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The purpose of this paper is twofold , (i) to propose

an integrated framework for studying management systems
by simulation and (ii) to evaluate the possibility of

using Simulation as an experimental optimization technique.

A job shop simulation model , which can be used to

test both materials handling and dispatching rules , was

developed in order to demonstrate the applicability of
*

the proposed procedures .

* This paper is published in the proceedings of the
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1 = INTRODUCTION

The attractive features that computer simulation offers,
have encouraged operations researchers and statisticians to improve
its practice through the use of various statistical techniques to

analyse the obtained results [31,12,13,16,17,18,19,23].

The commun conclusion of these studies indicate the need to
consider two main problems when investigating simulated systems,
First, the particular circumstances of simulation experiments that
may lead to misinterpretation of results(1 o Second, the difficulty
to achieve the assumptions of the statistical theory, as indepen-
dence, normality, and homogeneity of variances, So, either we hope
that the selected techniques are not influenced by assumptions vio-
lation, or we manipulate simulation runs to match them,

The purpose of this research is two fold. First, to propose
an integrated framework for studying complex systems by simulation.
Second, to evaluate the pPossibility of using simulation to find
the optimum solution., 1In order to demonstrate the applicability
of the proposed procedures, we developed a model that can be used
to test both materials handling and dispatching rules in a.job
shop production system,

As any statistical investigation, simulation user should
consider the following steps when developing an experimental
strategy:-

i) The choice of a sampling plan that specify how each test
run is to be exmuted and how to determine simulation run
length,

ii) The development of an experimental design that will yield
the desired information.

iii) The selection of a data analysis technique in order to
reach some conclusion ab-ut the simulated system.

(1) A 1list of these circumstances can be found in Fishman (11)P.262



In section 2, we propose an integrated mathematical base for
studying management systems by simulation. The proposed optimi-
zation techniques,vare presented in section 3, In section 4, we
explain briefly the simulation model that will be the setting of
the study. Finally, the design and analysis of two experiments are
discussed in section 5.

2 - MATHEMATICAL FORMULATIQN

In many simulation models, the. process of interest apears
as a stochastic process(1).s, .

{Y(t);—w‘t"e‘a' o A (1)
Since our research concerne discrete event digital simulations,
we assume that during a small interval of time, the process shows
little, if any change so that observing Y(t) at periodic intervals
result in no loss of information. In a more detailed manner, the
sequence,

{r, . t=1,2.0., )} | (@)
corresponds to the process {l(t)} at all integer values of the .
index t.

The index t nay be the time; for example Yt may define the
number of jobs in a production system at the instant t of simulation.
It may simply denote order, for example Yt may represent the
waiting time for the t th customer to receive service in a queueing
model.

In order to study several processes of interest, generated by
different environmental conditions or input specifications, we
should aquire a quantitative characterization of each of them.

(1) we will consider only the stochastic simulation models as most
management systems inevitably appear random to some degree in
nature.
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The mean of the process;

u=©e{v]

(3)
serves generally as the mathematical descriptor, and by definition,
the variance(1): :

Var (Yt) =.E [(Yt - u)é_] ;
and the autocovariance functioq,

Rg = E{ (Y, - u)(Yt+a~u)]: 8= 1,2,..., (5)

Then regardless of the experimental objective and the type of
.simulated model, we should define a procedure for estimating ®y"

and for determining the accuracy of this estimator, i;e'to select
a sampling plan.,

(4)

2.1 SAMPLING PLAN:

In simulation experiments sample size can be increased by prolo-

nging simulation run, or by conducting separate runms.
there is two sampling plans,

the replicated runs. '

Consequently,
the autocorrelated observations and

i) Autocorrelated observations:

Let {Yt,te n a time series of length n observed during the
simulation run, the mean u can’be estimated by:

- -1 n
t=1 :
where ¥ isg called"simular response" .

In order to determine the accuracy of Y, we need to estimate
its variance 12 ¢
_ -1 n-1
Var (Y) = n [ Var (Yt)'+ 2 z:; (1-8/n) RsJ (7)
8=

!

