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1. Introduction

In {1] we have discussed the numerical solution for
the real roots @f equations. The bisecting method and the false
position method as shown before are very simple, complete gene-
ral and always convergent. General method of iteration and other
methods with its CODVergeﬁce were explained.

This chapter deals wi.lL chose wethods which are appli-
cable to finding the roots, real as well as complex, for the
polynomials, such as the iteration, Lin-Bairstow and Dendelin -
Graeffe methods., For computation, every method was followed
with = flow-charts.

The transition from numerical analysis to programming
can generally be facilitated by a flow-chart. The flow=-chart
is a graphic representation of the procedures and shows how :
the alternatives fit together. When numerical analysis is com—
plete and the transition from mathematical language to machine
language begins, the flow-chart can be an excellent device for
establishing continuity .
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2, Determination of the limits for the rooks of & polynomigl

2,1 ILimits for real rogts by Maclavrin's thsoren

The real roots of the equation

aox9+alx““l+o..+gn = 0 (1)

vhere a0>o s Batisfy the inequality

x < 1+7...»zt_.." (2)
ao :

where m is the suffix of the first negative coefficlent in the
series 8,981 98500092 5 and A is the largest of the modull of
the negative coefficlentss s

This method allows one to determine also a lower 1imib
for the rootse For this,it is necessary Hc mske Lhe substitu-
tion x==y and to multiply the equation by (=1)? in oxder Ghat
the first coefficient remains positive; after This we can make
use once again of formula (2).

It )ao| is considerably smaller than A, formula (2)
gives a widely over estimated limit, In this case the polyno-
mial may be broken dewn intc the sum of seversl polynomlals,
the first coefficients of which are positive, aad the upper
limit for each of these msy be determined. The greatest of
these upper limits determines the upper limit of the roocts of
the imitial polypomials In a lucky bresking down cf the poly-
nomialy, the limits axre determined a good deal mere sccurately
than b& the first methaod. The decomposition iz usually & good
one if approximately bthe same values are obtained for all the
upper limitse
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Example (1)

The roots of the equation

2x24x! 5 #1950 -245%+11= o (3)
satisfy the inequality

Yo de = 2 =1+ 312 =~2.7 .

Put x =~y in (3) .we get

9 v/ 3

+y +l9y +24y -~ii = O

y<i+ JIL 2.3
5 ‘
£rom which x > =2+.%.  Thus the roots of the equation

lie in the interval

= 245 T < 2,7 .

Example (2) : To determine an upper limit for the roots of
the equation @

P+l2x -8x0+2x> - 5680x+112 =

According to formula (2)'we'get -

b=1+ /5680 A 76450 Thus <. 7635 s

Dividing the polynomial into two added componentss
P, (x) = 0.1x" - 8x°

P, (x) = 0.9%° +12x*+2x" - 5680x+112.

We find upper limits for thelr rootss

2
b, =1+ 8 ~ 10 b,o=l+ 680 —~ 10.
s o T 5=

whence x< 10.
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Dividing the same polynomial into three added compe-—

nents 3 ;
Pl(x) = 092x5 - Bzﬁ g

P(x)

P5(x) = 125% — 4000 x4

0,827 + 25> - 1680z¢112,

we find
= ] 8
by =+ Y &, =75,
ey
b, = 1¢ \[3680 = 7.8 ,
0.6
by = L+ I H0C = 749
12

2,2 Limits for complex roots by Westerfield and Parodl

Consider the polyrnomial

x?+alm‘ toootd, (&)

with real and complex coefficlents o

We sball ote by q, bthe quamtitie$#>

Vel o == 102500000 (5)

arranged. io order of decreasing magnitiude

Qr%y 7% (&)

It has been showsd by Westerfield that all roots
(real and complex) of the polynomisla satisfy ths conditionss

Ix‘ < 4 * 495 (7

=) The real posi tlve value of the root is taken.
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and
|x} & q;+0.6180 q,+0.2213 q,+0.0883 q, +

+0,0375 q5+0.0185 ag+0.0074 as +0.0081 gg (8)
In the case of the coefficient 3y of the polynomial

(4) being much larger than the other coefficients, we can apply
a simple and effective estimate found by l.Parodi:

