in
order to have a reasonably realistic model with some substance.
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The first RESTRICTED MASTER Model is therefore

Max. ¢ = 250 ¢ + 187.5 ¢
13 24
Sato

Material:

70 ¢ + S0 ¢ = 1Zz0
13 24
Convexity 1
g + G = 1
H 1z
Convexity 2 :
7 + g =1
21 24
When thie model iz optimized, we can cbtain & VALUATION for the

Material. This VALUATION is the MARGINAL VALUE of the Material
the optimal solution. Such MARGIMNAL UVaLUEs for
*

constraint in

constraints are sometimes Known as SHADOW-FRI CE= .

e
The SHADOW-PRICEs are discussed much fully teogether with their
economic interpret ion in sec &.2 , H. P. Williams , Model Building

in Mathematical Programming.



fgain, the MARGIMAL VALUE associatod with a constraint such as
Material is the rate at which thise optimal profit would increase for
s=mall ¢ MARGIMAL ) increase inm the right-hande-cide,

[ Note that @ such VALUATIOMs for constraintse are possible 1]

Mow, if this RESTRICTED MASTER Model iz optimized, the SHADIW-FRICE
on the Material constraint turns out to be 2.75 pounds. This can be
taken as the wvalue of p and used as an INTERMNAL-PRICE by which Plants
A and B are charged for each Kg of Material which they wish to use.

When Plant A is charged this INTERNAL-PRICE, it will re—form its
Ohjective function taking intoc account the new charge.
The new Objective function comes from (1) for p=2.78, i.e

s X
Zoo = =l b2 sl Sn ] 8 ¢ C10)
1 1 2
If this objective function is used with the constraints of the
sub-model of the Plant A, we obtain the optimal solution :
¥ =0 and bR (=
1 2
This is clearly corresponds to the vertex ( 0 , 12 ) in the first
previous figure. The PROPOSAL corresponding to this sclution is the
column—-vector of ¢ .« This is easily calculated to be
14
1a0
45
1
0
S
Thern , a new wariable (g but with 2 different name > i=s therefore

14
added to the RESTRICTED MASTER Model with this column of coefficients.
This new PROFPOSAL represent Plant A4 ‘= new provisional production plan
given the new INTERNAL FPRICE of Material.
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For Plant B, when it charged at p = 2.78 per Kg of Material, the
previcus relation ¢2) gives itz new Objective function a=

Z = =~ 1l ® % 4+ B.18 % i

2 2 4

When this ocbiective function with the constraints of the sub-mode]
of Plant B, we obtain the zalution

This corresponds the wertex ¢ 0 ,
[

12.5 ) of the =e
The PROPOSAL correcsponding to thi i

cond previous figure.
is the column vecto

r of ¢
24
This PROPOSAL has already been included in the first RESTRICTED MASTER

T S S S S e et it ey S T S S S it (. i e St o S e St T B W S S St o o e . S T ——— T — —— — — . — ——— i —

suggest & new PROPOSAL ¢ Provisional production plan 7.



Having added only the PROFOSAL corresponding to

RESTRICTED MASTER Made,

250 <
13
S.tosz
Materixl:
70 o
12
Convexity 1
o] +1 g
11 13

Optimizing this model, the SHADOW PRICE on the Material turns
to be 1.74. We rrevious VALUATION of

&, =ee that the
be an OUVERESTIMATE.

it becomes

483 ¢
14

14

21

g to the
14

24
50 o <= 120
249
=1
el = 1
24
ou t

2.78

appears to



The CYCLE i= now repeated and each Plant is INTERMALI» charged for
1.67 per Kg of Material. This gives the following new Objective
functions for Plantz A& and B as follows :

rd
1]
o
LAY
P
5
+
]
I
[43]
5

It
A
s

Pl

Using the Objective function <12 and the constraints of the sub-model
for Plant A, the ocptimal sclution becomes

¥ = 17.5 and x = 3

1 z

This is the vertex ¢ 17,5 , S » and gives the PRTrDSAL corresponding
] . Since thisz PROFDSAL has already been incorporated in the

13
RESTRICTED MASTER Madel, Flant A& has no new PROPOSAL to offer as &
result of the rewvised INTERNAL PRICE of 1.47 per Kg of Material.