(1)@Assuming‘[¥é} a covariance stationary sequence [11,18]



Where Var(% ) and Rg are defined by (4),(5) and can be
estimated by the formulas [18] :-

- v =1 o
vae (Y )= (n-1) }t_(xt“ Y)Z | (8)
' t=1
R -1 pes - =
Ry = (n - s) Z_ (Y - ¥) (Gyg - Y)s (9)
A  t= '

S= 1’2’..’(n - 1)

ii) Replicated runs :-
We can generate independent observations in simulation expe-
riment by repeating the run using different random numbers. Let

k = number of runs

n'= number of observations per run

n = total number of observations (=n'k)

Yt dg,the observation generated at time t of run J.
b

The mean of each run is defined by:

-1 n!

Yh' '3 = n! z 'Y‘t’j 3 J= 1,2,4005k (10)
t=1
and then simqlar response is calculated bys
- -1 k .
Y =k 621 Yni g | (11)

Since the sequence { Yh',J 3 3= 1,25.009K }conaist of k
inddpendent observations, Var (Y) is given by:

Var (Y) = Var (Y, ,)/k (12)

and can be estimated by:
|

e - | (13)
where S° = (k-1) ) (Y, P )2
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2.2 SEMULAR RESPONSE FUNCTION:

When experimenter select a sampling plam, he can Proceed to
the study of the response Y as a function of the environmental
conditions or the experimental factors (x1,x2,...,xp).

Factors are categorized as qualitative and quantitative, Examples
of qudiitative fagtors are policy specifications, such that
alternative dispatching.rules in job shop, or discrete environ-
mental conditions. Quantifative factors are examplified by input
Parameters that can usually be thought as continious variates.

Sincethe stochastic features are spowned in the simulation
model by incorporatigg the random number seed as an integrated
part of input specifications, the response Y becomes a random
variable because it is a transformation not only of the expe-
rimental factorsﬁ(xz,xa,...,xp), but also of the randomly
‘selected seed "k 0 1' This relation is defined by

Y= ¢ (x4, X250 00Xy r) =="-P(_5z,’_,r) (14)

Although the random number seed " r " may be conceptually
defined as a real numbker between o and 1, it could not be'clas-
sified as quantitative factors, besause ¥ will probably not be
a continious function of it. Then it ig unique among the other
quantitative factors and expression (14) can be written:

Y = P (x,, XgseeesXy) + £ (1) | (15)

where £ (r ) is a random effect dependent upon the random
number seed '

Fuarther, if we assume that 2 (r) is independent of experimental
factors and has zero expectation, the expected simular response

can be defined as:

¢1) a detailead discussion of this point can be found in Mihram [ﬁ&]



E(Y) = (%1523, 0000)) = & (F) (16)

It is the nature of the unknown function P (X), termed

simular response function, that we try to investigate by the

simulation experiment,

In practical situations, any attempt to develop the exact
form of P (X) could not be Justified from economical point of
view, In addition, for 'many experimental Purposes, it is un-
necessary to consider the form of the true function., A flexible
graduating function, will often be satisfactory to express the
relation ship between E (?) and the p factors, Further more,
many experimental strategies, divide the whole operability region
of the factops Space, into a numbep of smaller regions of im-
mediate interest, Withen these regions, the experimenter may
feel it is reasonable to represent P (X) by a known functional
,form,ffor example a Polynomial, although he may know that such
representation would be Quite ingdequate over the whole operabi -
lity region.

As a result of the previous discussion, P (X) may be ap-
proximated by:

E (?)'zf(x1,x2,,..,xp 3 91,62,...,61) = £(¥, 8) (17)
Where £ is a known functional form indexed by some unknown

vector &,

The way with which we investigate the function ¢ (x, &), in
order to yield information about simulated system, depends on
the experimental obJjectives. Accordingly we distinguish two types
of experiments, Bxploratory and Optimization,

2.3 EXPLORATORY EXPERIMENTS



i) Screening designs

At the begining of investigation; specially with complicated
simulation models, the experimenter may face the problem of so
many factors. It may happen that not all the p factors are
important but only a few, say p' factors. 'Thereféve, he screen
for them, | , | |

