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ABSTRACT. In various mathematical sciences, sets and functions in topology have been
extensively developed and exploited. Some novel separation axioms have been discovered
through studying generalizations of closures duo to closed sets, A-sets, and V-sets. Self
similar fractals have important role in some real life problems as physics and engineering.
In this paper, the topology described by the family of §y-A and dy-V-sets in topological
spaces is defined and studied in terms of As,-Sets and V,-Sets. Also, the topological space
Top  rsyy is defined and studied. Additionally, several features of these sets are presented,

as well as some associated new separation axioms. Finally, we improved theorems 4.3 [5]
and 6.5 [6] for Caldas et al. We approximate self similar fractals through graph theory to
topological spaces. Some topological properties such as separation axioms are studied.
Finally, the kernel of topological approximations of fractals are calculated in terms of their
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connecting points.

KEYWORDS: Kernels, §y-open sets, Ag,-sets and Vs, -sets.

1. INTRODUCTION

Maki [25] extended the notions of Levine [24]
and Dunham [10] on closure operators which based
generalized closed sets in 1986 by introducing
generalized A-sets a topology (O,7) (Top(ny), for
short) and defining its A-closure operator. In a
continuation, Maki linked between the 7 and t
using generalized A-sets. Caldas and Dontchev [4],
Ganster, Jafari, and Noiri [23], and Caldas, Jafari, and
Noiri [7] recently acquired and explored three
extensions of the concept of A-set. They continued
Maki’s efforts [25]. Top(q,r) used in some applications
duo to graphs and related with some types of
separation axioms, see [15, 16, 17, 18, 21, 22] which are
used in physics [13, 14, 19, 20] and smart city [3].

The objective of this work is to continue study in
similar lines, but using dy-open sets this time. In
given Topy, we introduce Ag,-sets and Vg, -sets
and thereby gain novel topologies defined by these
families of sets. Additionally, we discuss many
essential characteristics of these novel topologies.

2. PRELIMINARIES

In a Top,y, the closure (resp. interior) of A is
denoted by €(U) and J(A). A is regular open (RO (O

,T), for short) [29] if A = J(C(A)) and their union
forms 6-open (60(0,7), for short) [30]. The
complement of RO(O, 1) (resp. §0(0, 1)) set is RC(O
,T) (resp. 6C(0O, 1)). A is b-open [2] (or y-open [12], or
sp-open [11]) (yO(O, 1), for short) if A € C(I(A)) U
J(CQ)). Its complement is y-closed (yC€(O,7), for
short).

The intersection of all §€(0O, t) has U is §-closure [30]
of A (§C(A), for short). S of a Top(g,r) is §y-open [8]
(6yo(O,t), for short) if S < C(Js5(A)) UJI(Cs(S))
and its complement is dy-closed [8] (§yC(X,t), for
short). The union (resp. intersection) of all 6y0 (0, 1)
contained in (resp. has) ¥ is the dy-interior (resp. dy-
closure) of A and is abbreviated with §yJ(U) (resp.
SyC(A)).

3. Asy-SETS AND V;5,-SETS

We introduce the concepts of Ag, and Vg,-sets and
examine some of their essential features in this
section.

DEFINITION 3.1

In Top oy, D is Sy-A-set (abb. Ag), (D))(resp. Sy-V-set
(abb. Vg, (D)), if D =Asy (D) (resp. D =V, (D)),
where  Asy, (D) = N{G:G2D,G €6y0(0,7)} and
Vsy (D) = U {&F:F < DT €6y0(0, 1)}
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In [28], As, (D) or D" is Sy-kernel of a set D (D"97,
for short). The underlying holdings of sets A, (D)
and Vg, (D) can be resumed.

THEOREM 3.2

Let A, D and {D;:i € I} be subsets of a Top g ). Then,
the followings are valid:

(1) D gy (D);
(2 IfA =D, then Ag, (A) € Ay, (D);

) If D € 6y0(0O, 1), then D = A, (D);

(4) Asy (A6y (D)) = Asy (D);

(B)Asy (UDii €1}) =U {Ag, (Dy):i €T}
6) Asy (N{Di:i €1} SN {As, (D) ET};
(7) Agy (D) = (Vs (D))"

Proof. (1) Follows duo to Definition 3.1.

