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I. Introduction’

The development of many sectors of the economy is often
hampered by the insufficiency of the exisitng facilities of
physical distribution. Ridding of such a problem is expected to

yield a returns to different sectors far more than the cost 1nvolv-
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_ed in the additional facilities.' To estimate future needs for each
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mode of freight transport (waterways, railroad, and motor carriers),
it is logical to start by predicting total needs of freight transport,

then break down the total to flnd_the size of demand on each mode.

This study concerns itself with the first part, i.e. with .de-
veloping a proper model which could be used to predict total annual

needs of freight transport services. "~~~

S LT e n ot

It is doubtful that analysis of time series of past commo-
dity shipments would by itself suffice to predict such future needs.

It does not account for external factors which affect the variable



being forecast. 1In a previous study .in which the author took part,l

it had been suggested that Gross National Product at constant prices
would be about the most relevant single‘variable affecéing freight
transport needs since most domestic product is physicaliy distributed

within the eéonomy.

However, direct application of regression analysis to estimate
the relationship between the two series (Demand for freight transport
as the dependent variable Y, and GDP at constant prices as the inde-~

pendent variable X) would present socme dificulties.

On the one hand, the disturbance terms of each series would not
be white noise (random) as required by the model. katﬁer, they wohld

~mbst 1ike1yfbe serially related.

On the other hand, the trend in both series would tend to

dominate the regression thus obsocuring the true regression relation

making its.identification and estimation rather difficult. "

1) This was in an unpublished study by the Institute of National
Planning, Cairo, 1973.



Often in practical studies, these problems are ignored and re-
gression analysis is applled to time series as are. Tﬁe teéulté would
be unbiased estimates of the regre581on parameters but their estimated
variances would be b;ased. This in turn leads to unreiable tests and

inacurate interval estimates.

Therefore, for the cortécé specification of the regreSSion model
which will be used for prediction purposes, it is important to rid each
series of any of these these difficulties whenever present before apply-
ing regression analysis to them. The suggested procedure, known as the

Box~-Jenkins Approach, will be.applied in the following sequence:

a) Checking for the existence of a trend in each series,

in which case data should be detrended first.

b) Checking whether disturbances of each series is white noise,
if not, transform them into white noise through the specification and
application of the correct ARMA model. This is knows as the prewhiten-
ing stage.

c) Applying regression analysis to the prevwhitened series of
X and Y. Modify until reaching the correct MARMA model.

d) Checking the model for aaequacy.. This stage is known as
diagnostic checking stage. | | o

e) - Using the estimated MARMA model for prediction.



II.

Detrending and Prewhitening

Prewhitening is applied to both the independent variable
X and the dependent variable Y. The purpose is to eliminate the
trend within each series leaving what could be called whité noise,

therefore allowing the application of regression analysis to

~ estimate the regression of the prewhitened y series on the prewhiten-

ed X series.

‘Starting with the X series, the general class of autore-
gressive moving average (ARMA) model expressing the way an X value
is related to its own past values and to current and past error

terms 19:. '
X, = P X, + ¢2 Kep * oo +qg X p

+u, - G& u_, - 65 Uy eees = eh U g (1)
Equation (1) should be applied to stationary time series to find
out the degree of the ARMA model, i.e. to determine p and q.

If the data are not stationary, they should be made so by

first removing the trend in them.

Therefore, the very first step is to find out whether the

X series is stationary. Since stationarity exists when the data



are horizontal or flutuate around a constant mean, autocorrelations. -
are used to detect the presence of{stationarity.,Autocorrelation for time

lag (k) is equal to
n-k - _
k © o, K Fep ™

i (x;.-x) 2 v - ST
=] t

If autocorrelation drops rapidly to zero, the data are stationary and

the ARMA model could be applied to them. Otherwise, if autocorrelations
drop slowly to zero and several of them are significantly different from
zero, it would be a sign of an existing trend within the series, i.e.

the data would be nonstationary. Table 1 shows the autocorrelations for

the X series for various time lags.l)

Table 1
Autocorrelations of Original X Series

Time lag » Autocorrelation - -

0.865
0.748
0.641
0.537
0.447
0.358
0.283
0.211
0.137
0] 0.063
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Data used are: ,
GDP at 1954 prices million £ for 1953-1980/1981
Total volume of Freight transport in million ton/kelometer for 1953-1980/1981.