Let \al‘ 2 \/;—

where

5= \a2‘+\a3\+...+\gn\ (9)
and

c> e (10)

The polynomial (4) has one, and only one, root
within the circle

lx+al| 5: VS (11)

BExample : Find the limits for the roots of the polynomial
Xt - 48x5+797x° - 5350x+12297 = o
l\/T—IST:#S , AT797] o 28.2 ,
S\1-53501217.5 , 4 [12297| 0 10.5
Thus q1=48, q2=2832, q3=l7.5, q4;10.5 s
According to formula (7) we find :
| = | L7852 D

If we apply formula (8) we get the following value

for the limits:
\x\\<48+17.4+3.9+0.9= P02

By Maclaurin'®s method,we find from (2) that x < 49;
however this gave a limit only for real positive roots; while
the value 70.2 is a limit for the moduli of all roots (real
‘and complex).
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3, Approximate Determination ¢f the Rogys OX

—

a polynomial by means of Vieta's Formula

(4]

he eas

H
(s
m

The method provides the possibility ¢
determinstion of roots which ere lsrger 0T smgllexr

Hl

n magnitude
than most of the other, Iis adveantage over other method lies

in the fact that it requires a minimal quantity of calcuiation.
However, the accuracy with which roots are determined is often
very small : usually one succeeds indetermining only the oxder

of magnitude of the largest and the smallest roots.

Vieta's formulae

These formulae cennect the roots Xy 4 L5 9 e y K
of the polynomial

P(x) = aOXn + alxn“l + azxp_2,+ ces F B, X F &y

with its coefficients @

&l :
= -E- = Xl + XE i e e T Xn \
S o)
‘é:;- = xl X2 -+ Xl X:/) ';' o e o s X‘J-'l X'Tl

X - - i i -7 obety + g £ ' eeo <« K -~ q o
1XEy XX Z, B EX o+ X5 4 Ep 5¥n 150 ( A1)

i
2800 f45]
Om{i»

i

ao = Xl x2 e o8 Kﬁ_gxn_l + xlxa o0 e ‘;‘:::.""Zixll. '{' e o e +
©o 00 + X?.X;Z' e o e lf.’.-"l E:Il

T T M e R
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51 Calculation of the larger roots

Let
© =kl 2] - (8

SETE [xllis eppreciably larger than the moduli of all the
other roots, then it is possible to ignore the numbers X5

xz', ceee 3 X
i |

= .Eg 0~ Xy (A5)

Thus the largest roots approximately satisfies the equation“

aox + al =0 (A‘Ll- )

If the moduli of the first two roots are appreciably larger
thaa the moduli of the remaining roots, we get from the first
two of Vieta's formulae
d vx 4
8 1 zs
(A,

2
a

omxl 2.5

Thus the two larger roots of the given polynomial approximately
satisfy the equation

a, = + a; X + a, = 0 (4g)

Analogously, if the moduli of three roots are appreciably
larger than the moduli of the remaining ones, these roots
are approximately detérmined by the equation :

a, © + ay = + a X + 8y = 0] (A7)

The truth of this statement follows from the relation s
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e ALE e X )
8
-5;- ME X, * X X + X, Xz l? (.AB)

oE I

t
amkg

&

J ;
obtained from (Al) and being Viets formulae for egquation (A?)y

SQE Calculation of the smaller roots

Tf we substitute into (A3) a new argument y = % and
apply the results we have got for large roots, and then
change back from y to the argument x = 2 we get the following

g
results .

If |x | is appredicably smaller than the moduli of the other
roots of the given polynomia;ﬁﬂxldmay be approximately determi-
ned by the equation

Spa B tCE, 50 (4g)

If the moduli of Eno1 and x, are appreciably smaller than
the moduli of the remaining roots, the three roots are
epproximately determined by the eﬁuation H

a3 X0 + &, o % ta 1 X+8 = 0 (Agj

Analpgous theorems hold elso for any number of roots with
larger or smaller moduli.
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Example Determine the roots of the polynomials

P(X)= X' +39 X + 958 x> - 1080 x - 2000

we try to determine the largest root by means of the
equation
o i e SR |

Then Xy = -39, However a trizl convinces us that X, = -39
is not even approximestely a root.

