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      Calcium is an essential macro element for growth of plants and algae; it 

regulates an impressive and diverse number of physiological processes. 

Research on the impact of calcium oxide nanoparticles (CaO NPs) is very 

little in the literature. In this work, responses of growth, photosynthesis, and 

antioxidant enzymes activities in Chlorella sp to short term treatment (5 

hours) and to long-term treatment (5 days) by CaO NPs (0, 20, 40, 60, 80 

and 100 ppm) were investigated. The results revealed that, the highest 

Chlorella sp growth and Chlorophyll content were recorded at 100 ppm 

CaO NPs. The highest photosynthetic oxygen evolution (PN) was recorded 

in the Chlorella cultures treated with 100 ppm CaO NPs during both long- 

and short-term experiments. Protein content was enhanced by treatment 

with CaO NPs up to 60 ppm CaO NPs. Catalase and guaiacol peroxidase 

activities recorded their highest values at 80 ppm CaO NPs. Total 

antioxidants increased in all CaO NPs treatments. In general, overall results 

of this research indicated that, treatment by CaO NPs improves growth, 

photosynthesis and modulates antioxidant responses of Chlorella sp. by 

stimulating antioxidation system. 
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Calcium plays central roles in many physiological and biochemical processes in plants, 

where it is essential for growth, photosynthesis, stress alleviation [1-3], and mediation of 

responses to hormones [4] and microorganismal interaction [4, 5]. For instance, treatment 

of cucumber seedlings with 10 mM CaCl2 increased chlorophyll content, photosynthetic 

rate, catalase (CAT) activity, and peroxidase (POD), under low light intensity [1]. 

Calcium is also essential to many signalling processes [6,7]. 

Nanotechnology is very exciting science and technology field with the probability to 

open a new agricultural and biotechnology applications [8]. Nanoparticles have different 

physicochemical properties and can improve plant metabolism [9]. Because of the 

prevalent usage of engineered nanoparticles, it is predictable that large quantities of them 

will finally spread   in the atmospheric, aquatic, and terrestrial environments [10]. 

Nowadays, the investigation of the biological positive and negative effects of engineered 

nanoparticles on living organisms urgently needed. Metal oxide nanoparticles are more 

beneficial resources than the metal oxide salt form to develop the biological roles of 

many organisms [11,12]. 

In natural environments, the microalgae are main producers for food and have a 

significant role in the food chains. Microalgae participate in the economy and society in 

addition to biodiesel production and water purification system. Several studies reported 

the impact of nanoparticles on microalgae from few hours [13] to some days [14]. 

Nanoparticles have been used to enhance growth of microalgal and produce valuable 

products.  The creation of oxidative stress by nanoparticles may be a potential for 

promoting algal growth and the accumulation of secondary metabolites [15]. For 

example, the exposure of Chlorella vulgaris to metal NP induces biochemical, 

physiological, or molecular modifications, thus stimulating the growth [16].  

Numerous investigations have focused on the toxic impacts of NPs on various microalgae 

species [17–20].  AgNPs have been shown to limit the development of freshwater green 

microalgae in previous investigations [21]; short-term exposure of the green alga 

Chlamydomonas reinhardtii to AgNPs, decreased photosynthesis activity [22] and 

stimulate the antioxidant enzymes activities in Chattonella marina [23]. The decreased in 

chlorophyll content, viable algal cells, formation of reactive oxygen species (ROS), and 

lipid peroxidation in the freshwater microalga Chlorella vulgaris and marine microalga 
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Dunaliella tertiolecta were observed after exposure to AgNPs for 24 h [24]. The growth 

inhibition of the green algae Desmodesmus sp. by Titanium oxide nanoparticles was also 

reported [25]. 

Nevertheless, the positive effects of NPs on different algae species at proper 

concentrations were studies. For example, Zn NPs at 1.17×10
−5

 M concentration 

increased growth rate of three microalgae (Pavlova lutheri, Isochrysis galbana and 

Tetraselmis suecica) [26]. Also, enhancement in the cell density and chlorophyll content 

of Scenedesmus obliquus, was observed by adding 20 mg/L of Fe2O3 NPs at in the 

growth medium [27]. Rastar et al [28] showed that the growth performance and 

chlorophyll biosynthesis of Haematococcus pluvialis were significantly improved by 

using Fe and Zn in nano forms. Moreover, Deng et al [29] found that the growth of a 

marine diatom Phaeodactylum tricornutum in 2.5 and 5 mg/ L nano-CeO2 was higher 

than the control. While, after 2 days exposure to CeO2 nano at 20 and 40mg/ L, growth 

significantly reduced.  A similar result was reported by [30] on Scenedesmus obliquus 

exposed to nano-CeO2 (5 and 10 mg/ L) where this is caused   growth enhancement, as 

nano-CeO2 concentrations increased, the inhibition increased. In higher plants, promotion 

of shoot and root growth in rice and maize (Zea mays) seedlings was also observed by 

application of calcium phosphate nanoparticles [31,32].  