(2) Since [ €Ay, (D), then 3 G € §y0(0,7) s.t. G 2D
with 1€ G. Since D2 U, then [ €Asy, (A) and so
Asy (W) € Agy (D).

(3) Using Definition 3.1 and since D € §y0(0, 1), we
get Ag, (D) € D.By (1), Asy B) = B.

(4) Follows from (3) and Definition 3.1.

(5) Let 3 [ st. [€As, (U{D:i€I}). Then, 3 GE
syo(O,7t) st U{Disiel}cGand 1€ G. Thus, Vi€
I, we get 1€As, (D). This indicates that [¢uU
{Asy (D;):i € I}. On the other hand, suppose that 3
€0 s.t. 1 €U {As, (D;): i € I}. Then, by Definition 3.1,
3G, edyo(O,r),Vielstlgg, D, <SG, LetG=U
{Gi:i € I}. Then, we get 1 U {G;:i €I}, U{D;:i €I} S
G and G € 6y0(0O,1). This indicates that [ €A, (U
(D;:i €1)).

(6) Let 1€n ({Asy (D;):i €1}). Then, 3 ip €1 sit. [ &
Asy (D) and 3 G €6y0(O,7) st. € G and G;) G
and so N{D;:i €I} S D;) € G and [ ¢ G. Therefore,
[&ns, (N{D;:i ET}).

(7) Let D €0O. Then, O\Vg, (D) = Nn{O\F:O\D €O
\& and O\F € 8y0(0O, 1)} = Ag, (O\D).

DEFINITION 3.3
DofaTop iy is Asy-set if D =g, (D).

LEMMA 3.4

For ® and {D;:i € I} of a Top g v, the followings hold:
(1) Asy (D) is a Agy-set.

(2 If Dis 6y0(0, 1), then D is a As)-set.

B) If D;isaAsy-set Vi € I, then N {D;:i € [}is a Agy-
set.

(4) If D;isaNgy-set, Vi €1, then U {D;:i € [}isaAgy-
set.

Proof. Follows readily using Definition 3.1 and

Theorem 3.2.

A Topgy is Alexandroff [1] if each point has a
minimum nbd or, equivalently, a unique minimal
base.

THEOREM 3.5

For a Topqr), put T"6v = {W: W is a g, -set of O}. Then,
(O, ) is Alexandriff.

Proof. Immediately consequence by Lemma 3.4.

REMARK 3.6
In general, A5, (AN D) # Asy, (A) NAgy, (D) is held.

EXAMPLE 3.7

Let O={1,23}and t = {0, ¢, {1}}. f A = {2} and D =
{3}, then As, (AND) = ¢, but As, (U) NAs, (D) =
{1}.

REMARK 3.8

Every 8y-open set is Ng,-set, while the reverse is not hold,
in general.

EXAMPLE 3.9

Let O={1,2,3,4} and let T = {0, ¢, {1}, {3}, {1,3}, {1,2},
{1,2,3}, {1,3,4}}. Here, {4} is As)-set, but {4} & Sy (0O, 7).

THEOREM 3.10
Let A, D and {D;:i €1} be in Topy. Then, the
followings are valid:
Vs, (D) €D;
(2) If A €D, then Vs, (A) E Vs, (D);

(3) Vsy (VSy @) = Vy (D),

(4) If D € 6yC(X, 1), then D = vy, (D);

©) Vey (N{Dizi €1}) =N {Vs, (D)l €1}

(6) Vey (U{D:i €1} 2U {Vs, (D;):i €T}

Proof. (1) It is clear by Definition 3.1 and Theorem 3.2.

(2) Let T€Vs, (W). Then, 3 F S AUst. [EF and F° €
6y0(0O,t). Since A € D, then F S D. Therefore, [ €
Vsy (D).

(3) It follows from (1) and (2) that Vg, (Vs, (A)) <
Vsy A). If 1€V, (Vs, (A)), then 1€ F, V F SV, ().
Since Vg5, (W) €U, then 1€F, V FSA and F° €
8y0(0, 7). This indicates that [ €V, ().