We form the second equation s

¥ +39 % +958 = O
From which
X, = - 19.5 + 24,04 )

= - l ® - 24.0 4
- 9e5 4 7
The exact roots are x; = =20 + 24,48 1 9

X, = =20 - 24.487

For determining the smallest root we take the equation
- 1080 x - 2000 = O,

from which x, A - 1.85 . A trial shows that the number found
is not a root.
We take the eguation g5 §x~ -~ 1080 x - 2000 = O
Then x, = - 0.99, Xz = 2,12 (exact values are X, = =1,
= 2)

XB =
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4, Iteration in the complex plaie

A study closely amalogous o that im [1] for the
iteration methods may ©e applied to the solution of squations
involving functions of a complex variable. For example, Newton's
mathod may be applied ¥ eadily if a suitable sharting value 1is

availables

Using the starting value xo=i,iz y=1' y and applying
Newbon's formula to the eguation 3

Plx)=m +x3+5x +4xA= O (22)
we obtain '
xi=i - fi)=1-24 = 02486+Oo919‘i 3

£1(i) 164
X5 0,486+0,9L9 i - 7 —09292+0 1744 = ~L.495+0.86061

1. 780+6 0051
as two approximations to the selution

.2 The sguare root of & real number

If we write X :Q a, Ghen £(x) = x?ma where a é% Ds
Newton's iteration method here assules the forn

x,,q = - (B - )/ (13)
or, more Simply

X: ., =1 (x;+a) (14)
ivl T3 L s

If pecursion (14) is to be coded for a compubter, 1%
will be desirsble to have the starting velue X chosen To
exceed the first iterate Xqe Since the code should be appil-
cable to finding the square root of any positive, number a,



large or small, and since it is convenient to start with a
Preasigned value, say X, = l, we introduce a change of
variables to meet these requirements. If the program is
based on decimal erithmetic, we introduce & new guantity b
which provides that a = lOakb, b en integer, and l_{35(3'< b \<1

We find Y b using (14) end convert to \a through
tue relation -_.—_J.O]‘c \/?.

If the computations indicated in (14) are done
in the base 2, a natural choice of range for b is normally

=l b. The starting value x_ = 1

%-( b\<l}. Such that a = 2 <

again yields a decreasing sequence of iterates converging
to Yb and henceVa = 2k Vb . The sequence of calcula-—
tions is indicated in the following flow czhrt.
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9}4 The sguare oot of a complex number

It is feasible to calculate the square root of a COomp--
lex number z = x+ly by use of De Moivre's theoren, forming

\’ X+iy r Lcos 'f'i sin g) (15)

Since this requires computing a real fourth root, three
inverse trignometric functions, a sine and & cosine considera-
Tle machine effort would be required if high accuracy were to
be achieved. An alternative is to calculate these functions
to one or two significant figures and use the resulting appro-
ximation as a starting value for Newton's method:

» =_J_..(Z.+g.___) (16)
i+l 5 =1 2;

For example, to find V 4+31, we write
443i = 5 (4f§1\ =5 (cos 0.64+i sin Qo 64)
(2.24)(0.95+0,31 1)

V4+3l _V_‘[(cos 0,32+ 1 sin 0 32)
20128 + 00694'5 5 1

Newton's method is then applied for a more accurate
result. Taking z, = 2.128+0.6945 i and applying (16), we find

z = %‘(zo+ 4+31 )= 1.064+0.347251 + 4+31

zo '4‘.‘ 4
Zq = 2.1208 + 0?70193 3, S

Z

i

It is interesting to compare the squares of these
two values 3

22 = 4,046 + 2,956 i = (4+31)4(0.046-0,0441)
22 = 4,006 + 2,978 i = (4+31)+(0.006-0,0221)

Subsequent iterations would yield even more accuracye
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oot of a real or complex number

4,5 Flow=char® for the square

with relative error (a complex number X+iy

a =2
'a real number = ©

X new prob

) X%, + YY

e ML

{ : X._d + 3 2
1 J1

Xy - Xyq

it b

)
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46 A modification of Newtons method

For the application of Newton's iteration method, we made in
[ﬂ] the assumption that £'(x) # 0 in the neighborhood of a
zero of f(x) = 0.