Also, Plant B optimizing ite Objective function (13) subject to
the constraints of its sub-model yields the solution :

¥ =0 and % = 12.5
3 4

This is the wvertex ( 0 , 12.5 ) which results in the PROPOSAL

corresponding to & . Since thie PROPOSAL iz already present in
24

the RESTRICTED MASTER Mcdel, Plant B also has no further useful

PROPOSAL to add as a resul? of the rewised charge of the Material.
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We therefore conclude that Plants & and B have been submitted all
the useful PROFOSALs that they can. The optimal soclution to the
latest version of the RESTR+ICTED MASTER Model gives the proportions
in which these PROPOSAL:s should be,

For the present esxample, the optimal =olution to the RESTRICTED
MASTER Model s

g =052 , ¢. -=0.48 ] g =1
13 14 24

This enables us to calculate the optimal walues of x s X 4 X 4, and

1 5 ]
s by considering the vertex solutions of the sub-models correspondin
a
to O s O i and o
13 i4 24
S, we obtain :
w2 17.5 ] Mo
i
= 0,32 + 0.48
% "o 1z
z L
- -~ Iz S
® a
3
==
® 125
4J & >
This gives us the optimal solution to the overall model as follows



Motice that we have obtained the optimal sclution to the ocwverall
model without soclving it directly., Instead, we dealt with what
would generally be much smaller models. The two types of modelzs we
hhave used are the sub-models and the RESTRICTED MASTER Model.

The Significance of Used Models

THese modsls contain the details concern the indiwidual
sub-problems. For multi-plant model such as the one used here, the
coefficients in the constraints only concern the particular Plant ;
that is Process 1 and Process 11, times, and capacities in each Plant.

The RESTRICTED MASTER Model

This RESTRICTED MASTER Model is an overall model for the
Organization as a whole but unlike the overall model, it contains
none of the technological detail relating to the individual sub-models.
Such detail is left to the sub-models. Instead, the constraints for
each sub-model are accounted for by a =zimple convexity constraint.

In the present example, we had constraints for Plants A& and B reduced
to convexity constraints ¢ convexity | and convexity 2 respectively
page 24 ). On the other hand, the RESTRICTED MASTER Model does
contain the common constraints in full details since its main purpose
iz to determine suitable VALUATION:= for the resources of 1imited
supply, reprecsented by these common constraints.

The Interaction Between Sub-modsls and RESTRICTED MASTER Madel

This means that it is possible to obtain the optimal solution to the
cverall model ¢ usually very large > without building and solving it
directly.



The process of interaction between the sub-models and the RESTRICTED
MASTER Model can be represented diagrammatically as follows

sub-mode ]
i

internal-prices for common
resources ( shadow—-prices
on common rows of REMM D
M&STER
Mode 1 (CRMMD

PROFOSGLs ¢ mew columns
far EMH )



Cocnclusion

In & multi-plant Organization, the indiwidual Flants usually or
probably be geocaraphically separated. Thizs would make the avoidance
of including all their technical details in one Central-Model (
RESTRICTED MASTER Model ) desirable. In this case, each Plant
might build and maintain its own model inside its own Plant, and
solve it on its own computer. The Central Flanning Board would
maintain a RESTRICTED MASTER Model on ancther computer which would
be linked to the computers of the individual FPlants. Each model
would then be executed independently but could supply the essential
information of PROPOSALs and IMTERMNAL PRICE= to the other Models.
I't would then be possible to use such a system automatically to
obtain an cverall optimal solution for the Organization under
consideraticon.