Since all autos up to the fifth time lag are significantl), and the de-
* cline in them is rather slow, there exists a trend in the X series which

will be removed by differencing.

Taking first differences instead of the original X data. The

autos for various time lags are as shown in table 2.

Table 2
Autocorrelations of Differenced X Series

Time lag Autocorrelation

.39
. 305
-.136
.037
.028
.318
.045
.106
-.104
054
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= o
o

The values of the table indicates that the new series of first

differences has much lower autos which decline exponentially.

To determine the proper order of the ARMA model we examine the

autos and partial autos for various time lags. Table 3 shows the partial

1) Standard error of the autocorrelation coefficient is equal to

1
n-k



autos for the diffe:enced.series.

Table 3

Partial Autocorrelations of Differenced X Séries

Time lag Partial Autocqrrelation

.39
.227
-.354
.30
.256
.54
-,258
.40

WOV b W

Notice that the first auto, the first and sixth partials are significantly
different from zero. . This suggests an AR of up to (6), and a MA of (1).
However, we will start with the simplest model,an ARMA (1,1) and proceed

with the remaining steps to find out whether such a model is adequate or

should be modifiéd.

An ARMA (1,1) model is in the form:

- = - -0
(X, - X, ) ¢1(xt—1 X, o) v u =¥ Y (2)

where ut is white noise such that

2 2 e
E(ut) =0, ‘ E ut-—q‘, and E u ou._, (0



Initial estimates of ¢1 and 91 should be obtained. These are
obtained using the autocorrelation coefficients.

Let us first use X =X -X

and X = X - X

Therefore, eq (2) becomes

X TP x _y +u - 91 Yoy (3)

The variances and covariances of the mixed ARMA process would

then be
% =E () = Bl x,_, +u -0 u .)> (a)
° t 17%e-1 " Tt "% M
2 2 2 2
P % - 2P0F (xy u_) ol + 0] o %)
a2 2 2 a2 2 |
_4:\1 ¥, 2¢l 910-‘ +g° +910’ (6)
i E( u ) = 2
since Xt_l -1 (o ud
Therefore,
2. 2 2 _
L0-¢) = ¢+ 6] 24)1 8)) (7)
and, the variance xo is
_ 2 2
Y. = wa+@ 29,0 | (8)

2
-]



Likewise, the covariance x is

l L]
B =E %) %) =E E‘t—l (P %1 * 8~ 0 Uy ]
- 2 A ' ‘
=¢1 xo - 610’ . | o . (9)
1+ 92 -2¢, 0
=¢, 1 171 o -0,0° (10)
1-¢p2
1
2 2 2 | .
=P +Re =296, - -4, 2 (11)
3 — :
1 -c#l
+p 8% -20%0, -0 +¢* 8 2 |
=P *H 6 191 78 TN 5 ,_ (12)
1 -
+ 2 _p2e -0 2 ‘ '
-_~¢1 (P]_gl 171 1 o : (13)
1-¢1
- (e -0) - 9; (¢, -6 o2 a (14)
1 - cpl
Thus,
¥,.= (P -6) -9 g c/z (15)
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tewise ‘62 is

¥, =E (x5 %)

£ Et-Z (b) %y * 9 -8 ut-lﬂ

2 2
=¢) 8. - 61¢1°"
Thus,
- 2. _ ‘
¥, =¢ (P ¥ -000 =P¥;
in the same fashion
Xk =¢l xk—l . for k22

where k is the number of time lags.

Thus, the autocorrelation functions would be

. ¥, _ P -90) a-¢ 0,
1 ¥ 1-82- 24,8
and
¥ $.d -
27 ¥ T ¥, ~*i1n
Therefore, (b 1 = _fg

(16)

EEt-z ((Pl (P % * Yoy T 91 u )t U 1“1:—5, (7

(18)

(19)

(20)

(21)

(22)

(23)
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Next, the autocorrelation estimates for various time lags are

used to obtain initial estimates for q)l'f'and 91.

Starting with ¢'1 ’

¢l= Q—: —.-3£ = .781
148 1 .39

Substituting this value of ¢1 in eq. (21) we can solve the resulting

function, which is nonlinear, to get an initial estimate for 91

(.781 - 61) (L - .781 01)

.39
2
1-9g -2x .781 1
l .
or
3982 + 0. -.39=0
: 1 1
Thus,
0. = -1+ v 1- 4(.39)° |
1 - i - - (24)
- 2 X.39
el = 0.479 or @, = 2.085
The first value @, = °479 meets the constraint for stationarity

1

(otherwise, with the other value of § 1 the series would be explosive).