In practice this restriction may not be met, or the § required
to meet it may be extremely small. Since either event hinders
application, we iurn to the problem of removing the restrict-
ion under two rather common sets of circumstances.

First of all, suppose that £(x) = 0 has two roots close to
one aswother, Since by Rolle's theorem f'(x) vanishes at
least once between the two rcots, it is quite likely that a
very, small € will be needed to meet our assumption.

In addition, whenever x is near a zero of £'(x), so that
£'(x) is small, the term _ £(x is highly sensitive to
small changes in x. *

In deed, if one of the iterates x; happens to coincide with
a zero of £'(x), the next iterate X;,1 &ive by

X1 =% = (%) /7 £7(x5) (17)
cannot be calculated.

IE X5 is simultaneously near zeros of f(x) and £'(x), but is
equal to neither of them, it will be necessary to form the
quotient of two nearly vanishing numbers, this is an operation
in which rounding error can be devastating.

If while applying Newton's method we discover from the
vanishing or near vanishing of f£'(x) that the situation Just
described has occurred, it is usually practical to depart

from the standard sequence and attempt to obtain two new
starting values, each close to an offending zero.
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To obtain these values, we first apply Newton's method to the
equation £'(x) = O; thab is, we perform the iteration
xi-l-l = Xi = f'(xi) / f“(xi) (lS)

using the lést available iterate as a starting value.
Suppose that the solution x=C is obtained.

(If there is no such soclution x=c or if f*(x) is small
throughout a small neighlorhood of x'=c, further modification
is abviously required.) We form the Taylor's series about

=8 8

2(x) = £(e) + £(c) (x=¢) + & £"(c) (=% + ...,

and use the fact that £'(c) = O to obtain

£(x) = £(c) + 3 £"(x) (x-¢)® + R. (19)

If we assume that the remsinder term R is small we may
conclude that the zeros of £(x) nesr x=c¢ are approximately
equal to the roots of the quadratic equation

fle) + % £%(c) Cch)g =0

namely

x = o & | -2Re)/E"(e) (20)

Using these two numbers as starting values we can eater the
iteration. (17) with some hope of its converging.

Just as direct use of Newbon's method may be difficult when
the equation f(x)= O has two almost equal roots, so it is
impossible with two equal roots in the sence that the
expression f£(¢)}/f'(c) is indebterminante when x=c is a
multiple roote of £(x)=0 .



entered when an iterate which is near g multiple root isg.
reached., If x=c is g multiple root of £(x)=0, it ig almost -
a root of £'(x)=0, If £(c) #£.0, then X=Cc is a double root
and will be found when the equation £'(x)=0 is solved,

When f£(e) is found we shonla %St to see if it vanishes

(or is less in magnitude than some Preasigned value), and,

if s0, leave the modification with the information that x=c
is a double root of £(x)=0. If (e)# 0 we proceed through
she original modification,

If x=c¢c is a zero of f(x) of three or higher multiplicity,
computation cannot proceed through the modified Program,
since division by f"(c) is required. Bven though provision
for this may be made by "pyramiding® ugse of the modification,
manual'intervention may be preferred unless Problems
frequently involving zeros of high multiplicity are to be
expected.

Further Remarks

When an electronic computer is employed to perform the
calculation it is possible to employ methods in which very
large numbers of arithmetic operations are performed in the
course of computetion. Thus it is necessary to employ
methods in which small, individual errors will not have a
serious, cumulative effect on the results.

It should be mentioned in conclusion that we haye not
considered here the possible effects of uncertainly in the
evaluation of f(x) or correspondingly, g(x) on the uncertainly
in the solutions of £(x) = 0 or x = g2
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J.HeWilkinson has counstructed an example in which the effect
is sc extreme as to be almost humorous.
Whereas

£(x) = (x-1)(x=2) ... (%-20) = 29 210 % 4 ... + 201

has zeros 1, 2, ..y 20 , the equaticn

f(x) - 2"?3 x1% - 0 has smong its sclutions numbers near
20.846 and 13.99 + 2.5 1 . Since there is nc easy way to
anticipate when this effect will render a given cemputation
unusable there seems to be no substitute for prudence in the
use of root - finding techniques.
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5. Lin-Bairstow Method for Complex Roots