So far, few reports on calcium nanoparticles influencing photosynthesis and the 

antioxidant enzymes activity, and no studies have been reported on the stimulatory 

impact of calcium oxide nanoparticles on algae. Hence, the current research was carried 

out to know the impact of CaO NPs on growth, photosynthesis and antioxidant enzymes 

of the green microalga Chlorella sp. 

 

MATERIALS AND METHODS  

 

 

Calcium oxide nanoparticles (CaO NPs) 

Calcium oxide nanoparticles CaO-NPs were prepared from calcium nitrate (CaNO3) by 

mechanical milling as described by [33].  
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 Short- and long-term exposure of Chlorella sp to CaO NPs 

Chlorella sp. cultures were grown under sterile conditions in modified BG11 medium 

[34], where ferric ammonium citrate was used instead of iron III citrate, sodium EDTA 

was used instead EDTA of, and cobalt nitrate was used instead of cobalt chloride, at a 

temperature of 25± 2
o
C, 7.5 pH and light intensity 48.4 μmol m

-2
 s

-1
; the cultures were 

agitated at 130 rpm using orbital shaker. The following Calcium oxide nanoparticles 

treatments were used separately for algal cultures: 0, 20, 40, 60, 80 and 100 ppm.  The 

cultures were grown for five hours in short- term experiment and for 5 days in long-term 

experiments. 

 Growth monitoring  

Throughout the experimental period (5 days), growth of Chlorella sp. cultures were 

spectrophotometrically monitored using Unico UV -2100 spectrophotometer, by 

measuring optical density (OD) at 750 nm. 

Chlorophyll (a and b) content was determined in methanolic extracts using the method of 

Marker [35]; assessed as μg. mL
-1

 algal suspensions. 

 Estimation of net photosynthetic oxygen evolution (PN) and respiratory oxygen 

uptake (RD)   

PN and RD were monitored using a Clark type electrode (OMS, Hansatech Instruments 

Inc.). Two mL of algal culture was followed under light intensity of 100 mol m-2 sec-1 

at 25±2 °C for 10 min; the rate of PN was calculated as nmole O2↑mg Chl
-1 

h
-1

.  The rate 

of RD was calculated as nmole O2↓mg Chl
-1 

h
-1

. 

 Determination of protein content  

The algal cells were collected for protein analysis at 5 days old cells using the method 

described by Lowry [36]. 

 Antioxidation capacity 

For the preparation of antioxidant enzymes extract, 100 mL of algal culture were 

centrifuged at 2000 Xg; the pellet was sonicated (using Sonicator HD 3200 homogenizer) 

in 5 ml K-P buffer (pH 7.8) containing EDTA and polyvinylpyrrolidone under cooling; 

the homogenate was centrifuged, the supernatants were used for assays of catalase, 

ascorbate peroxidase and guaiacol peroxidase.  Catalase activity was assessed by 
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monitoring  the consumption  of H2O2 for 1 min at 240 nm [37,38].  Guaiacol peroxidase 

activity was evaluated spectrophotometrically at 470 nm [39].  Ascorbate peroxidase  

activity was by measuring the oxidation of ascorbate as substrate at 290 nm in [40]. 

Enzymatic activity in each case was expressed as µmol μg
-1

 protein min
-1

. 

Total antioxidation capacity of the harvested cells following 5 days of CaO NPs exposure 

as described by Prieto et al [41].  

 Short term experiments 

In these experiments, Chlorella culture was treated for only 5 hours with 0, 20, 40, 60, 80 

and 100 ppm CaN OPs, only PN and RD were measured at (0, 1, 2, 3, 4 and 5) hours. 

Each experiment was repeated three times and the mean values of three replicates ± 

standard error (SE) is presented. 