The statistical literature contains many designs, for example,
fractional factorial designs [4,8,17] y random disigns [24] ’
group screening designs [21] , and super saturated designs [3] .
The investigator has to select the design which fit his particular
‘experimental situation.

ii) Designs for estimating parameters

When experimenter has a prior knowledge about the simulated
system, either due to theoritical background or from previous
1nvestigationso He may assume that a particular functional form
ffx-e) is a good approximation of the true response function
¢ (X), in such a way that bias due to inadequacy of £ (x,e)

‘to represent q:(i) can be neglected. So his goal will be to aelect
an experimental plan to estimate the unknown parameters 9 with
high accuracy. Two basic approaches were proposed to develop an
experimental design, either to use a simple factorial or fractional
factorial design [4,8,17] , or to select a design based on a
variance criterion as D - optimal designs [15] .

iii) Designs for exploring response surface

When knowledge about simulated system is limited, the obJect
is to approximate, withen a given region of factors spéce,
¢ (X) by some graduating function f (X,5) which most closely
represent the true simular response function.

Accordingly the following design requirements have to be

considered:
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a) The deéign should allow 8equentialization so that ddsigns of
higher order can be developed with minimum loss of information,

b) The design should consider not only sampling variation but
also bias error, :

¢) The design should allow a check to be made on the representa-
tional accuracy of the Postulated model,

A particular attention will be devoted, in the next éection,
to the explanation and the applicability of thig experiment,

To Summarize, any attempt to develop an éxperimental method

a sampling plan which define an efficient Procedure for estimating
the variance of simular response Y o The estimated variance
measures the accuracy of results and then can be used to determine
the appropriate run length, Having accomplished thig task, an
experimental Strategy may be defined forlinvestigating the inter-

optimal Solution depends on the type of factors in the simulation
model. When all factors are Quantitative, an optimum seeking
routine can be usedq in order to fing the combination of factor
levels that optimize the response Y o But the existance of some
qualitative factors, as policy specification or operating rules,
limit the search procedure to the choice between a number of
experimental alternatives, |



3.1 The search for an optimum combination of factor levels;

When all factors are quantitatives, the investigator will wish
to find in the smallest number of simulation runs, the Point
(x?1,x°2,...,x°p), withen the factors space, at whiche (%) 15 a
minimum or a maximum,

Since simular response function is not known in advance and
is subjected to random variation, we think that the most reasonable
strategy will be to fit a Sequential program of hvestigation
consisting of the following steps :-

i) Divide the whole region of interest into a number of small
subregions, so that we can explore adequately a small sub-
region with a moderate number of Simulation runs.

ii) Use the results obtained in one subregion to move to a

second in which simular response Y is better.

iii) Repeate the Previous steps until the attainment of a near
stationary region where no improvement in the simular response
can be achieved,

iv) In this limited region, conduct a more detailed experiment
in order to determine the local nature of the function qb(ij.

In the following sections we discuss breifly trie two main
elements of this sequential program, seeking a near stationary
region and exploring it,

3.1.1 Seeking a near stationary region

When the starting conditions of simulation are fairly remoted
from the stationary pojgnt, an optimum seeking technique will be
needed to move rapidly through the factors space to a near
stationary region.

Brooks [6_] compared four optimum seeking methods, steepest
ascent, univariate, factorial, and random search, He concluded
that, when sequential investigation is possible, steepest ascent
seems to be superior to the others, except in case of large
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number of factors, where random search is more efficient(1)‘

Recently, Smith [25] showed that random search should not
necessarily be the search technique selected in practical situations
even in case of 8o many factors and he recommended the use of the
steepest ascent, '

Siﬁce the steepest ascent method is explained in detail in Box
~ and Wilson [5] and Davies [8] y we Just mention, here, some
remarks that should be considered when applying the method to
simulation experiment(z).

i) Since we use the error variance to test the adequacy of the
fitted function and the significance of model parameters, an
accurate estimate. of the variance of Y is needed in order to
évoid any wrong conclusion.

ii) As the steepest ascent method is affected by the size of the
experimental error [5] s We may try to reduce it, by selecting
a minimum variancd design (see section 2,3), by increasing
simulation run length, and if possible, by using a variance
reﬁuction techniques.