>4 The bagic.idea of the.method

Ageneral method for determining the complex roots of a
Polynomical equation

?n(x) = aoxp + alxn'l + agzg'a *too.o + @ Xb8 =0 (21)

involves finding a quadratic factor of the pPolynomial by an
iterative procedure. If QH(x); is divided by a trial factor

X ? +.2 X + B, one obtains as a quotient & polynomial Q(x)
of degree n~2 and a remainder Rx#8.. One may therefore write

n n-2 _
E akxn-k = (X°+1x +,8) E . by gRk=2 -!-R"";(S?.?Z)
k=0 k=0

from which it follows that

ao = bo
a =by + b
ay = b2 +-nbl + Sbo
B =By + Ihy yteb o : (23)
&, 1 =T + :bn 2+sbn_5
If one sets
b-l = b_2 = 0 : :
b, =R . . (24)
bn =S ~1TR

r

one may write Egs: (23). in the form



'bk - ak - rbk—l - Sbk_a 9 k= 0,1929 o000y n {25:’

The coefficients blg of the polynomial Q(x) and the cosfficents
R and S of the remainder are functions of r and B. We now
attempt by au iterative process to soulve the simnlbanecus

aguations
R(rys) = O and S{r,s) =0 (26)
which, if satisfied by r* and s , make ';( 24 '*'z‘x - gsg

” , o . xE
. factor of the polynomiai. To find rﬂ and & wWe &sune
o

that we have an r and S near these values so that

T = ot D
: (273
& = s+ A®
where A » and As are small. Uslng Taylor's expansion for
functions of two variables and neglectinmg Terms of higher
power than the first in these incremeunts, we Lave

w(T, 5&) + A1‘>3=— + Ag ER & R(rT, &%)

- == - O 4 A
(28)
r 23 2.8 : ;
s(r,s) + A wzg-f +4H 3 3 4 S(:{::Eg g.;i') =0

We next find the fopr partial derivatives in Egs. (28) and
solve these eguati Ons for ar and AB.. Use of BEgs. {27) then
yields ax: r#’ and ®°, which, of course becsuze of the
spproximete nabure of Egs. (28) are row only an improved
estimate of the roots of Egs. (26).

To find the partiel derivatives in Egs. (28) we differentiate
Eqs. (25); thus



Dbk »by . db s

e p— bk_l --I £ .'__T,_ = '.'\.b T e

(25)

i
!
o
2
i
i
!
I
|
I

o —— S o

4
gLéf i

Since from Egs. (23%) b, = &,, 16 1s not a function of
T or s; and thercfore from the above equations

-

b-—“-c?- = 0 :3-—-51 = @

- ooE

?22; 3 ‘fE %é . Y\Eifia Abirsi (30)

)I‘ .0 .j \55 : o A bs = -"“‘Do o 2N
5 b b

Ll S ) iR kit -

TR e TREL el AR . aaSE

H]
1
o

= =D-+2h = =b.+ b
CEa ik

Thus for k=0, 1 and 2

L LR g . )
~ = = o 0. - I D = el 3
>I 8 Py * T By o e (31)

L]

and by mathematical induvction this equation holds for all
k. DPor suppose that Eg..(31) holds for 21l k up to n-1;
then by Bg. (29)

f
/]
4
i
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Making use of Eg. (31) one may write in place of the equations

in (29) the singl recurrence relation

G = by ~TC 3 B o

(3

2)

In particular, from Egs. (30) and (31) ¢ ; =0 and &, = Bye

Thus the ¢'8 are obtained from the bis in e;:é:iactly the same

way the b's were obtained from the a’'se

From Egs. (24) and (31)

5 3D ™
R = b : 35 3% ol :
bnwl 3T TR + bn_l-t-I‘:g-r-—": € TSy o
?_31 __'B L AREE TR °
Wy i T R L
b S PNE -\?---bn + T 3"n-1 = - 6 _,~Te
SR. . Donel-_ . i T - TAB s n-2"+"n=3
>s T 0B n-3 : (3
S = bn + ll'b‘n l g 2
and therefore the eguations (28} for Ar andds may be
written = ' e ‘
: (34)

(B, 7 = bnul) AT + @nwaﬁ B b

Note that ‘.Gﬁ is not needed in these equations and that in place

of 'F&n_’l we may compute directly

(35)
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the coefficient needed in Egs. (34)

To summarize, one computes the bk and ¢ from the given

coefficients &, using recurrence relations (25), (32) and
(35) and assuming that

&_nl::b_lZ(Q-_l:O }

a ) = i (36)

o] ] 0

It is convenient for this purpose to arrange the coefficients
in the following array

& a B b o qo
& by ¢
5 5 2 Eaer ~

O 0 009 00 09 0090 00 00

Having these coefficients, one may write down the two
simultaneous equations in (34) for Ar and Ag., These
increments added on to r and .g, respectively, give by Egs.