The process of DECOMPOSING a LP Model has & very good interest for
Planners and Economicsts since it clearly represents a syztem of
DECENTRALIZED-PLANMING. The existence of DECOMFUSITION Algorithmiz)
such as the Dantzig-Wolfe Algorithm demonstrates that it is possible
to plan for a Decentralized-FPLANNING which 2chieves an optimal
soiution for the overall Organization. This is done by allowing the
sub-Organization ¢ Plant ) to decide its own optimal palices, given
limited resources from the Centre. In case of Dantzig-lalfe
Flgorithm, these limited resources take the form of INTERMNAL PRICEs.
For ather Algorithms, they may take the form of allocations.

esion of large number of DECOMPOSITION Algorithms and their
ion to Decentralized-Planning in real life is qiven in AtkKins

=i

M

[y

w
Ooam

]

. An account of computation; exp
DECOMPOSITION is given by Beal

¢ M

using Dantzig-lol fe

n
ughes, and Small { 1985 ).

o

]

[11]

. A very full description of the computational side of DECOMFOSITION
is given by Lasdon ( 1970 ).
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2 REM #3383 333 30 30 3030 3000 3 30 3 40 30 30 30 40 30 30 2 03030 3030 0 50 30 30 3030 30 0 3030 30 20 30 H 3030 3020 30 3030 3 B 0 S R S H A

THIS PROGRAM FOR THE DECOMPOSITION PRINCIBELE OF
MULTIDIVISIONAL PROBLEMS (ANGULAR STRUCTRUE 3

EM- .o

REM 7 . -
REM . ..

VARIABLES DESCRIBTION

T T

REM ...

REM . ..
REM . ..
REM ...
REME & 2 <
REM"« -
REM: 5. . o5

= THE TOTAL NO. OF SUBPROBLEMS
ND = ¢ SUBPROBLEM INDEX

REM .. ..

REM ...
REM: ... .
REM" . .
REM -5

M " NO. OF CONSTRAINTS ( ROWS ) FOR THE REFORMULATED
MASTER PROBLEM
N = " NO 0OF VARIABLES ( COLUMNS ) " " FORMULATED
MASTER PROBLEM
MO{I) = THE NO. OF ROW. S FOR THE SUBPROBLEM (I), I=1.,NN
NOC(YY = M " " COLM. 8 " i i () Jd=1, NN
MO{OYy = * t * ROW.,S ¢ “  COMMON CONSTR. ‘S

REM ..

REF 7. .
REW ...

THE FOLLOWING FOR THE CRIGINAL PROBLEM
3363 3 A 3 G H A 2 0 3 30 AR B B B

REM 0

REM. ;0
REM. ...
REM ...
REM ...

A(I, J,ND) = THE COIEFF. MATRIX FOR THE COMMON CONSTRAINTS,
I=1,MO(0),
J=1, NO(ND)
ND=NN+1, 2NN

REM & .

REM 2.0
REM - -
REM .
REM" -

A(IL, JI,ND)= THE CIOEIFF. MATRIX FOR THE SUBPRIBLEM NO. (RND)
Ii=1, MD(ND)J
J1=1, NOOND),
ND=1 , NN

wEM =

REM Lo
REM ..
REM .. -
REM . .
REM « .z

o ot o e e i i e s e et S st s et e T B} T s e e e e T e ot e T S P e S o o St i e S S o o e T e e Ty e T e e o e e e e e
SN S T SN T S T T S S T T T T T T S T N N T S N NI T SN ST S SN SRS ERERER TS

BJ(I,0) he
BJ(Ii,ND)= ™ “ I o Y SUBPROBLEM NO. (ND3, ND=1, NN

REM .

REM s
REM 5.
REM = ;=
REM .z
REM - ;.
REM ...
REM . ..
REM . ..
REM . ..
REM . ..

CJ(I, ND) " ROW VECTOR FOR THE COIEFF. OF THE DOBJ. FUNCTION FOR
SUBPROBLEM NO. ND , ND=1, NN
THE FOLLOWING FOR THE REFORMULATED MASTER PROBLEM
B(I.J)=THE BASIS MATRIX
CB(J) =" COIEFF. OF THE 0BJ. FUNCTION FOR THE B. V.8
IB(I) = " INDEX L B.V.S
Ii =" PIVOT ROW
Ji1 =" = COLUMN
XK(I1) = " LEAVING BASIC VAR. B )
X(J1) = " ENTERING ™ i ( E.B.V 3}

REM . ..