The;.'efore . the initial values of the parameters are

P, =.7 8, - .479
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Final parameter estimates are obtained using Marquardt's
method for solving nonlinear equations. This method is often preferred
for its practical advantages over the other methods.l)
Using the initial estimates of 4}1 and 6 p °n the differenced

data X, we get its corresponding estimate

A
xt = ,781 xt_1 -.479 et-l

where et is the observed residual value for time t. Thus the mean

square error MSE is

2
A e
MSE = <23t _ 368622 _ 14178 (25)
26 26
A
W = - )
here e, xt xt

The calculations using initial parameter values are shown in

table 1 in the appendix.

Next,/ to determine the direction of changing the parameter
estimates, we intfoduce a small change, say 1% of original value, once

added and ofié¢ gubtracted €& the initial value of qbl while holding @

Y

1) Other methods for solving nonlinear equations are; linearizatién of
the above nonlinear fimétion around the initial vakdes of the para- “
meters using Taylor seriés expansion (see 7, p. 482), and steepest de-
scent method (see 2, p. 267).
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constant. The predicted vélues of xt using these values, called f; £ are
calculated. The difference between flt and Qt is also found. The r:esulﬁi

ing values of MSE will determine the appropriate direction of change in’

)

Interchangeably, dbl is held constant at its initial value and

91 is changed by a small increment in each direction. The predicted values
of X, using these values, called f2t; are also calculated. The difference

A
between £ and xt could also be found. Again, the values of MSE will

2t
determine the appropriate direction of change in the value of 1° Table.

4 shows alternative values of ¢l and 91 and their corresponding values of

MSE.
Table 4
MSE for alternative Estimates
¢, and 8,
Parameter Estimates A MSE
¢ L= 781, B = .479 14178
q:l = .789 , @, = .479 ' 13915
¢‘1 =.773, @, = .479 . 14450
¢, -7, 9, = .484 14262
¢ L= 781, @ = .474 1409

Notice that the value of MSE decreases whenever ¢1 is increased

or 91 is decreased and vice versa. Thus, the search for final parameter
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estimates should move in the direction of increasing ¢1 and decreasing
(4] 1 to the extent that would make MSE as small as possible. One should
be aware not to carry the process to the extent that may cause the

series to diverge. ,

The predicted values of X, using ¢1 = ,789, called f ¢ are

1

calculated as follows:

flt = ,789 xt‘_l ~-.479 , ,et-l

Likewise, the predicted values of X0 called th, using

e 1 = ,474 are calculated using the equation

2t t-1

£ = ,781 X, _ ~-.474 et-l

The differences between Qt and. flt on the one hand, and be-

tween Qt and f2 £ on the other hand are used to form the symmetric matrix

D whose elements are the products and cross products of the differences

ij

i.e. 28
A A
b, = Z (£, = %) (flt - x. ) = 118.02 o - (26)
t=3
28 A A
l:’12_1321? Z (£, - %) (£, - x ) = 40.26 ‘ (27)
=3
28 : A
N
- X )= Lo, (28)
D,, Z (£, - %) (£, ~%) =15.46

=3
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The necessary calculations are shown in tables II and IIXI in the

appendix.

The Di j matrix thus becomes

118.02 - 40.26

1 40.26 15.46

Next, the D 13 values are scaled and standardized by dividing them by
the product PiP 3 where P i is the incremental change in ¢l ¢ P i =,00781,
and P j is the incremental change in 91 ¢ P 3 = ,00479., The new D, 5 values
becone.
D].l = 118.02 2 = 1934877.817 (29)
(.00781)
p,= =2 =1076185.715 (30)
(.00781) (.00479)
D, = —2_ 673811585 (31)
(.00479)

These last values are then constrained by dividing each of

them by oi oj

~where

Ol = v Dll = 1391 , and O2 = VD22 = 820.86 (32)



The resulting matrix Ji ‘is

g1
1 .943
+J .943 1
- p— |

Whose values are scaled between + 1

Consider next the two values q1 and q2

where
28

- ( A N . - ; .
q -2=3 X=X) (flt - x)/p:L (33)