(27) improved estimates of coefficients r> and &* in a

guadratic facbtor x? + = x + s* of the given polynomial.
When such a quadratic factor is found with sufficient
Clecuracy, two roots of the given equation (21) are deter—
mined by setting x2_ +r*x+ 5% =0

Such a method permits one to compute@ pair of complex roots
of a polynomial having real coeffieients by operating only

with real numbers.



5.2 Summary ‘of: Lin-Bairstow method

r n(x) = g 2 x‘n-k

Step 1 ¢ b= 8 - rb',ﬁ,__l--ﬁ!:.k_2 ’
= 1,2300-, n 3
e A
ao=b0.
Step 2 ¢ CpFP~TCp 17 0% 5 o
k=l,2,o-,n—2 H
c-l:O
€o —To
~TCp_p~ %3 “Cn-1
; e e mam
Step 3 : D=6, o1 Cn-3 °
AT = (bn-lcn—a"bncn-B)/D
as = (e pPy = ¢y 1Pn-1)/P
Step & 3 & = v+ DT
r:‘:‘l = S+ LS
Ste 3 If b (F,s’*) = 0 and
: n-1

s » b o
bn(r*, s )+ Pbg (1‘*, 8.).= 0

then x‘?“ﬂ’?' <+3 is a factor of Pn(x)

else begin with step e
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5.5 Flow Chart for Lin-Bairstow method
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6. Root-gquaring method of Lobachevskii

6.1 The basic idea of the method

Lobachevsk{f's method (in foreign literature this method
is of pen called the method of Dandelin and Graeffe or only
Graeffe) has a comparatively complicated calculation sheme, but
provides the possibility of fisdiug all, or nearly all, the
roots of a polynomial. It may be used also for the calculation,
of several of the smaller roots of a transendental Thuetion, if
the function is expressed as a power series.

Besides being applicable to complex roots, this method has the
~dventage of yielding, in many cases, all the roots of a
Dolynomial directly without initial information concerning the
roots.

Its two main disadvantages are

(1) The complexity of the method and
(2) The need of a sufficiently accurate table of logarithms.

The underlying principle of the method is to isolate the
roots of a polynomial by forming an equation in which the roots
are a very high power of the roots of the original polynomial.
For the purposes of discussion let this be the 256 the power of
the roots. If two roots differ by as littel as 10 per cent,

say a and l.la, then the ratio of their 256 the power is

1l e =0

2256

- == 3 x lOlo

Since the new equation has roots differing greatly in magni-
tudes it can oten be solved rather simply for the magnitude

of the new roots. By the use of logarithm tables the magni-—

tude of the roots of the original equation can then be determined.
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The amplitude (or angle) of the root is determined in turn, by
making use of the original equation, e.g., direct substitution
will fix the sign of the real ro0ts.

Suppose we wish to form an equation whose roots are the
negative of the-square of the roots of

-k _
;4 8
(%) = o — et | (38)

This ~&5n be done; as is proved below, by forming the even
. function of x

n
#(~22)=2(x)2(~%)= s W AL (59)
: . _ k=0 k=0 ‘_|__‘-h
Put y = -xa we get
By) = kv“‘k s tod (40)
' k:o R red ey, :

Let the zeros oi f(x) be X= PlgP29 e and 2o
then the zeros of :L' : : :

B(-R) = f(x)f( -x)
are X = I.Pl"i Posy ceo and + P,
and since y -;-x?