(4) By Definition 3.1 and D € 6yC(O, 1), we get D &
Vsy (D). By (1) we get D =V, (D).

(5) Let 3 I sit. 1€Vs, (N {D;:i €1}). Then, 3 FEn
{(Diii€l}stl€Fand §° € 6y0(0,1). S0, FES D, V
i € I. Then, [ €V, (D;). Therefore, | ENVy, {D;:i € I}.
On the other hand, suppose that 3 1€0 st [ €N
Vsy {Dj:i € I}. Then, 1 €V, {D;, V i € 1. Then, 3 § <
D, Vi€l Then, F< N{D;:i €I} and F° € 6y0(O
,T). Therefore, [ €V, (N {D;:i € I}).
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(6) Let TEU Vg, {Di:i €1}, 3 iy €1 sit. [EVs, (D;)).
So, 3§ €D, for iy € I and §° € 6y0(0O, 7). Thus, L €
U {Dj,:ip €I} and so [ €U {D;:i € I}. Therefore, [ €
Vsy (U{D;:i € I}).

There is more equivalent definitions of As, and Vg, -
sets.

DEFINITION 3.11

For ® of a Top o7y, Nsy and Vs, -sets are defined by (1) D
is Agy-set if B =NAg, (D) and As, (O) = {D:D €O and
B =Asy, (D)}

(2) Dis Vg, -setif D =Vg, (D) and Vs, (O) = {D:D C
O and D =V, (D)}

PROPOSITION 3.12

In a Top(ay), the followings are satisfied: (1) 5y0(0) <
Asy (O); (2) 6y0(0) Vs, (D).

Proof. Directly from Definitions 3.1 and 3.11.

4. THE ASSOCIATED TOp(EI 5y

DEFINITION 4.1

ATopiy is (8,y)- Ty ifV1I#tin0O 3I1E€GESO(O
,T), but y &G and t€ H € syo(O,t), but 1€ 9, or
equivalently, Top ) is (6,y)- Ty iff {1} € 6yC(0,1), V
[eO.

THEOREM 4.2
ATop oy is (8,y)-Ty iff {I} is Asy-set, V L €D,

Proof. Necessity. Consider f €A, ({I}) for some f
different from I. Then,  €n {G;:1 € G, and G; € 6y0(O
,7)} and so f€G, V 1€g €dyo(d,t), which
contradict with the assumption. Sufficiency. Consider
{Jisa Agy-set, VI €0. Let | # 1. Then, f €As, ({I}) and
Ja G €6y0(0,7) s.t. 1€ Gy and T € G;. Similarly, [ &
Asy ({f}) and 3 a Gy € 6y0(O,7) s.t. T € Gyand [ € Gy.

A in Top g,y is generalized closed (briefly, g-closed)
[24] if C(A) €U whenever ACU and UET. A
Topo,r is a T1 if V g-closed of O is closed. Dunham
2
[9] pointed out that a Top g ) is T1 iff {x} € 0(O, 1) or
2
{x} ec(T,r).

THEOREM 4.3

The followings hold: (1) Top g ¢ is (8,v)-T; iff (3, 7"%r)
is discrete.

(2) Top(D‘T/\av) isa T%.

Proof. (1) Necessity. Consider (O,7) is (6,y)-T;. By
Theorem 4.2, {I} is a Ag,-set and {1} € T, for [ €D.
By Lemma 3.4, ¥ € "%, for A €O. Hence, (O, 7797) is
discrete. Sufficiency. {I} € ¥ and so {} is a Ag,-set,
for 1 €d. By Theorem 4.2, (O, 7) is (6, ¥)-T;.

(2) Let L €. Then, {1} is dy-clopen in (O, 7). If {I} €
6y(0, 1), then by Lemma 3.4, {1} is a Ag,-set and {I} €

-3-

v If {1} € §yC(0, 1), then O\{[} € §y0(0, ), and O
\{I} € t"9v. Therefore, {I} is either open or closed in
(O, 7).

DEFINITION 4.4

A function f: (O,71) — (0,0) is

(1) Strongly y-cont. [27] if V [ €0 and y-open set f(I) €
GEYO($,1),31EHeyo(O,1)stf(G) € H.

