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Abstract: The present paper presents a systematic evaluation process of experimental work of uncertainty analysis. The 

experiment is considered a system composed entirely as a function of system method to obtain certain data. A 

systematic approach is set to estimate the uncertainty in these data in an arranged steps for rotary pumps such as 

centrifugal radial flow, axial flow, and mixed flow pumps. The paper presents the important values which should be 

carefully measured to obtain an accurate uncertainty value for laboratory tests and also, field tests for pump systems 

arrangement.  

 

 

1. Introduction 

An important question in all experimental 

engineering work is the accuracy of the results. 

Even an otherwise good report loses much of its 

significance. It is important to estimate the 

uncertainty for different reasons. Since the readers 

will usually be unfamiliar with both the equipment 

and the techniques employed. 

The purpose of this paper is to provide a simple and 

systematic method of estimating experimental 

uncertainty. Note that the uncertainty and not the 

error is estimated. The uncertainty is a possible 

value of the error. It thus describes our lack of 

knowledge about the true value of a measured 

quantity. In most biological, medical, and chemical 

work experiments are repeated and controls are 

employed so that a statistical measure of the error 

can be made. In most engineering experiments this 

is not possible due to time and cost requirements 
and to the complexity of the experiments. In a large 

part, this difficulty can be overcome by estimating 

the experimental uncertainty. The concept of 

uncertainty is therefore fundamental to all that 

follows. The error in a given reading is the true 

value minus the observed value and is just a fixed 

number. The error in a single observation cannot be 

treated statistically. But the uncertainty, or what we 

think the error might have been in this same 

observation, is a variable; it can take on any value 

from zero to a large number. The uncertainty can be 

treated in part by the methods of statistics. This 
basis for the treatment of the accuracy of 

engineering experiments is discussed in Refs.[1] 

to[5]. 

Any procedure for calculating the uncertainty in the 

results consists of three steps. These steps are: 

1. Estimate and record in concise form the 

uncertainty in each of the variables. Variable here 

means a quantity observed (recorded) directly in the 

laboratory. 

2. Calculate the uncertainty in the result due to the 

uncertainty in each of the variables. 

3. Combine the uncertainties found in step 2 to give 

the total uncertainty in the result. (If there are 

intermediate results, then step 2 and 3 must be 

repeated to obtain the final result.) 

 
2. PRELIMINARY DISCUSSION 

First, we will discuss the nature of uncertainties in 

the variables. Uncertainties arise from possibilities 

for error. Errors can be classified as: fixed errors, 

random errors, and human errors. 

Fixed errors are errors which are constant for a 

given procedure. Fixed errors often arise from the 

inherent constructionof the observing instrument. 
For example, a balance might have one arm too 

long so that it always gives readings which are 

slightly too high. Such an error could not be 
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detected, no matter how many times observations 

were repeated on this balance. Fixed errors in the 

result may also arise from the use of an 
approximate theory in calculating the result from 

the data. 

Random errors are those errors which vary from 

reading to reading. An example might be random 

noise in an electronic Instrument. A useful rule 

which can be derived from statistics is that 

accidental errors can be reduced approximately as 
the square root of the number of readings by 

repeating and averaging the results. 

Human errors are those attributable to mistakes by 

the observer rather than sampling or 

instrumentation. Examples are misreading a scale 

or reading the wrong dial. 

The possibility or error in each of these classes 

contributes to the uncertainty in a given 

observation, and all of them must therefore be 

considered. The best thing to do would be to repeat 

all readings using enough different sampling 

techniques, instruments, and observers so that the 

entire uncertainty in a given observation could be 

calculated by statistical means. This should be done 

where possible, but from the practical point of 
view, the engineer almost never has the money or 

the time. Fortunately, one can usually estimate the 

uncertainty well enough to serve his purposes. 