RESULTS  

 

1. Growth and Chlorophyll contents 

Figure (1) presents growth as the absorbance (OD 750 nm) of Chlorella sp. grown in 

BG11 medium contain (0, 20, 40, 60, 80, 100 ppm CaO NPs) for 5 days. The highest 

optical density of Chlorella sp. has been recorded at 100 ppm CaO NPs, followed by 60 

ppm; other concentrations of calcium oxide nanoparticles showed values close to that in 

case of the control.  
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Figure (1): Absorbance (750 nm) in Chlorella sp. grown for 5 days at various 

concentrations of CaO NPs (0, 20, 40, 60, 80, 100 ppm). The values are represented as 

means ±SE (n=3). 

Chlorophyll (a + b) contents of Chlorella sp. is presented in Figure (2). The highest 

chlorophyll content of Chlorella sp. was recorded at 100 ppm CaO NPs. After two days 

of growth, the cultures grown in 60 ppm CaO NPs was given chlorophyll value close to 

the control, while chlorophyll content decreased at 20 and 40 ppm CaO NPs. 

 

Figure (2): Chlorophyll (a + b) contents (µg.ml
-1

culture) in Chlorella sp. grown for 5 

days at various concentrations of CaO NPs (0, 20, 40, 60, 80, 100 ppm). The values are 

represented as means ±SE (n=3). 

2.  Photosynthetic oxygen evolution and respiratory oxygen uptake:  

 

Net photosynthetic oxygen evolution (PN) of Chlorella sp, in long term experiments 

(grown for 5 days), exhibited higher values than the control in all concentrations of CaO 

NPs, PN was enhanced with increasing CaO NPs concentrations, the highest activity 

noted at 100 ppm CaO NPs (Figure 3 a). While dark respiratory oxygen uptake (RD) 

recorded lower values in all cultures grown in CaO NPs, it decreased with increasing 

CaO NPs concentrations, the lowest was documented at 100 ppm CaO NPs (Figure 3 b). 
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Figure (3): Photosynthetic oxygen evolution (a) and Respiratory oxygen uptake (b) as 

nmole O2.mg Chl
-1

.h
-1

 in Chlorella sp. grown for 5 days at various concentrations of CaO 

NPs (0, 20, 40, 60, 80, 100 ppm). The values are represented as means ±SE (n=3). 

 Figure (4 a) presents the photosynthetic oxygen evolution of Chlorella sp. in short term 

experiments (grown for 5 hours), PN was higher than the control at 80 and 100 ppm CaO 

NPs, the highest at 100 ppm CaO NPs after 3 h, while the other concentrations (20, 40 

and 60 ppm) were lower than the control. Respiratory oxygen uptake was higher than the 

control in all calcium oxide nanoparticles, 20 and 80 ppm exhibited higher values at the 

beginning, then decreased, while 60 ppm exhibited the highest value after 4 hours 

treatments (Figure 4 b) .  
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Figure (4): Photosynthetic oxygen evolution (a) and Respiratory oxygen uptake (b) as 

nmole O2.mg Chl
-1

.h
-1

 of in Chlorella sp. grown for 5 hours at various concentrations of 

CaO NPs (0, 20, 40, 60, 80, 100 ppm). The values are represented as means ±SE (n=3). 

3. Total Soluble Proteins 

Figure (5) shows soluble proteins contents of Chlorella sp.as µg ml
-1

 cultures. Protein 

contents was increased gradually up to 60 ppm CaO NPs (higher values than the control 

culture), then decreased at 80 and 100 ppm CaO NPs. 

 

Figure (5): Soluble protein content (µg.ml
-1

culture) in Chlorella sp. grown at various 

concentrations of CaONPs (0, 20, 40, 60, 80, 100 ppm). The values are represented as 

means ±SE (n=3). 
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4.  Antioxidant enzymes’ activity  

Figure 6 (a-d) presents the antioxidant enzymes activities of catalase (CAT) ascorbate 

peroxidase (APX) guaiacol peroxidase (POD) and total antioxidant of Chlorella sp. 

grown for 5 days at various concentrations of CaONPs (0, 20, 40, 60, 80, 100 ppm).  

Catalase activity was lower than control in 20 ppm CaO NPs and increased with 

increasing CaO NPs treatment up to 80 ppm it reach to the highest value (also higher than 

the control), then decreased at 100 ppm (Figure 6 a). 

Guaiacol peroxidase activity, exhibited as catalase activity with the highest value at 80 

ppm (58% increased than the control) (Figure 6 b). Ascorbate peroxidase demonstrated 

lower activity than control in all CaO NPs treatments the lowest value was at 40 ppm 

(Figure 6 c).  