REM . ..

REM
DIM
DIH
DI
DIM
REM
REM
REM

S A R A I A R I A M 2 2 A A M R A I S N

A0, 30, 5), B(20, 20), MO(S), NO(L): E(20, 20), IB(20), IN(ZD}, CB(20) . CN(20)
RE(20), RN(20), X(20),P(20), TKK(4), B2(20, 20), IA(20): BJ(20, &): CJ(20, 5)
IB1(20). IN1(20), CB1(20), CNi(20), X1(20.20), WJ(20), C(20), C1(20)

BO(20), XX(20).B1(20, 20)

30403 AR AR 3 30 3 300 3 2 3L SRR 30 4 2040 2 3040 30 R 20 3 3030 2030 3 303036 30 303 30 4030 30 20 33 2 S B R 2 3
#Reemnnns WE READ HERE THE DATA FORE THE ORIGINAL PROBLEM #3t3t3is
B S S S e T e PR S R TS S S R R S S E R S SRR s

READ NN



215
221
230
240
250
2460
270
280
290
300
310
320
330
342
345
360
370
380
320
400
410
420
435
440
450
4460
470
480
450
500
210
520
540
3350
DEO
570
280
5E0
&00
610
£20
630
640
650
5560
670
680
H70
700
702
703
704
705
706
707
709
P
720
730
740

Fo="1 488084,

FOR I=1 TO NN
FOR I=0 TO AN
READ MO(I)
NEXT I

FOR J=1 TO NN
READ NOC(J)
NEXT J

FOR K=1 TO NN
MK=NO(K)

READ IKK(I):NEXT I

FOR I=1 TO MO(O)

FOR J=1 TO NK
READ AC(I, J, K)
NEXT J

NEXT I:NEXT K
FOR K=NN+1 TO
L=K-NN
MM=MD L )
NIk=NO (L) +MM
FOR I=1 TO MM
FOR J=1 TO NK
READ A(I, J: K)
NEXT J

NEXT I:NEXT K
FOR K=0 TO NN

2NN

FOR I=1 TO MO«

READ B.'‘I, 1)
NEXT L:NEXT K
FOR J=1 TO NN

FOR I=1 TO NO(J)

READ CJ(I.,J)

NEXT I:NEXT J
READ M

REM 43363303830 3

REM #3334t

FOR I=1-TNn #
REAN Tivl)
M= XT I

REM

REM #3333 3636 34 2
FOR I=1 TO M
READ CB(I)
NEXT I

FOR J=1 TO M
READ BO(N
NEXT !

ML KK=0 : IKK(0)=0

REM wwus
REM ##¥#aasnitss
FOR I=1 TO M

FOR J=1 TO 1

IF I=J THEN 705
Bi(I, J)=0 :GOTD 706

Bi(I, Ji=1
MEXT J © NEXT
ITER=0D
M) =ty

von =1 TO M
FOR J=1 TO M

T

IF I=J THEN 790

E(I, J)=0



o
780
790
200
820
gae
840
850
860
870
aeo
30
240
G445
44
QL0
P65
@70
TS
280
920
1000
1010
1020
1030
10490
1050
1060
1070
1080
1020
1100
1110
1120
1130
1140
1150
1160
1180
1190
1200
1210
1360
1370
1380
1370
1400
1435
1445
1455
1475
148G
24465
2475
2477
2473
2477
2480
2481

2482

oL, Eyely

GO0TO B=U

EtIr \-ipf“_

B(I,J}=1

NEXT J

MEXYT I

FEM #rwne d @ e e e e e R R SR SR RSB S BB H R R U N R R H SR HE R S RN

REM #wezgssssrr we 500YE HWERE THE L. P SUBPROBLEM NO. (ND)
REM #s#s#ssansnr BY USING THE ReVISCD TTMRIEX METHOD