These estimates will be correct to perhaps + 50 per 

cent of the uncertainty. They can be based on 

experience, judgment, and auxiliary experiments as 

well as the operation of the instruments during the 

experiment. Uncertainties due to sampling as well 

as those due to transferring the impress of the 

sample to some scale device and the reading of the 

scale must be allowed for. Note that both the 

sampling process and the transfer process may give 
rise to either fixed or random errors or both.In order 

to illustrate the sources of error let us examine the 

measurement of pressure with a static tap and 

manometer. Errors may be due to improper tap 

construction, leaks in the pressure tubing or joints, 

imperfect construction of the manometer, or 

reading of the manometer scale.A useful rule of 

thumb for the instrument uncertainty alone is that 

the instrument uncertainty should be of the order of 

one-half the smallest scale division of the 

instrument, but not all instruments obey this rule. 

 
3. DESCRIPTION OF UNCERTAINTY IN 

MEASURED QUANTITIES 

 

Some method is needed for recording the 

estimates of uncertainties in a meaningful 

concise form. Many authors have used the so-

called "maximum uncertainty" which is a value 

that the error will never exceed. But all 

available experiments show that when many 

readings are taken a few will always have very 

large errors, e.g., it is always possible that the 
instrument is broken completely. It is, therefore, 

better to use an uncertainty interval based on 

suitable odds, See Ref [1] toRef [3] for a 

complete discussion. This is done as follows:  

 

Pressure = 103 + 1.3kPa  (20 to 1) (1) 

In Equation (1) the first number,103kPa is the mean 
of the readings and represents the best estimate of 

the observed value. The second number has been 

defined in Ref. [4]and Ref. [5]as the "uncertainty 

interval. The numbers in parentheses indicate that 

the experimenter would be willing to bet 20 to l that 

the true value lies within plus or minus the 

uncertainty interval of the best estimate. In this 

case,one would be willing to bet 20 to 1 that the 

true value is between 101.7 and 104.3kPa. A more 

precise way of saying this would be: "I believe that 

if this reading were repeated twenty-one. times, by 

more than one observer and using more than one 
kind of instrument, twenty of the readings would be 

between 101.7 and 104.3 kPa." in experimental 

work the engineer usually wants his odds to be at 

least 10 or 20 to l. The engineer can set his odds 

suitably for each experiment but must take them to 

be the same throughout at least one complete 

calculation in order to get answers that are useful. 

4. EFFECT ON RESULT OF UNCERTAINTY IN 

ONE VARIABLE 

The effect of the uncertainty in each variable on the 

uncertainty of the result must now be found. If we 

denote the result by R, a variable by Vi the 

uncertainty interval of the variable as wi, and the 

uncertainty interval in the result due to wi alone as 

wRi, then: 

i

i

R
R V

V
 





   (2) 

And 

iR i

i

R
w w

V





  (3) 

Dividing both sides by R (and recognizing R/R as 

(lnR)): 

 

 

ln
.

ln

iR i i i i

i i i i i

w Rw w V wR R

R V R V R V V V

 
   
 

     (4) 

Note that Eq. (3) shows that the uncertainty in R 

due to a unit uncertainty in the variable Vi is 

R/Vi, while Eq. (4) shows that the per cent 

uncertainty in R due to a 1 per cent uncertainty in 

Vi is (lnR)/(ln Vi). The ln form is almost always 

more useful and simpler in actual calculations.  
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5. COMBINED EFFECT OF MANY VARIABLES 

ON UNCERTAINTY OF THE RESULT. 

If there is more than one variable affecting the 

result, then Eq. (2) becomes: 

1 2

1 2

....... n

n

R R R
R V V V

V V V
   

  
   
  

         (5) 

Students who have had statistics will recognize that 

the uncertainty interval is simply a guesstimated 

confidence interval. 

A similar addition of the uncertainty intervals is not 
valid, however, since each w can be either positive 

or negative and it is very unlikely that all of them 

will be positive for anyone given reading. This 

problem or signs can be taken into account or by 

the use of statistics. It is shown in Ref. [3] that a 

valid approximation is to add the quantities given 

by Eq. (3) or Eq. (4) by the Square so long as the 

uncertainties in each of the variables are 

independent. This can be expressed in terms of 

formulae, for n independent variables, as: 

22 2

1 2

1 2

.......R n

n

R R R
w w w w

V V V

      
       

       

      (6) 

 

 

 

 

 

 

1/ 2
2 2 2

1 2

1 1 2 2

ln ln ln
.......

ln ln ln

nR

n n

R R R ww w w

R V V V V V V

         
                       

   (7) 

Two methods are available for evaluating the 

R/V or (ln R)/(ln V) terms. The first is 

analytically. Suppose, for example, that the result is 

the kinetic energy per unit mass then, 

21
12

2

. .