*he roots .of Eg. (40) ‘are y P% P% y po's BDG —3§

Thus the required ecuation is 3

- : s
ey A il i -. RO (41)
where . _g}n(n-a,a) 0 ;N
b =al +2 e ~1E N

k'—'-Ongagooo,n
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Suppose for example that the given equation is
6 4 ] .
a,x +a1x5+a2x +33x;+a4xa+a5x+a6 = 0 (43)
and the required equation is :

(44)

]
o

6 4
box +blx5+b2x +b3x3+b4x2+b5x+b6
According to (42) we get

b

o
HMpo

o’
|

il

)

=2
\V]
Il

- 2 ala5~ 2 &,y (45)

Il

(=2 o’
B
[ )0 \¥} \ﬂmN«PmN\.NmNNmN

- 2a2a4+2ala5-2 2,35

-2 a5a5 + 2 Ay

o’
\n
1

- a4a6

o
(o))
I

This procedure can be performed schematically as
follows: one writes down the detached coefficients 8p18 e es sy
as shown in (46) and under them their squares and the products
indicated. The coefficients bo’bl"‘°’b6 are now determined by
adding the quantities beneath the corresponding 8,9879000098

S)

a, 3y a2 aB By a5 ag
aa a2 a? aa a2 a2 a2
0 i 2 9 4 9 6

éafa éaﬁB —;%% —2%%-?%%
fa aoaZP +; ala5 fg a2a6
-2 a°a6 -
b0 bl b2 b5 b4 b5 b6

(44



6.2 Roobts sll Reel and Unequsl in Magnitude

The root-squaring method is most sasily applied to an
sguation having only real roots and these all of different
magnitudes. Suppose that

P (X = 8, >l 8y R B, g B gl =0
47

has n real rocts Pl ’ Eé i Glew Pn and thatb
EN DAY I = DRyt N " (48)

After the first roob-squaring process, bthe roct gorresponding
to Pk is - Pi s after the second, the corresponding reot
i and sfter the m thegs

is - B : after the third, it is - By ;
E i K RN
it is g =~ P ( thus for m = 8 it is - ey

Bach root - squering process increases greatly the inequelities
of (48), When these inequalities are SO great Lthat, to the
number of significent figures; decided upon,

[ (n=1)
oy = 1 ; 4V TATRR s L) Al

9

the root-squaring process should be terminated.
Suppose that the final equation after the m root squarings
required, is
=% _ =1 : A » .
Q(x) — bo Xn + bl st + o0 o + tn_l -5.1’ bn mO (?O)

Y1

d that its Toots Qg s U » eee v 9y satisfy Bgs.(49)
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By Vieta's theorem

L ) e
-Bi = = (qu+ds + «oo + qn) =f= qui(les 'EI + ce0 + EI )

therefore by Egs. (49) , and to the approximation there
indicated,
bl T

:B— =

g4 .
5 1

Likewise, to the same order of approximation 5

b
-g%qu(q2+q5 +...+qn)+q2(q_5+...+qn)+...+
Uy (9p)
’ > o o &
= g4 & Gl % F e ae 3 ) + ( ai + eea + N )

Continuing in this way, we have

= o
bl = 9 bo
L i
b5 = =gy g ids b0

~n
by = ey d e e, Bk (51)



=3l

= k
bk — (—l) qlq_a oo e q_k bo

L] » e L L] L L L L] L Ll L o e L @

o’
it

n
-1)7 ag & eer G Py

From these equations, we have

bo q * bl — R C)
bl W + b2 =l
L ] e L] L ] L ] e ] L] e o (52)
by 19 * b = 0
bn_lqn 4 bIL = 0
Since, by Egs. (52)
bl g
lqk\ = isk’ll K !Pkﬂ
log |p | =2 (log |b] - Logfer P (52)

from which one can determine’pk,. Substitution in the
original equatilon (9?) will determine whether the roots
are positive or negative.
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Termination of the Root-squaring Process.

As stated in the asbove discussion, the root squaring
should be terminated when a; is negligible compared to Qi 1
and when, therefore, the coefficients of the equation are
given in terms of the root by Egs. (51). One needs, however
to be able to judge from the root-squaring process itself
when these conditions are met.

Suppose that an additional root squaring is performed
on Q(x) (see Eq. (50))to obtain.