(2) (6, y)-irresolute ((6,y)-Irr, for short) if vV I €0 and
f(DegGedyo(O,r),3le Hedyo(d,7)stf(G) cH.

THEOREM 4.5

(DIff:(0,7) - (0,0) is (8, y)-Irr, then f: (O, 7"r) >
(0, 0"87) is cont..

(2) The identity function Idg:(O,7"%) > (O,1) is
strongly y-cont..

Proof. (i) Let G be any Ag,-set in O. Then, G =
Asy (G) =N {W:G € Wand W € 5y0(0,0)}. Since f
is (8,y)-Irr, then f~1(W) € §y0(0, 1), V W. Hence,
£71G) 2 N{FIW):f () < F (W) and We
5Y0(0,0) 2 n{H:f71(G) € $ and $ € 6y0(0O,7) =
Asy (71(G)). On the other hand, by assumption,
f71(G) S Asy (F71(G)). Hence, we get f~1(g) =
Asy (£71(G)). Therefore, f~'(G) € t"v and f:(O
,7787) > (0,077) is cont..

(ii) Let G be y-open in (O, ). Since G is §y-open, by
Theorem 3.2, (Idg)~1(G) = G € 7"r and hence Idg is
strongly y-cont.

5. SOBER (6, yY)-R,-SPACES

DEFINITION 5.1 [7]

InTop ), the y-kernel os a set A (yKer (), for short) is
yKer() =AY =n{G € y0(O,1): G 2 A}.
DEFINITION 5.2

Let A be a subset of a Topy. The Ay = N{G €
6y0X,1):G 2 UL

LEMMA 5.3

InaToppy A = {1€0:5YCH) NA # ¢}, for 1€
O.

Proof. Let 1 € A" and 8yC({1}) N A = ¢. Then, [ ¢0O
\8YC({1}) € 6y0(0O,7) which has A, for [€ ANy,
Consequently, syC({l}) N A # ¢. Next, let 5yC({1}) n
A+ ¢and & A"y, Then, 3D € §y0(0, 1) has A and
[ ¢ D.Lett € 6yC({1}) N U. Therefore, D is a (8, y)-nbd
of t which has not [. By a contradiction, [ € 2”7,

DEFINITION 5.4
ATop ;) is sober (8,7)-Ro if Nien SYE({1}) = ¢.

THEOREM 5.5
ATopqy is sober (8,y)-R, iff ("6 #0 V1 eDO.
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Proof. Let Top g ) be sober (§,y)-R,. Assume that 3
in O st {f}* = O. Then, for [€O0, [€V, V V€
0y0(0O,7) has T and so f € §yC({1}) for any [ €0. This
indicates that f€ Nip 6YC({l}) which give a
contradiction. Conversely, assume that {I}"6v #0, v
[ed. If 3 T €0 s.t. £ € Nien 6YC({I}), then V §y-open
set has f must contain every point of O. So, O is the
unique §y-open set has f. Hence, {f}"$¥ = O whichis a
contradiction.

DEFINITION 5.6

f:(0,7) = (0,0) is dy-closed if f(F) € 6yC(0,7), V
& € dyc(O, ).

THEOREM 5.7

If f is an injective 8y-closed function and O is sober
(8,7)-Ry, then & is sober (6,y)-Ry.

Proof. Since O is sober (§,7)-Ry, then Nien SYC{1}) =
¢. Since f is a dy-closed injection, we get ¢ =
f(Nien 6YE({1}) = Nieo £(6YE{T}) 2
Nieo SYE{EMD}) 2 Nieo SYE({TD.

THEOREM 5.8

Let Top(a,r) be sober (8,v)-Ry. Then, for any Top 4, O
X § is sober (8,y)-Ro.

Proof. It is enough prove that
Napeoxo SYEAWL DY = ®. We get
Napeoxo SYEHI D)) c Napeoxo (GYEHT}) X
SYC({T}) = Niea SYC{ID X Nieo SYE({T) S P X O =
.

to

6. (5,y)- Ry-SPACES

DEFINITION 6.1

ATopy isa(8,y)-R, (resp. y-Ry) if V G € 6y0(0, 1)
(resp. y0(3,71)), G 2 SYC({x}) (resp. yE({x})), VI E G.
DEFINITION 6.2

ATopy is () (6,y)-Ty ifl#tin 0,3 UUE §y0(O
,T)s.t.eitherlEU,TE€ UorteV,1¢V.