1ii) If possible, provision should be made to estimate some of
higher order coefficients that were not included in the postu=-
lated model. The study of these coefficients will provide soéome
indication of whether the assumption that these terms can be
ignored is a reasonable one or not.

3.1.2 Exploring the near stationary region

The experimenter may arrive at a near stationary region either
as the result of successive application of steepest ascent method,

$1) This is explained by the fact that, in random search algorithm,
the number of experimental trials is not a function of the .
number of factors,

(2) The method will be explained using an example model in section{f.



or because he has already found it at the begining of his inves-
tigation., In either cases, only immediate neighbourhood need be
explored to determine the local nature of response function cp(ﬁ)
and this may be done without excessively large number of experi-

mental points,

Although many authers have ignored the exploration of near sta-
tionary region, and are only satisfied by finding the approximated
optimum point, we think that it is an important step in case of
simulation for the following reasons:-

First, it should be remembered that because of random error
and possible lack of fit between fitted equation and the true
' response cp(i), it must not be implied immediatly that the true
surface has a maximum (or minimum) at the selected point. So in
practice further exploration and confirmatory runs should be per-
formed arround the stationary point of the fitted surface.

Second, the discovery of factors dependence of a particular
type may give us an idea about the cost of departure from the
optimum point, if it was impossible to reach it in practice, For
example, finding the direction of a stationary ridge means that
" we can know the different combinations of factor levels that
optimize the response Y. Then the choice between these alternatives
can be decided according to the cost of each combination or according

to an auxiliary response.

Two exploratory techniques are proposed in the statistical
literature, Canonical analysis [5,8] and Ridge analysis [9] .
The authors matched the two techniques in a single computer
program in order to have more robust conclusions. This can be
done by using canonical analysis to reveal the factor dependence
withen the local stationary region, then using ridge analysis to
evaluate the locus of the absolute maximum or minimum when augmenting

the experimental region.



3.2 The choice between experimental alternatives

When simulation model contains qualitative factors, as mana-
gerial policies or operating rules, the search procedure will be
reduced to the optimum choice between a number of experimental
alternatives, More specifically, it is required to find the
combination of factor levels corresponding to the best simular
response Y, such that the probability of correct selection (CS)
is at least P s glven that the difference A between the best and
the next best simular response is at least A*. This may be
stated formally as

p (/A= A = (18)

The previous formulation of the problem permit the use of one
of the multiple ranking prooedures [j2 17,22, 23'] . Most of these
methods assume normality, 1ndependence and commun known or unknown
variances,

In practical simulation models, the distribution of the response
Y 1is not known, variances are not known and tend to differ, so
either we manipulate simulation runs to meet these assumptions of
we hope that the effect of their violation is negligible,

After consulting several multiple ranking procedures, the
authers choosed three of them that seem to be attractive for
simulation circumstances. The selected procedures are Bechhofer
and Blumenthal fz],Paulson [22] » and Sasser et al[éB] .

Bechhofer method is the only one extensivly tested for its
sensitivity to assumptions violation, it is quite robust and rela-
tively efficient [j?] o Unfortunately, it cannot capitalize on
favorable configumations of population means, Paulson's procedure
give us the possibility to eliminate inferior populations, so it
might be advantageous when comparing a large number of alternatives.



The authors conducted a comparative study using two simulation
models, a job shop production system [16] and a dynamic model
of the firm [19] « The results of this study indicate that Paulson
method is the most efficient method, specialy when the number of
alternatives is large. Bechhofer method seems to be the best
procedure' from robustess point of view, but unfortunately it
require large sample sizes when deel@ng with a large number of
alternatives. Sasser method, which is a heuristic version of
Bechhofer, is less efficient than Paulson procedure.

To conclude, the results of this emperical study(1), show that
no ideal procedure, that consider the particular circumstances of
simulation experiment, does exist in present time. We recommend
Paulson method when experimenter is wary about computer time and
the number of alternatives is sufficiently large. Otherwize,
Bechhofer procedure seems to be the most robust one and it is
relatively efficient.