REM &8ttt m it S e S R R R S H R S BB H M H S iefon n 2 7 ¢ R L LR
REM

N21I=RO{HD Y +MO{ND )

NFI=N21-MO(ND)

M1=MO(ND)

MM3=NM1

REM S0 00 H I3 S 0 0 I S B0 0 M S R A B NN R RN BB R R Hrfon 4o 17 N EERR
REP # rsrss e see e 343 —1

REPM #4953 3890 0 30 4630 3 3 3t W COMPUTE HERE WJ=(CB)*(B) #AJ —CJ
REM 463698 #4636 35 46 363 338 3 1: MO
REM%%*%%*%***%%%**%**#***%****%%****%*w%ﬁﬂ¥x¥*%***%****%%*%§***

FOR I=1 TO MO(Q)
C(L)=0

FOR J=1 TO M

C(IN=C(I)+CB(J)#BL(J, 1)

NEXT J

NEXT I

FOR I=1 TO MNO(ND)

Cl(I)=0

FOR J=1i TO MO0}

CI(IN=CL(I}+C(J)*A(J, I,ND)

NEXT J

NEXT I

FOR I=1 TO NO(ND)

Ci{II=CI(I)—-CJ(I,ND)

NEXT 1

F-’.EM 2£~ﬂ-H--%—-li--t&-!!-#-!z-%-‘:i—***%*%*%*#%****%******ﬁ-***%%-}#**%**‘ﬂ-* AR RRHSNS
REM stxssaapsnsuissnsr WE CREATE HERE CB1(J) PONLCJY IBL (G, INCGY)
REM BT R R R R R kT X T U R R A R R IR O VST ST SRR PRV PPy
FOR I=1 TO NMi

INI(I)=I

NEXT I :LPRINT

FOR J=NM1+1 TO N21

IBL1CJ-NMLY=J

NEXT J: LPRINT

FOR J=1 TO NO(ND)

CNI( ) =C1(J)

NEXT J

FOR I= pNMi+1 TO N21

CBI1(I-NM1)=0

NEXT I

HEM #2383 33t a ey

GOSUR 4345

GOSUL 4115

COZUR 3825
=KK+1:LPRINT : IF RRR=10 THEN 2486
FOR I=1 TO NO(ND)
FOR J=1 TO MO(ND)

157 IB1(J)=I THEN 2484
NEXT J

X1(I, KK)=0:PRINT X1(I,KK)




2483 GOTO 2485
2484 X1(I,KK)=X(I):PRINT X1(I.,HKK)

2485 NEXT I

2486 GOSUB 3825

2505 GOSUB 4115 '

2515 IF J1<>(—1) THEN 2665

2525 REM ..

2535 REM ...0OPTMAL SOLUTION

2549 REM .=

29551 REM ...

2557 GOSUB 43346

2560 LPRINT :

25&5 LPRINT" ### WHICH IS THE OPTIMAL SOLUTION 4"
2975 REM ... i
2615 WJ(ND)=F

-2625 IF ND >=Ni THEN 2734

2645 GOTO 707

2669 FOR I=1 TO M1

2466 P(I)=0

2667 FOR J=1 TO Mt

26568 P(I)=F{1)+B(I. J)*A(J, J1, ND+NN)

2669 NEXT J: NEXT I

2479 GOSUB 3485

2680 IF I1<>(-1) THEN 2710

2690 LPRINT" ###UNBAUND SOLUTION 33"

2700 GOTO 707
2710 ITER=ITER+1
2720 60SuUB 3210
2730 GOTO 2465
2734 LPRINT
2735 LPRINT"

"

...............................................................

2740 LPRINT" . WE TEST HERE IF ALL WJ(J) >=0 ,I=1,2....NN

2750 LPRiTT" € IF YES THEN THE CURRENT BASIC FEASIBLE SOLUTION IS OPTIMAL
Q;QEDLPRiTT" : WE SHALL IDENTIFIY IT FOR THE ORIGINAL PROBLEM

2770 LPRin" ' ELSE

2780 LPRINT" : FIND W=MIN C[W1,W2,...,WNN 1

2790 LPRINT"
i

...............................................................