(i)(8,y)-T, [#fin 0,3 U, U € 5y0(0,7) st. 1€ U F &
UandfeV,1¢ V.

(i) (6,y)T, I#Tin O, 3 UUESO(O,7) st. IEU
andfeVandUNV =¢

REMARK 6.3

Every (8,y)-T, space is (8,y)-Ty. Also, every (8,y)-Ty
space is (6,y)-T,.

LEMMA 6.4 [30]

For W of a Top g r). The followings hold: (i) If A € 0(O
,T), then SC(A) = CA). (i) If U eC(O,t), then
63 (W) = I (W).

LEMMA 6.5

The followings hold, for A of a Top gy, () If A € yO(O

,T), then A € 6y0(0, 7).

(i) A € dyo(O,7) iff A € yO(O,1s), where 74 is a
semi-regularization on O.

(iii) A € syC(O, ) iff A € yC(O, T4)

Proof. (i) This is obvious, since €(A) € 6C(A) for A &
O.

(ii) Since SC(A) € €(O, 1), then by Lemma 6.4 and
that J(6C(A)) = SI(6CA) = I, (€, (W), where
I, (W) (resp. €, (A)) is the interior (resp. closure) of A
w.r.to 7.

(iii) Obvious by (ii).

LEMMA 6.6 [26]

InaTop gy, {1} is either preopen or preclosed, for 1 €0.

PROPOSITION 6.7

InaTop gy, {1} is either y-open or y-closed, for 1 €0.
Proof. By Lemma 6.6, {1} is preopen or preclosed. Since
each preopen (resp. preclosed) is y-open [12] (resp. y-
closed [12]), then {1} is either y-open or y-closed, for
[eO.

THEOREM 6.8

ATop oy is (8,7)-Ro iff (O, Ts) is y-Ry.

Proof. By Lemma 6.5, we get: (i) U € 6y0(X,7) iff
ASy0(X, ),

() YCU) = U (§:1eF €oyC(O,n)} = (F:1eF e

yC(O,15)} = 5 — yE({x}), for I €. The proof follows
immediately from (i) and (ii).

DEFINITION 6.9

ATop gy is (8,y)-symmetric if | € SyC({f}) implies T €
SyC({1}), for Lt €.

THEOREM 6.10

The followings are equivalent: (i) Topy is (6,7)-
symmetric;

(i) {1} € syc(O,);
(iii) Top v is (8, ¥)-T;.
Proof. (i)= (ii): Let [, €0 s.t. [ # . By Proposition 6.7,

{t} is y-open or y-closed in (O, 7). So, (1) when {f} is
y-open, put V; = {f}, then V; € 6y0(0, 7).

(2) when {f} is y-closed, 1¢ {f} = yC({f}) and 1 ¢
6yC({f}). By (1), t& 6yC({1}). Now, put V3= O
\6YC{}). Then, 1€V, €V, and V € §y0(0O,1).
Therefore, we get V T €0\{1}, 3 V; € §y0(O,7) s.t. [ &
Y, teV; €dy0(O,7). Hence, O\{l} = Usen\gy Vk €
6y0(0, t). Therefore, {I} € §yC(O, 7).

[(il)= (iii):] Consider {p} € éyC(O,t), V p €0. Let
[T €0 with I # f. Now, [ # f implies f €O\{I}. Hence,
O\{1} € 6y0(O, 1) has f but has not 1. Similarly, O
\{f} € §y0(0, 1) has I but has not f.

[(iii)= (i):] Let y & 8yC({1}). Then, since [ # T, by (iii),
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3 U € sy0(O,7) has x s.t. T € U and so I & 6yC({E}).
So, [ € §yC({y}) indicates t € SyC({1}).

THEOREM 6.11
ATopay is (6,7)-Ro iff (8,y)-T.