3475
.00781
and

28

A la)
q, = (x-x) (f2t -x) /p2 (34) -

= 223269

= 444982

Notice that the numerator of 9y is the cross product of
drrors whgn ¢h = .789 holding @, contant. When this is divided by
the incremental change in the parameter P1 it gives a relative
measure of how a change in the parameter affects the errors. qz“could
be interpreted likewise with respect to giving a relative measure of
how the errors are affected as a result of a small change in el while

holding ¢l constant.
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Next, q and q, are also scaled dividing them by Ol and O2

respectively yielding.

hy= h =310.0, h, = =272 (35)
°1 %

Thus, the Jij matrix times pi will be equal to hi i.e.
Jij pi = hi' Notice that the Jij matrix includes all possible changes
in the parameters while hi includes changes in the errors from changing

one parameter at a time. Instead of using the Jij matrix as derived be-

fore, a constant quantity, say .01, is added to its diagonal i.e.

1.01 .943
J =
13 .943 1.01

upon which the new relationship

J.. P, =h could be solved for P,
ij 1 i i
giving
p=a
-1
1.01 .943 319.9 508
.943 l.Oﬁ 272 -206
L — — J SO
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The elements of the last vector are scaled as they are divided by

Ol and O2 respectively. The results would give the cbrrection factors

to be applied to ¢1 and 92,

_ 508
Py = 1301 - -363

_ =206 |
Py = 820.86 - ~—-251

The correction factors are added to the initial ¢l and 6 to
the extent that the process does not become divergent. Thus ;61 will be

increased only to .995 (less than 1) while 91 is decreased to

Ol = .479 - .251 = ,228

Thus, the final parameter estimates of the parameters are

;ﬂa = ,995 , @ = .228
and the final generating equation is %= .995 X4 " .228 e 1 (36)

Appling this equation yields MSE

woe = 28688 _ ..

Which is minimum within the constraint of convergency of
the series.Estimates using final parameter values are shown in table

IV in the appendix.
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The residuals of the ARMA model using final parameter estimate are

calculétéd as

% = 995 +.228 e,
xt - xt . xt_ ] e

¢ T % T 1 t-1

t t

Next, the'autocorrelatiéné of.the residuels,>shown in tablé's below,

are examined. It is observed that the autos are significant for both

K =3 and K = 6. This could be an indication of a pattern in the data
that repeats itself every three time periods especially that for K=29
the auto is also high thouéh not significant. However, the introduction
of higher order ARMA models did not improve the situation much while
leading to the loss of some precious degrees of freedom. This is be-
cause the total number of observations available is already small for

time series analysis.

On the other hand, it is widely known that aggregate indices,
such as GDP, tend to hide compositional changes thus biasing their
measurements.l) Thus, if the published GDP statistics do not irclude some
indication'of the measurement errors involved, they can't be accounted

for and some of this error will be a component of the error term thus obscuring

1) See (1, P. 140 and 4, P.287).
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its randomness. Since information about the range of error in GDP is

lacking, we will proceed with the ARMA (1,1) model just estimated.

The residuals in table IV in the appendix will be used as the

prewhitened x series.

Table 5
Autocorrelations of residuals

of x

Time lag Autocorrelation

-°24
°11
~°53
-.008
-.07
°54
-.21
°177
-°33
.09

W © 9 6O B B W N M

o
o

We next proceed by applying the same ARMA equation to the differenced Y

series. Table shows the autocorrelations of the residuals of Y.
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Table 6 e

Autocorrelations of residuals of y

Time lag Autocorrelation
-.12
-.22
.11
-.19
.19
.06
-.23
-.09
.03
.04

W 0 N 00 B b W N

[
o

The autocorrelations of the residuals of the differenced y

variable are all nonsignificant indicating that all y are white noise
e

where

Y, =YY

III Regression Analysis

Regression analysis could now be applied to the prewhitened
X and Y series, i.e. Yo is regressed on X, . To identify the form
of the regression relationship, cross autocorrelation between Yo and

xe are fqund to determine whether some lagged dependent or in@epgn:zﬁﬁq

dent variables should be included in the relation as explanatory . . .
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variables. The cross autocorelation for time lag (K) is equal

e
.

to
) _ 5% (v, -9

-2 o2
V (xt-x) (Yt-Y)

Table 7 shows the cross autos for various time lags

(37)