4, THE PROPOSED SIMULATION MODEL

Most researchs. on job shop production systems using simulation
technique assume that the major system constraint was
machine availability [1, 7 101 . Recently a particular attention
has been devoted to the study o} labor and machine limited
production systems r14, 20] s Where the performance of the shop was
evaluated consideriﬁg both dispatching and labor assignment rules.

Since, materials handling systems and transportation time
between operations are ignored, till now, in most simulation
models, the authors developed a model that can be used to test
materials handling systems and rules, as well as the other operating
polices. To our knowledge this is the first trial to incorporate
materials handling system as an integrated part of a job shop

(1) See also Kleijnen [ﬁ?]
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simulation program,

. In the following discussion the major characteristics of the
" model are briefly presented. For more detailed explanation, see
Khorshid BS] , chapters 2 and 3 . |

4,1-Job shop structure :

» The processing operations are carried out in m work centers,
Each work center is characterized b& a number of machines (ci, i=
- 1525000,m), a machining queue for jobs waiting for service, and

a handling queue for jobs to be handled between centers., The shop
contains a number of materials handling equipméntk'which are

‘organized and assigned to work centers according to some handling

rules, ' | R ' '

4,2 Job characteristics 3

The time between successive arrivals of Jobs in the shbp is a
random variable generated from certain probability density function
a (.), with a mean interarrival time N .« Upon the arrival of a
job, the sequence of work centers through which it must be routed
are generated randomly using an (m+1) x (m+1) transition probability
matrix- P, with ent:ies Pij giving the probability of transition
. from work center i +to work center J « The first row (i=o)
represents entry into the system, -while the first column (Jj=o0)
represents departure from the shop. The choice of the elements of
the matrix P determine the flow pattern in the tested shop which
lie between the extreme cases, the pure job shop and the flow shop.

The time to process a Job, as well as its handling time are
random variables generated from a selected probability density
function., Mean handling time depends on the distance between
work cehters and the used materials handling equipment.

4.3 Materials handling systems

The model can be usedto test several handling systems, which
vary according to the degree of centralized control exercised over
the handling equipment. For example, in case of completely
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centralized systems, each handling equipment, upon completing

a transportatibn operation at a work center, is given its next
assignment by central control. On the contrary, in case of decen-
tralized systems, handling equipment return to central control
for reassignment, only when there is no work remaining in the
work center at which it was previously assigned.

4,4 Operating policies

Materials handling and dispatching decisions are required to
operate the job shop. An operating policy consists of a specific
combination of the following rules:

i) The rules governing the choice of a job from machining queue
i) » u " " " wm n W  handling queue

ii1) The rules governing the assignment of handling equipment to

different work centers.
iv) The rules determining when a equipment is eligible for reas-

signment to another work center,

4,5 Performance criteria

The efficiency of each operating policy is evaluated used a
general performance properties, that can be easily transformed to
a cost criteria in practical situations. Examples of these measures
are, mean flow time per job, mean queue length, etc.

5. Experimentation

- The hypothetical shop used in the experimentation consists of
6 work centers, each of them contains 2 identical machines. Four
materials handling equipment are used to transport Jjobs between
work centers., The Job interarrival time, service time.and handling

time are random variables generated from a negative exponential
! |
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distribution. The means of these variables are adjusted so that
average machine utilisation attain 85% and handling equipement
utilisation will be 95%. The Job routing is of the pure job shop
tyre, and is generated using the transition probability matrix.

A specific layout configuration is proposed in nrder to find
estimates for distances between work centers.

5.1 First experiment

Finding the best operating policf.

The purpose of this experiment is to choose the operating policy
that lead %% the best performance measure (simular response).
Since out put of simulation experiment is stochastic in nature,
a' measure of the probability of correct selection is needed in
order to justify the obtained results,

5.1.1 Experimental Factors

As it was indicated in section 4,4, an operating poiicy’consist
of a specific combination of dispatching and handling rules which
we call,:in statistibal termonology, the experimental factors.