Proof. Necessity. Let [ # f in O. {I} is y-open or y-
closed, by Proposition 6.7. There are two cases:

(1) when {1} e y(O,7), let V ={1}. Then, €V, ¢V
and V € §y0(0O, ). Moreover, since (O, 7) is (5, ¥)-R,,
we get 6yC({Il} € V. Hence, [ €0\V, T €0\V and O
\V € 6y0(0O, 1),

(2) when {1} € yC(O, 1), T €O\{l} and {I} € §y0(0O, 7).
Since (O, 1) is (6,7)-R,, then dyC({f}) € O\{I}. Now,
let V = 6yC({t}). Then, I€V, 1 ¢V and V € §y0(O
,T). Sufficiency. Let V € 6y0(0,7) and [€ V. V f €O
\V, 3 V5 €6y0(0,1) st. 1€V, and t & V5. Then, we
get SYC{IH N Vs = ¢, vV 1 €O\V and so syC({}) n
(Uteo\w Vo) = ¢. Since €V, O\V S Usenyy Vr and
SYC{}) n (O\V) = ¢. Therefore, SyC({I}) S V.

COROLLARY 6.12

For a Top g 1), we get the implication:

(6,7)-Ro © (8,y)-Ty © (6,y)-symmetric

Proof. This is an immediate consequence of Theorems
6.10 and 6.11.

REMARK 6.13

Observe by using Theorem 6.10 and Corollary 6.12 that (O
,T) is (8,y)-R, iff V {1} € §yC(O,7), for 1 €.
COROLLARY 6.14

Let O# ¢ and | O | = 2, where | O | is the cardinality of
0. Then, every (8,y)-Ry-space is sober (8,y)-R.

Proof. Let 1+t of O. Since (O,7) is (4,¥)-Ro, by
Theorem 6.11, (,y)-T;. Hence, by Theorem 6.10,
Y€)= {1} and 6yC{#}H) = {f} and so
Npeo SYE({pH < SYE{Y) ={1} n &¥C({tH) ={0 n
{t} =¢.

QUESTION 6.15

Is there any example showing that the converse of
Corollary 6.14 is not true?

From the above, the following properties hold:

6yo(O,7r) = yS0(O,7r), dyc(O,7r)= ysc(d,r),
SyC({) = syC({}) and {}"r ={}sr Vv I of a
Topir. Therefore, we obtain the following
important characterizations of (8, y)-Ry-spaces which
are modifications of following theorems.

THEOREM 6.16
The followings are equivalent: (i) ATOP 7 18 a (8,7)-Ro;

(ii)) For W = ¢p and G € 5y0(O,7) s.t. ANG # ¢p, AT €
SyC(O,D)st.ANF#pand FC G;

(iii) Any G € 6y0(0,7), G =U {F € 6yC(0,7):F S G};

(iv) Any § € 6yC(0O,7), & =n{G € §y0(O,1): ¥ € G};
(v) 5yC({1}) < {1}"er, for L €0, .

THEOREM 6.17

The followings are equivalent:

(i) Topoq is a (6,7)-Re; (ii) If & € §yC(O, 1), then
F =g,

(iii) If & € 6yc(O,7) and | € §, then {I}'sr € F;

(iv) If 1 €0, then {1}'6r < SyC({1}).

7. (8,Y)-R,{-SPACES

DEFINITION 7.1
ATop gy is (6,7)-Ry if for any 1,T €0 with SyC(1}) #

SYC({EH, I UVvesyo(d,r), UNV=¢ st
SYC({}) € U and SyC({T}) € V.

DEFINITION 7.2

A Topiy is Y-Ry if for any LT €O with yC(1}) #
YEUE), 3 UV €eyo(0,1), UNV =¢st.yC{}) €U
and yC({f}) € V.

THEOREM 7.3
A TOp(D,r) is (61 )/)-731 iﬁc(l:', TS) 18 )/-:Rl.

Proof. Follows from that dy0(0O,t) = y0(0O,7s) and
syC({1}) =yC, ({1}), VIeD.

THEOREM 7.4
ATop oy is(8,7)-Ry iff itis (6,y)-T,.