. .                   

R K E

K E V Then V

V V

 




 
 

      (8) 

Differentiating  

21
2

( )   d  +  VdV

                                             

d KE dR V

R R

V

 



 

 

 

      (9) 

on dividing by Eq. (8) 

d dV
1   + 2 

V
dR




                  (10) 

 

 

 

 

ln ln  
1  ,         2   

ln ln  

R R

V

 
 

 

 

Hence 

Note that Eq. (10), the nondimensional form, could 

have been found by direct logarithmic 

differentiation on Eq. (8). The nondimensional 
form of Eq. (10) is not only simpler in many cases, 

but it gives directly what the experimenter usually 

wants, the percent uncertainty interval in the result. 

The result of Eq. (9) can be found by a second 

method:  

 

 

 

ln ln  
1  ,         2   

ln ln  

R R

V

 
 

 

 

Substitute  for  and  for  V V V    

into Eq. (8) gives: 

  

     

21
2

22 21 1 1 1
2 2 2 2

                

R R V V

V V V V V V V V

   

        

   

     

 

Then subtract the original eq. (8) and neglect 

terms containing ()2 or higher powers of . 

Therefore, again finds: 

21
2

   R V V V             (9)  

Equation (10) can again be obtained by dividing 

Eq. (9) by Eq. (8). This second technique not 

only allows the nature of the approximation 

made but also can be employed where only a 

graphical relation between R and the variables 

is known.  

The results of Eq. (9) or Eq. (10) can now be 
expressed as uncertainty intervals for the result 

by putting Eq. (9) in the Eq. (6) by substituting 

the uncertainty intervals for the  terms. 

This gives: 

   
2 221

2R Vw V w Vw                  (11) 

and by Eq. (7), Eq. (10) similarly becomes: 

2 2

VR
w ww

R V





   
    

  

      (12) 

6. SAMPLE FORMULAE 

For the student who is not familiar with log 

differentiation it may be helpful to convert the 

equation to an equivalent log form before 

differentiating. For example, 

If   
2 3R = f (x, y, z) = x  y z  

then   ln R = 2 ln x + ln y + 3 ln z  

In this way In R is expressed as an explicit function 

and its partial derivative with respect to the ln of 

any one of the variables can easily be evaluated. 
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The student should prove to his own satisfaction 

that the following common error relations are 

correct .For 

 

 

 

 

 

 

 

 

ln
,           

ln

ln
,           

ln

ln 1
ln ,        

ln ln

ln
sin ,      cot

ln

n

V

R
R V n

V

R
R e v

V

R
R V

V V

R
R V V V

V

















 

 

 

 

 (13) 

and  

 

 

 

 

 

 

 

 

ln
,     

ln

ln
,

ln

ln
,

ln

ln
,

ln

n
n m

n
n m

m
n m

R x
R x y

x x y

R xy
R xy z

x R

R nxy
R xy z

y R

R mz
R xy z

z R

















  


  

  

  

       (14) 

An examination of these equations will show that 

sometimes the percentage uncertainty in the result 

iR(w /R) is greater than the percentage 

uncertainty in the basic quantity Vi and sometimes 

less. Note particularly the effect of whethern >l or n 

< 1 in Eq. (13), R = Vn. This is a very common case 

occurring in such formulas as area = (length)2, K.E. 

= 1/2(mV2), etc. Equation (13) demonstrates a 

useful property of logarithmic plotting; namely, the 

same scalar distance on a logarithmic plot 
represents the same percentage uncertainty 

anywhere on the graph. Equation (13) shows why 

data based on the difference between two numbers 

of approximately equal size is inherently 

inaccurate, Equation (14) is simply an application 

of the basic ideas of Eqs. (13) and (14) given so 

that the student can check his ability to work out 

such cases. 