The tested factors are 1 H

i) The rules governing the choice of a job from machining queue (x1)
1) Shortest -imminent- processing time rule (x1 = 1)
2) Minimum slack per operation rule (x1 = 2)

i1) Rules governing the choice of a Job from handling queue (x2)'
1) Shortest handling time rule (:n:2 = 1)
2) Minimum slack per operation rule (x2 = 2)

1ii) Rules: governing the assignment of handling equipment (x3)
1) assign available equipment to the work center whose handling
queue contains the maximum number of jobs (x3 = 1)
2) assign available equipment to the work center whose queue
qohtains the job which has been in the system the longest
periodof time (x3 = 2)

(1) The choice of ese rules and their definition are discussed
in reference 167



iv)Rules determining when an equipment is eligible for reassignment

(xg)'

1) an equipment, upon completing a handling operation at a
work center, is given its next assignment by central control
(14'1) |

2) an equipment, upon completing a handling operation at a work
center, stays at work center as long as there is any Jjob in
its queue (xﬁzz)

Table 1, defines the 16 operating policies representing all
possible combinations of the decision rules,

Table 1, Definition of Policies

bperating “Experimental factors (rules) gi:gg::e

policies X4, X5 X3 Xy
1 1 1 1 1 0.4278
2 2 2 1 1 0.1832
3 1 2 1 1 0.2393
4 2 1 1 1 0.2178
5 1 1 2 1 0.2523
6 2 2 2 1 0.1814
7 1 2 2 1 0.2338 -
8 2 1 2 1 0,2046
9 1 1 1 2 0.3281
10 2 2 1 2 0.1916
1 1 2 1 2 0.2386
12 2 1 1 2 0.1938
13 1 1 2 2 0.3253
14 2 2 2 2 0.1979
15 1 2 2 2 0.2406
16 2 1 2 2 0.1985




5.1.2., Simular response Y :-

The selected measure of performance is the mean delay ration
[10] s Which is defined for a particular job by the total service
and handling time divided by the Job flow time in the shop,

5¢1¢3, Sampling Plan 3=

At the begining of investigation, a study of the equilibﬂhm
conditions.is conducted using some pilot runs. The results showed
that the number of observations tc be deleted, in order to reduce
the bias caused by the starting conditions, was 500, On the other
hand, since multiple ranking procedures require the generation of
.independent observations, we think that the best sampling procedure
is to make a single simulation run per operating policy, to exclude
500 observations in the begining, and then to divide the run into
a set of subruns in a way that the averages of the subruns would
be uncorrelated. The method of Fishman [(13] was used to determine
the minimum number of observations per subrun, An iterative algo-
rithm was incorporated in the main simulation program in order
to estimate sequentially the variance of Y and then to terminate
simulation run when desired accuracy is achieved.

5¢1.4, Obtained results :-

In section 3,2, we discussed multiple ranking pProcedures, and
how they could be adopted to simulation circumstances. Table 2,
shows the results of applying three of them, which were selected
by the authors, to job shop simulation out put. All procedures
choosed policy 1 as the best one, with probabilities of correct
selection P = 0.8,0.95 and different values of [; « The results
confirm also the superiority of Paulson method in case of large
number of tested policies and favorable configurations of population
means. This method requires a smaller sample sizes even with high
probability of correct selection.,



5.2 Second Experiment 3

Finding optimum combination of factor lévelas

In this experiment, we .assume that simular response Y is
related to a three quantitative factors by an unknown functional
form. The purpose will be to find the values of the factors that
optimize the simular response i. A

Table 2. Results of multiple ranking procedures

P* 2; Bechhofer Paulson Heuristic

Sampfe Time |Selec- Sampie Time Selec~ Samplb Time in | Selec~

bize in ted PotSize in ted Po-| Size seconds | ted Po-

Sec, |lticy-. Sec. licy licy -

0.80[0.01} 11 | 1.1612| 1 5 | 0.3855 1 7 |o.4726 1
0.80(0,02[ 6 0.7800 2 10.3794 1 7 0.4818 1
0.80{0.03 4 | 0,6159 2 | 0,3784 1 7 |0.4736 1
0.80{0.04] 3 | 0.5571 2 10.3753 1 7 | 0.4731 1
0.95|0.,01| 17 1.769 1 6 | 0,4096 1 7 | 0.4690 1
0.95/0.02f 8 | 0.,9062| 1 3 ]0.3820 1 7 | 0.4716 1
0.95(0.03] 5 | 0.6840| 1 2 | 0.3773 1 7 0.3912 1
0.95/0.04] 4 | 0.6205] 1 2 | 0.3773 1 7 0.4721 1