Table 7

Cross Autocorrelations of xe and ye series

Time lag Cross  auto

.38
-.07
-.20

.10
-.03

.04

.39
-.32
-.19
-.03

.18

W O v o0 Bl v W N R O

[
o

Considering the degrees of freedom for each time lag, only the
cross ‘auto for zero time lag r (0) is found to be significant. Thus,

multiple”autoregressive moving average model, MARMA is of the form.
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Yor = B¥gy * o (38)

Applying this MARMA model yield
E=2.17

The residuals of the MARMA model e, are found where

& T Y. T ¥ (39)
N
¥, = 2.17 %, (40)

IV Testing the Adequacy of the Model

To find out whether the model is adequate or should be modi-
fied, cross autos between the prewhitened x values that is xet and
e are calculated. If they indicate white noise, the MARMA model is
correctly specified. Likewise, the autos of et are found, if they
indicate randomness, then, the noise model is also correctly speci-
fied. If either one‘is not random, one should go back to the
appropriate stage, and reestimate the relevant model. Table 8 shows

the autos and the cross autos for various time lags.
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> Table g
Autocorrelations of MARMA Residuals and their

cross autos with x

et
®
Time lag Autocorrelation ’ Time lag Cross Auto of et
of e, . and xet
0 .02
1 .24 . 1 01
2 -.18 2 .11
3 -.07 3 ~.14
4 -.04 4 -.23
5 -.05 5 ~.01
6 -.07 6 -.13
7 T -.25 7 .20
8 -.16 8 -.03
9 -.04 ] .13
10 -0l 10 -.01

Since all values are not significantly different from zero,
randomness is indicated. The MARMA model and the noise modél are both

adequate and could be used for forecasting.

V Forecasting.

GDP Figures for the two years 1981/82 and 1982/83 were
obtained, deflated and differenced. Thus the first differences

of GDP, 1954 = 100, -were
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x81/82 = 532 , x82/83 = 376 IR
Therefore, the estimated y values are

e = 532 x 2.17 = 1154

Y81/82 x 2.17 =

s

Ygp/e3 = 376 % 2.17 = B16

Next, these estimates are dedifferenced back to original data by
sucessive addition to last year's value in the original series,

therefore, the estimated demand for freight transport for the two

years are
Q = 13993 + 1154 = 15147
81/82 - ,
Q’ ' = 15147 + 816 = 15963
82/83

The actual values of total freight transport were i6505 and

16992 million ton/Kelometer for the two years respective;y. It is yorth
indicating that the prediction process could continue beyond 1982/85,

the last year for which data on the independent variable x are available.
In this case the independent variable will have to be forecast first
using its generating process in eq. (36). Then, these predicted values
are used to forecast the values of the dependent'variable, demand for
freight transport. It is expected that forecasts, using a MARMA model
will be more reliable, as compared with traditional methods'forecasts.,
This is so since the estimated variahces will be unbiased as a result of

using a regression model which has random residuals.
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Estimates Using initial parameter values
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Table I

Observation No. b ':} e e2
2 52.40 0.00 0.00 0.00
3 45.50 40.72 4.58 20.74
4 24.00 33.34 7.34 87.31
5 27.00 23.22 9.78 14.29
6 121.00 19.28 101.72 10347.73
7 109.00 45,78 63.22 3997.36
8 66.00 54.84 11.16 124.45
9 45.00 46.20 -1.20 1.45
10 116.00 35.72 80.28 6444.72
11 125.00 52.14 72.86 5308.23
12 285.00 62.73 222.27 49405.64
13 82.00 116.12 -34.12 1163.89
14 7.00 80.38 -73.38 5385.14
15 -51.00 40.62 -91.62 8393.80
16 138.00 4.05 133.95 17941.56
17 139.00 43.62 95,38 9097.76
18 336.00 62.87 273.13 74599.56
19 104.00 131.59 -27.59 761.05
20 101.00 74.44 6.56 43.06
21 94.00 75.74 18.26 333.50
22 89.00 64.67 24,33 592,12
23 123.00 57.85 65.15 4244.10
24 328.00 64.86 263.14 69243.87
25 199.00 130.12 68.88 4744.07
26 352.00 122.43 229,57 52703.84
27 226 .00 164.75 61.05 3727.52
28 347.00 147.26 199.74 39895.51