2793 LPRINT: LPRINT

2794 RRR=10

2795 JJJ=-1 : GGGC=0

2800 FOR I=1 TO NN

2810 IF WJ(I) >= O THEN 2B30
2611 WJ(I)=ABE(WJ(I))

2812 IF WJ(I) < GGG THEN 2830
2814 JJJ=I

2816 GGG=WJ(I)

2830 NEXT I

2832 IF JJJ=-1 THEN 2859

2834 ND=JJJ: JI1=TKK{JJJ): M1=M
2835 FOR I=1 TO M: X(I)=0:FOR J=1 TO M: X(I)=X(I)+B1(I, J)#BO(J): NEXT J: NEXT I
2837 PRINT Ji,ND

2838 FOR I=1 TQ MO(O)

2840 P(I)=0

>



w WE SHALL IDENTIFIY IT FOR THE ORIGINAL FROEBLEM
. ELSE
- FIND W=min <wl,w2,...,wWwnn >
P PETTEIETEE TS SEST TR L L8
¥ SUBFROELEM NO 1 £ 4
IS eI LLELL SRR SRR
ITERATION MNOC. O
AkRER R R LS RE R ALK
X 3 )= 20,000
X( 4 )= 25. 000
Z( 1 )= =24, 000
ITERATION NO. 2
XK EARRRFARRK KX
y G | 2,000
X( 2 )= =.000
74 GO 0. 000
¥¥% WHICH IS THE OFTIMAL SOLUTION %%x%
ST TS ELELESEE LT RERE S
¥ SUBFROBLEM NO 2 ¥k
kK R OK R HOR OR R OO R ACKROR X
ITERATION ND. ©
FERAERRRRRERZERK .
Xl 3 )= 2,000
T2 3= 0, QOO
ITERATION NO. 1
KA Rk Rk ROk K
X1 )= Z.000
Z( 2 )= 24,000
%¥% WHICH IS THE OFTIMAL SOLUTION ¥xK f

“ e owEow oo T I I R

WE TEST HERE

T ALl WIS

»uweon e

. IF YEG THEN THE CURRENT BASIC FEAGIBLE SOLUTION IS OFTIMAL , AND .



i p—— e o 5 -

. IE YES THEN THE CURRENT BASIC FEASIBLE SOLUTION IS OFTIMAL , AND

. WE SHALL IDENTIFIY IT FOR THE ORIGINAL FPROBLEM
5 ELSE
e FIND  M=min fwl, w2, ooywnn ¥

EREERRKKERRFRKRAR KR AR KRR
¥ .SUBFROEBLEM NO = 2 L8
ORKCRCH R HOR ORI R KR OOR R R

ITERATION NO. O
EEE TR SRR R R

K¢ 3 = 9. 000
Zl &= —24 . 000

ITERATION NO. O
ESE R EET RS E TR LR

== 12.000
2= 0.000

KL
. Zil
¥%X¥ WHICH IS THE OFTIMAL SOLUTION XXX

D T T R I T I MM N MEoM 4N EE W o oaow ¥ oW om oMM oW oMM MWW e B NW W R

WE TEST HERE IF ALL WJ(J) »=0 ,I=1,2...,NN :
’ IF YES THEN THE CURRENT BASIC FEASIBLE SOLUTION IS DFTIMAL ,AND
; WE SHALL IDENTIFIY IT FOR THE NRIGINAL FROBLEM :
; ELSE
FIND W=min {wil,w2,...,wnn X

THE OFTIMAL SOLUTION TO THE DRIGINAL PROBLEM
EEREEEREKRRAL LR KE KRR KRR R KRR REA KRR KRR KKK
(P » 2000
Sl 3,000
- LT w 2. 000
: Nt a ) 0. 000

. “OBRJ.FUNCTION = 42, 000