5,21 Experimental factors :

1) Due date control parameter (D1) 2=

» When a job arrives at the shop, an approximated date for its
completion has to be estimated. This due date depends on the shop

utilisation factor and the number of operations to be performed on

~the job., We selected a simple and popular calculation formula -, which

is given by :-

Due Date = r + D1.T

where r 1is the arrivaldate and T is the expected processing and
handling time for the job, D1 =1 is a control parameter,

ii) Dispatching Parameter (U):

Eilon et .al [30] proposed a variant of the shortest Imminent
processing time rule (SI), which they called SI' rule. It consist
of the assignment of a float value F +to each Job in the machining
queue, where F is defined by :-

F=(D«r)- tg « U
and r = current date
tes expected time for the uncompleted operations on the job,

D = Due Date
U = a given control parameter.

Jobs with Fe;;fo are put in a priority queue, while those with
F >0 are put in ' a normal queue, the latter being processed only
when the periority queue vanishes. In each queue the SI rule applies.

The emperical study of Eilon et al [10] proved that this rule
is superior to SI rule when selecting the optimum value of U,

ii1) Handlihg parameter (UI) :-
The previous rule is modified to deal with the choice of a
Job from the handling queue. In this case we calculate the float

value by :

Fa (D - r) -te -UI



Where D, r, te ére Previously defined, and UT is a given control

Parameter specified by the experimenter,
The rest of the rule is the dame except that we usge the shortest

handling time rule instead of the SI1 rule,

5.2.2 Seeking a near stationary point H

Table 3 Factor levelsg for the 23 experiment

|Factor levels Factor levéls in unitg I

in natural unitg __Of the design., f:g:l Unit
-1 +1

Due date parameter D1 1.5 3.5 2.5 1

Dispatching parameter Y 20 60 40 20

Handling parameter UI | 20 60 40 20

X1, Xé and X3 respectively, then

Xy = (D1 - 2,5)/1 X, = (U-40)/20 ; X3 » (UI-40)/20
and the limear model can be w&itten.



E(Y) = 8, + 91X1 + 92 X, + 93X

The following table shows the used factorial degign and out
put results

run Fagtor Level Mean flow

X, X, X5 time (Y)
1 -1 -1 =1 66,8984
2 +1 -1 -1 88,0471
3 -1 +1 -1 66.7253
4 -1 -1 +1 67.6155
5 +1 +1 -1 84,9666
6 +1 -1 +1 94,1092
7 -1 +1 +1 65.4243
8 +1 +1 +1 74.1050

Since complete factorial experiment provides measures of linear
anc interaction effects, the following estimates were obtained :-

A

= 75.986 0., = -2.589
93 = 0,672

and the approximéted‘standard error of the 6,8, based on the
estimated variance of Y (see section 5.1 .3) was 1.9, L

s “1..

Three concluding remarks can be deduced from these results :-

(1) wWhen number of factors is large, we can use a fractional
factorial desi which require a smaller number of experi-
mental points En
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i) PFactor X3 has small effect compared with the other factors,
Then, either the system is independent of the factor 1evols,
or the wit adopted for the factor is relatively small., To
guard against the second possibility, larger unit must be used
in the next set of trials. If the factor continue to give small
effect, it can be excluded from further investigation .

i1) Since interaction effects are not small compared to some rirat~
order effects, the starting condition is probably not too ,

remoted from the stationary region. This suggest that we rodueo;

~ the steepest descent path by a small increment. The caleulation'
of .the optimum path is shown in table 4, -

Table 4, Calculation of steepest deacont path
and subaequent trials, '