The researcher should work out for himself 

several examples. Before doing this, it may be 

helpful to study the example which is given at 

the end of this paper 

7. SUMMARY OF METHOD SUGGESTED  

A- Summarizing the method suggested here, we 

then have:  

1. Estimate and record the uncertainties as: 

Mean + (uncertainty interval), (odds of m to l), and 

convert to percent uncertainty interval  

2.Compute the uncertainty in the result from the 

equation relating the measured quantities to the 

result and using the relations: 

 

 

 

 

 

 

1/ 2
2 2 2

1 2

1 1 2 2

ln ln ln
.......

ln ln ln

nR

n n

R R R ww w w

R V V V V V V

         
                       

                                                                                                                                      

(15) 
Or 

1/ 2
22 2

1 2

1 1 2 2

....... n
R

n n

ww wR R R
w

V V V V V V

       
        
         

                                          (16) 

3.If step 2 gives intermediate results, repeat to 

obtain the final result.  

B- Consideration or the uncertainty in the result, 

using some method such as that suggested here, is 

essential to the planning and execution of useful 

engineering experiments. 

8- IMPORTANT COMMENTS 

Propagation effects 

It is perhaps most important or all to note that a one 

percent error in reading will not necessarily give a 
one-percent error in the result. A one-percent 

uncertainty may give such a one-percent error in 

the result, but it may also give a 100-percent error 

or a 1/100-percent error. It all depends on the 

nature of the function connecting the measured 

quantities and the result. 

It is also very important to realize that when 
quantities are added by the square, as occurs in the 

propagation formulae, only the large terms 

contribute significantly to the result. Keeping in 

mind that each term in the equation is of the form

    ln / ln /i i iR V w V  , and not just

 /i iw V , it is clear that the accuracy of an 

experiment can be improved significantly only by 

reducing the large terms. Whittling away at the 

small ones will produce only wasted effort. For 

example, consider: 5 + 1 + 1 + 1 + 1 + 1 = 10. But 

[25+12+12+12+12+12]1/2 = (30)1/2 = 5.48 

Consequently, reducing all five of the unity terms 

to zero error in this case would yield on the average 

only a ten-percent improvement in the total 

accuracy of the result. A good rule of thumb 

follows: "If anyone term in the propagation formula 

is less than one-fifth of the largest term, it can be 

neglected." (By term we still mean 

    ln / ln /i i iR V w V 
. 
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9. Use of the Method 

Obviously, the technique described above applies 

to an experiment that has been performed; that is 

what we have set it down for. 

But from the comments just made on propagation. 

It can be seen that; it is quite essential to use this 

technique in considering how a given experiment 

can be made moreaccurate. And the most important 

time for such a considerationis in the design stage. 

Very frequently the difference between success and 
failurein an entire experiment is the proper 

understanding and application of the ideas given 

above in thedesign stage. Clearly, it is easier to 

change the design on paper than after has been 

built. Application of these ideas in advance, based 

on a proposed experimental method, will not only 

clarify the proposed experiment, and improve 

itsaccuracy, but it will also goa long way toward 

eliminating the "hopeless experiment” that 

results,all too frequently, from the construction of 

the constructing of the first thing that comes to 

mind. Such an analysis will also pinpoint in 
advancethose measurements which are critical, and 

which may need specialattention. Furthermore, 

even if it is intended to replicate, that is to repeat 

readings, in the real experiment,it’s clearthat no 

replication is possiblein the design stage. Hence the 

technique described above is the only one that can 

be used in the design stage the only one single 

apparatus. Therefore: let us repeat: THE MOST 

IMPORTANT TIME TO ANALYSE THE 

UNCERTAINTIES IS IN THE DESIGN STAGE. 

Experience for such use can 'be gained by 
uncertainty analyses on laboratory experiments. 

Systematic Techniques for use in the design are 

given in Ref[4] and Ref. [5]. Useful references are 

listed from [7] to [14]. 

 

10. DESIGN of INSTRUMENTS  

A consideration of the output accuracy of an 

instrument, including all the possible sources for 

error inside it, will show that the problem is 

mathematically entirely analogous to the one we 

have just discussed. It has been shown in recent 

work, unfortunately not published, that the 

application of these ideas is not only helpful but 

also financially profitable. To state this more 

clearly, if it is desired to build an instrument of a 
given output, accuracy, the cost can be minimized 

by the use of the technique described above plus 

knowledge of the cost of reducing the uncertainty 

in each element of the instrument or machine. In 

complex, instruments with many circuits (and or 

parts) such an analysis have created cost savings of 

very large magnitudes. 