Proof. Necessity. Let [ # f and y in O. By Proposition
6.7, v 1 €0, {1} is y-open or y-closed. Then, there are
two cases

(i) when {} eyo(0O,t), since {In{f}=¢, {I}n
Sye({th) < {InyC({) =¢ and so SyC({1}) #
SyC({m).

(ii) when {} € yC(O,7), SYC{1H) n{f} € yC€{1H n
{f} = {n{f} = ¢ and so SYC{1}) # SyC({t}). Since
(0,7) is (8,7)-Ry, 3 U,V €Sy0(O,7), UNV = ¢ s.t.
[edyC{}) € Uand € SyC({f}) c V.

Sufficiency. Let [T €O s.t. SyC({1}) # syC({i}). By
Remark 6.3, every (6,y)-T, space is (8,y)-T;.
Therefore, by Theorem 6.10, dy€({I}) = {I} and
SYC({t}) = {f} and so I # {. Since (O, 1) is (8,y)-T,, 3
U,V edyo(d, ), UnV=¢ st. SyC{H ={ U
and SyC({t}) = {f} c V.

COROLLARY 7.5
Every (8,y)-R4 space (O, 1) is (8,7 )- Ry.

Proof. Since every (8,y)-T, space is (6,y)-T;, then this
is an immediately of Theorems 6.11 and Theorem 7.4.

The converse of Corollary 7.5 is not true, in general.

EXAMPLE 7.6
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Let O be the result of combining any infinite set N with
two distinct one-point sets 1y and 1,. O is (8,y)-R,, but
not (8,y)-Ry if any subset of N is open and any set has 1y
and 1 open iff it contains all but a limited number of points
in N.

EXAMPLE 7.7

Let O be R X R, where R is the set of real numbers. Let T
consists of ¢ and all subsets of O whose complements are
subsets of a finite number of lines parallel to the x-axis.
Then, O is (8,y)-R, but not (6,y)-R;.

Theorem 7.8 is a modification for Theorems 4.3 [5]
and 6.5 [6].

THEOREM 7.8

The followings are equivalent: (i) Top 1) is (8,7)-Ry;

(i) If LT €O s.t. 5yC({1}) # oyC({t}), then I &, F, €
6ye(O,7) st leF,, 1€ Ty, T€F,, 1€F, and O=
&1 U T,

Proof. Follows directly from Definition 7.1 and
Theorem 7.4.

8. APPLICATION (KERNELS OF
SELF-SIMILAR FRACTALS)
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Each self similar fractals which are shown in Fig. 1
can be represented graphically as shown in Figs 2,3
and 4. It cited by El Atik and Nasef [16]. It is noted
that the Top, ., is based on 0O,={0,1}"U
(Uk<n {0,13% x {e}), where e denote to a connecting
vertex in the graph and will be a closed point in 7,
such that each I € {0,1}" is a singleton open set. Also,
each v=1v,1, 1€ € Upen {0,1}* x{e} is a a
singleton closed set with a minimal neighborhood. A
continuous function is defined as f(uju,--u,) =
UgUy Uy, F(Vvy - rvpe) = vyvy vy, m=n—1
and f(v,v,-vpe)= vv,vue, m<n—1. It is
shown that Top, ., is Alexandroff, since each
singleton sets has a unique minimal base.

By Definition 3.1 and Theorems 3.2 and 3.10, we get
the basis of Topp, ., will be V(G,) =U
{vilizi?’...in: i1i2i3 in € H {1,2}"} such that
[E(G)] = [V(Gn)| —1=2"—1 in figures 2,3 and 4.
In this case, the topological kernels of Topg, q,)
induced by self similar fractals that shown in Figure 1
are the points which connect each self similar pieces.
Equivalently, these points are closed in Top g, +,), for
each n.
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Fig. 2. Graph Gs
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9. CONCLUSION

In various mathematical sciences, sets and functions
in topology have been extensively developed and
exploited. Some novel separation axioms have been
discovered through studying generalizations of
closures duo to closed sets, A -sets, and V-sets.
Moreover, the kernels of self-similar fractals are
determined. In computer science, the concept of a
set’s kernel is useful. The majority of this paper is
based on this concept.
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