368622.44
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Table II

Calculations Introducing a Small Change in ¢&

Observation No. X F1 e e2
No )
2 52.40 0.00 0.00 10.00
3 45.50 41.34 4.16 17.28
4 24.00 33.91 -9.91 98.18
5 27.00 23.68 3.32 11.01
6 121.00 19.71 101.29 10258.90
7 109.00 46.95 62.05 3849.84
8 66.00 56.28 9.72 94.47
9 45.00 47.42 -2.42 5.85
10 116.00 36.66 79.34 6294.30
11 125.00 53.52 71.48 5109.14
12 285.00 64.39 220.61 48670.12
13 82.00 110.19 -37.19 1383.20
14 7.00 82.51 -75.51 5702.16
15 -51.00 41.69 -92.69 8592.09
16 138.00 4.16 133.84 17912.82
17 139.00 44.77 94.23 8878.68
18 - 1336.00 64.54 271.46 73692.50
19 104.00 135.07 -31.07 965.53
20 101.00 96.94 4.06 16.48
21 94.00 77.74 16.26 264.25
22 89.00 66.38 22.62 511.69
23 123.00 59.39 63.61 4046.77
24 328.00 66.58 261.42  68342.69
25 199.00 133.57 65.43 4281.12
26 352.00 125.67 226.33  51225.31
27 226.00 169. 32 56.8 3213.09
28 347.00 151.16 195.84  38352.39
361789.81

%2 = 118.02
T (f X = 118



Calculations introducing a small change in @
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Table III

1

Observation X F2 e e2
.No.

2 52.40 0.00 0.00 0.00
3 45.50 40.92 4.58 20.94
4 24.00 33.37 -9.37 87.73
5 27.00 23.18 3.82 14.56
6 121.00 19.28 101.72 10347.34
7 109.00 46.28 62.72 3933.19
8 66.00 55.40 10.60 112.32
9 45.00 46.52 -1.52 2.32
10 116,00 35.87 80.13 6421.35
11 125.00 52.61 72.39 5239.90
12 285.00 63.31 221.69 49144.91
13 82.00 117.51 -35.51 1260.65
14 7.00 80.87 -73.87 5457.02
15 ~51.00 40.48 -91.48 8368.98
16 138.00 3.53 134.47 18081.76
17 139.00 44.04 94.96 9017.41
18 336.00 63.55 272.45 74230.19
19 104.00 133.27 -29.27 856.95
20 101.00 95.10 5.90 34.81
21 94.00 76.08 17.92 320.97
22 89.00 64.92 24.08 579.75
23 123.00 58.10 64.90 4212.53
24 328.00 65.30 262.70 69012.06
25 199.00 131.65 67.35 4536.36
26 352.00 123.49 228.51 52215.03
27 226.00 166.60 59.40 3528.33
28 347.00 148.35 198.65 39461.62

’ 366498 .94

~
SUE ) (£, )

Z(x—g) (flt-?t)

~
40.26 i_(fzt-af)

3475

2

= 15.46

~ o ”~,
S (x-x) (£, -x) = 1069
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Table IV

Estimates using Final Parameter Values

Observation x Q e | e2
No.
2 52.40 0.00 0.00 0.00
3 45.50 52.14 ~-6.64 44.06
4 24.00 46.79 -22.79 519.20
5 27.00 29,08 - 2.08 4.31
6 121.00 27.34 93.66 8772.54
7 109.00 99.04 9.96 99.20
8 66.00 106.18 -40.18 1614.77
9 45,00 74.83 ~29.83 889.95
10 116.00 51.58 64.42 4150.36
111 125,00 100.73 24.27 588.96
12 258.00 118.84 166.16 - 27608.55
13 82,00 245,69 -163.69 26794.71
14 7.00 118.91 ' -111.91 12524.19
15 -51.00 32.48 ~-83.48 6969.05
16 138.00 -31.71 169.71 28801.95
17 139.00 98.62 40.38 1630.88
18 336.00 129.10 206.90 42808.68
19 104.00 287.15 -183.15 33542.55
20 101.00 145.24 -44 .24 1956.94
21 94,00 110.58 -16. 58 274.93
22 89.00 97.31 -8. 31 69.06
23 123.00 90.45 32.55 1059.52
24 328.00 114.96 213.04 45384.53
25 199.00 277.79 -78.79 © 6207.52
26 352.00 215.97 136.03 18504.54
27 226.00 319.22 . =93.22 8690.87

. 28 347.00 246.13 100.87 10175.71

289687.56