 

 

11. PRACTICAL EXAMPLE RESULTS 

Estimating the uncertainty in the centrifugal Pump 

experiment: For the Pump the measured final 

quantities are: - 

R.p.m.; N; 

Total Head; 
2

2

P V
H Z

g g

 
    

 

;  

Flow rate;
3 / sec / /D DQ m C A P Q C A P       

Brake Power; 
2

constant

rFN
BP


  

and Pump total efficiency; p

gQH

BP


  . 

In the following table the basic quantities involved 

with reasonable magnitudes of uncertainty intervals 

for 20 to 1 odd in each of the quantities actual 

measured in the experimental yields: 

 
Measured Quantity      Magnitude + w  Percent Uncertainty 

(20 to 1)           Interval. (20 to 1)  

RPM   3,760 + 4 rpm       +0.11 

Dynamometer Load  155 + 0.9 N       +0.57 

Torque Arm   320 + 0.25 mm      +0.08 

Porifice   150 + 1.25 mmHg        +0.83 

Zcorr.    2.7 + 0.045m      +1.67 

Orifice Area and CD   ----------------      + 0.8* 

 

The uncertainty intervals for the results can now be 
calculated: 

Shaft Brake Power: 

The formula for shaft horsepower is:

 2

constant

rFN
BP


  

Hence 

     
22 2

2 2 2
0.08 0.11 0.57

0.586

SBP nr F

BP

w ww w

BP r n F

w

BP

    
         

    



 

Note here that percentage uncertainties combine 

directly only because the equation is linear in form. 

Flow Rate: 

The formula for flow is: /DQ C p   ; Hence 
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   
2 2

2 21
2

0.8 0.4

0.894

DCQ P

D

Q

w Aw w

Q C A P

w

Q


   

      
  



From an examination of the flow vs P orifice graph at 

the test site and the tolerances specified in the Egyptian 

Ministry of Industry for Fluid Meters Report, 1970. 

Note here that w/ is negligible. Also, note that wp/p 

has the coefficient of ln / ln 1/ 2Q P    because 

the equation was not linear. 

Total Head By definition,
2

2

P V
H Z

g g

 
    

 

, Hence 

   2/ / 2dH d P d V g dZ    

And 

     2

22 2

/ / 2

2

P ZV gH
w w ww

H H

  
  

Computing each term separately as an 

intermediate result 

2

22

1
2

2 2

/ 2

2

0.045

2

2 2
/ 2

Z

g

V g Q A

w m

V Q

g A

w w w

V g Q A



 
  

 

   
    

  

 

Since /Aw A is less than one-fifth of

 
2

/ , /Q Aw Q w A  can be neglected. Then: 

2

2

/ 2 2

Q

V g

wV
w

g Q
  

2 / 2
0.000918

2

V g
w

g
  

/ 0.036P Pw w    (Since w is negligible) 

Thus, combining the intermediate results, we 

obtain the percent uncertainty in H as 

     
2 2 2

2

0.036 0.000918 0.045 0.057Hw

H H H

 
   

for H = 30m; wH/H = 0.19 per cent. But for H = 

9m; wH/H = 0.63 per cent. 

Note also that if the calibrated Bourdon gage has 

been used instead of the pressure weigher 

wH=0.54 and for H= 9m,the uncertainty would 

have been wH/H = 6. per cent. This fact is what 

dictated the use of the more cumbersome pressure 

weigher in this set-up.  

12. Pump Efficiency 

By definition pump efficiency, , is: 
p

QH

BP


   

Since the equation is linear we have: 

 

       
2 2 2 2

2 2 2 2
0.89 0 0.58 0.63

1.24

p

p

Q BP H

p

p

w w w w w

Q BP H

w

 



 



       
              

     



 

Tabulating 

Result Percent UncertaintyInterval 20 to 1 

BP        0.6 

Flow Rate        0.9 

Total Head        0.19 - 0.63 

Pump Efficiency       1.24 

These results would usually be sufficient 
information to present in a report. It shows that the 

centrifugal Pump is extremely well instrumented. 
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