X, X, X5 ¥
1)Base level ' 2.5 40 40 -
2)Unit RE 20 20 -
3)Est;matgd slop ”94 9.320 -3.181 -0,672 -
4)Unit X © 9,320 -63.622 - -13,458 -
5)per ;sc;:hégvgi X40.466 - 3,181 <0,672 e )
6)Path of - 0% 2,5 40 40 69.789 -

toepest . 9%| 2,034 43,181 40,672 | 66.436
egc 10% | 1,567 46,362 41,345 |  65.424
15% ] 1.101 49.543 42,018 |  65.424

The results of table 4. show that no reduction of ¥ can be attainoﬂ
by the present path. So another cycle of steepest. descent -may be
needed in order to improve the simular response* REN

Whan selecting factor levels for the next trials; wo hnvn to -
keep in mind that we are not too far from the optimum potnt.
Thus 1f further progress is to be possible, without taking second
order effects into account, the best chance of success lay in
reducing the units of the factors; Table 5 indicate the new choaen
levels,



Table 5. Factor levels for second Eroup of trials

-1 1 Base level Unit
Due date Parameter D1 | 1 2 | 1.5 0.5
Dispatching parameter U] 36 '56 46 10
Handling Parameter UT 16 66 41 4 25
. ! _

A second factorial experiment was conducted, and the. obtained
estlmates were 3

8 = 66,374 b, = -0.092
8, = 0.950 8,5 = -1.222
92 = ~0,0496 623 = 0,106

63 a -1,222

We conclude from these estimates tnat a near stationary region
is reached, since all first order effects are small compared with
their standard error ( 65 = 1.9); Further more, the effect of
factor x3, which was not significant in the first group of trials,
became better than the effect of Xz. Thus neglecting it in the
exploratory phase of experimentation may lead to misinterpretation
af results.

Samera

5.2.3 Exploring the near stationary région e

In order to study the local nature of the response function,
a central composite design [5] was used to fit the second order

polynomial :-

2 2 2

+ 912X1X2 +e13x1x3 + 923X2X3



~DE

This design consist of 23 factorial experiment, 6 axial points,
and one center point. It requires a reasonable number of trials and
can benefit from results obtained from the first order design. On
the assumptionthat a second order equation provides an adequate
model, unbiased estimates were obtained for quadratique and linear
effects.

Taking partial derivatives with respect to each factor, and
selving the obtained system of lineariequations, the levels of
X1, X2 and X3 corresponding to minimum flow time were as follows:

X; = 0,781 .3 XE = 0,0445 ; Xg = 0,3153

Consequently, the minimum simular response Y = 64,930

Transforming these values from design units to natural units,
we get : ;

D1 = 1,11 U = 46,445 U, = 33.117

When the fitted surface was reduced to the canonical form, we
obtained the following results:

i) the canenical form was
= 2

Y - 64.93 = =0.2808 X2 + 0.3845 x2 + 1.1362 %
1 2 3

ii) The new coordinates (xq,x2,x3) for any points are given in
terms of the o0ld coordinates (11,X2,X3) by the following

table :-

| (xy40.781) | (x,-0.04k) | (X5+0.315)
x, | 0.4972 ~0.0502 0.8661
x, | 0.0806 0.9966 0.0115
x5 | -0.8638 0.0640 0.4996

Since the coefficients of the canonical form are different in
sign and each of them is not small compared with the others;
This suggested that a minimax surface exist in the near optimal
region. This conclusion was confirmed by applying the ridge analysis
program to the fitted second order equation.
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Figure 2, shows the values of the absolute maximum and absolute
minimum of simular response Y as the radivus R of the sphere,
representing the experimental region, varies.

6. CONCLUSION

This research demontrate the importance of using statistical
techniques to design and analyse computer simulation experiments,

The problems concerning the choice of a sampling procedure and,
the development of an experimental plan, were formulated considering
the particular circumstances of simulation. This formulation can guid
the investigator to select the most suitable statistical technique
as a function of the desired objective.,

The two applications of the proposed experimental techniques to
a job shop production model showed that simulation can be used
efficiently to find the optimum operating conditions. The essential
advantage of these techniques is that they provide information about
the precision of the estimated optimum, for example, the probability
of correct selection of the best alternative, or the cost of departure
from the stationary ?oint, if it was impossible to reach it in
practiee,
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