R xr = Eo o + El -1 aal ok En_lx‘ + Bn =0  (54)

with the roots El : 52 5 e En , where by the nature of
the process

G . .(55)

Now the roots will be separted even further then before.
Therefore the approximations used in obtaining Egs. (51)
are certainly valid, sand hence

By = (- aiNg ... o b T (56)

Directly from the root-squaring process Eo = bg .

Substituting this in Eq. (56) together with the expressions
for ak from Eq. (55) on obtains the approximate relation

- 2 72t 2 2 2

B = (95 -9 lewes 1 Gp S R s by - (57)

This will be true if the corss-product terms in the root-
squaring process are negligible,



Thus the venishing of all the cross-product terms in the
root-squaring process can be used ©O indicate that the rootls
ar: sufficiently separated for the degree of accuracy reguired
—m&fthat the process should be terminated.

Consider the equation t? - 2x2 -5x+6 = 0 (58)
with the exact solution x =1, =2 i D

Tn the table below are shown the results obtained by termin-
ating at any particular step, stapting with the original

equation.
Root Squaring terminated ab Pi P2 E%
Original equation 12,000 [-2,500 | 1.2000 |
2d Power 3,742 =1.870 0.8571 i
4+th Power 30146 -1 .942 Q3982l
8th Power 59014 -1.991 0,9996
16th Power 3,00028 |~1.99981 ! C.999995
/;52th Power % ,00000 |=2 00000 1.0000000
64th Power % ,00000 j=-2 ,00000 -1,0000000




—57

Flow—-chart for Graeife method

(case of real unequal roots).

' T
:mx:\&J% o e

ij:o,l,.. . sn(JIfrl’)
: 1

r/\ =1 7 5




- e
new problem?

e AR P e e
=
e .._m_-f sz 32

otop %

-*L x5 (e —> p

T

e e e’ = - S, %

—
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6.4 Complex Roots and Roots Equsal in Magnitude

For a polynomial with real coefficients the complex
roots occur in pairs. Since such roots are equal in magnitude
no amount'of‘sqﬁariné will separate them. The equation cannot,
therefore be completely broken down into the linear equations
(52). However if the various pairs of complex roots all differ
in absolute value, the final equation obtained by the m root-—
squaring procedure can be broken down into linear equations
for the real (and unequal) roots and quadratic equations for
the pairs of complex roots.

As an example, suppose that the roots of the given ¢
equation are p; , xt iy , p, , Pz , where Ipll o) x+ iyl >
‘p2|)b5|,and thet the final equation after m root squaring

is

b, 2 + by %" + b, 2 + by “ + b, X + b5 00 (59)

Using an argument similar to that used to obtain the equations in
52) we can break this equation down into the equation

bo X + bl =1 [B)

bl 12 + b2 X -+ ’t)5 = 0]
b5 ve + b4 = 0 (60)
bl.;. 5T + b5 ==(0)

and the roots of those equations are, respectively, - Pl"

- (x + iy)N and - (x - iy)N 5 - pg 5 pg , where N = 2®,” The
presence of the complex pair of roots in the above example
would be indicated in the root-squaring process by the nonvani-
shing of the product terms in the b2 column and the frequent

changes in sign of b2 y @lthough the latter may not always
occure.
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If two or more complex pailrs are equal in magnitude, guartic
equations must be solved; and therefore the method is of

1little or no use.

7he presence of two real roots of equal magnitude will like
wise ive rise to guadratic equations, such s= foux d in Bgs.
(60) zcr complex roots, the presence of such rcots is merked
by the nonvenishing of cross-product terms.

These cross~product terms, 1o this case, approach a value
goual to half the squared verm. Agein the method ig of
1ittlé or no mse if three or mors reots are egual in
&agnit&dea |

In general, the root-squaring method of Dandelin end Graeffe
is rather unsatisfactory because of the complexity of rules
for its proper application, the uncertainty of obtalng an
snswer if too many roots are equal in magnitude, =nd the
tendency for numerical erTOns To occur in the root-squaring
process., These errors are not corrected by the subseguent
calculations. For real roots, it is therefors best To use
the method of false position or the Birge-Vieta method.
However, for finding the complex rocts of polynomials of
the eighth order and higher, the roct-squaring method has
few sucessful competitors.

(This statement is based on the agsumption that all real
roots have previously been determined end the order of

the pelynomial reduced accordingly).
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