Figure (6 d) shows that all calcium nanoparticle treatments increased the total antioxidant 

activity from 2 to 4 times folders than the control culture however, however, it decreased 

with increasing CaO NPs. 
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Figure 6 (a-d) : Antioxidant enzymes Catalase (a), Guaiacol Peroxidase (b), Ascorbate 

Peroxidase (c) activity (µmol
.
 µg

-1
 protein min

-1
) and total antioxidants (d) in Chlorella 

sp. grown for 5 days at various concentrations of CaO NPs (0, 20, 40, 60, 80, 100 ppm). 

The values are represented as means ±SE (n=3). 
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DISCUSSION 

 

 

In this research, the impact of calcium oxide nanoparticles on Chlorella sp. growth was 

followed by daily recording of optical density (OD 750 nm) at various nanoparticles treated 

cultures (0, 20, 40, 60, 80, 100 ppm CaO NPs). Optical density exhibits a good 

correlation with algal density and time saving in rapid follow up studies. The highest 

optical density of Chlorella sp. has been recorded at 100 ppm CaO NPs. With the same 

approach, using metal-based NPs instead of metals salts in algae culture increased the 

growth rate, biomass, pigments content, and other bioactive content of Chlorella vulgaris 

[42]. The exposure of microalgae such as Scenedesmus obliquus, S. rubescens, 

C.vulgaris, C. pyrenoidosa, Parachlorella kessleri, Trachydiscus minutus, , and 

Tetraselmis suecica,  to metal nanoparticles under different environmental conditions 

affects on several physiological or molecular changes, resulting in increasing the growth 

rate, biomass and lipid production [16]. However, the appropriate application of 

nanoparticles to assist algal growth is still nascent and the mechanisms, for the most part, 

are not well unknown [16].  

The synthesized calcium carbonate nanoparticles have positive impacts on seed 

germination of Vigna mungo (L.) Hepper [43].  Shoot biomass of Hordeum vulgare 

increased by 331% with application of CeO2 nanoparticles; but at higher concentration 

(500 mg/kg), the grain was not produced which is a vast loss [44]. Cell walls of plants, 

algae, and fungi represent a primary site for interaction and a barrier for the entrance of 

NPs. Nanoparticles might directly cause changes of cell membranes and other structures 

and particles, along with protective mechanisms [45]. 

Biotransformation of nanomaterials may either have positive or negative impacts on the 

living cells [46]. These biotransformations are correlated to oxidation reduction reactions, 

sulphur addition, phosphorylation and molecular alteration [47]. Some plants may absorb 

and translocate nanoparticles in different tissues.  For example, maize plants can reduce 

CuO nanoparticles to Cu2O and Cu2S [48]. It has been reported that plant cells can 



Huwida A.A. Abdel-Kader 
 

 

  253 

protect themselves against adverse effects of ROS by antioxidant enzymes as catalase, 

superoxide dismutase and peroxidase POD [49]. The exposure of some plants to 

nanoparticles could regulate diverse physiological morphological, and metabolic 

processes in plants, by improving free-radical hunting potential, antioxidant enzymes 

activity and micro RNAs expression [50].  

In this study, the peak of chlorophyll contents coincided with those of the optical density 

at 011 ppm CaO NPs.  In this respect, Eroglu et al [51] showed that the presence of metal 

nanoparticles in solutions increased the pigments content of microalgae. Addition of low 

concentrations of Cu nano carboxylates (20 to 40 mg/ L) and Ce nano carboxylates (0.07 

to 0.2 mg /L), increased biomass of Chlorella and accompanied by enhanced of 

chlorophyll content [52]. Also, different concentrations of TiO2 nanoparticles 

concurrently increased the content of photosynthetic pigments of Chlorella pyrenoidosa 

[53], and copper oxide nanoparticles caused enhanced of Chlamydomonas reinhardstii 

pigments [54]. There is one explanation about the elicitation of chlorophyll contents of 

algae by NPs, is that induction of ROS which can attack some pigments, these could 

convert to chlorophyll a under NPs and cause higher Chl a in the cells [55].  

Photosynthetic oxygen evolution of Chlorella sp exhibited higher values than the control 

in all concentrations of CaO NPs, the highest activity recorded at 100 ppm CaO NPs. 

Also, there was a clear increase in the amount of oxygen released from photosynthesis 

when CaO NPs was applied at 100 ppm in short-term experiments. The efficiency of 

production of chemical energy in photosynthesis can improve by using metal NPs [56].   

The foliar treatments of metal NPs on plants significantly increases the chlorophyll 

content, which produce additional light harvesting complexes to capture a greater amount 

of light energy and increase photosynthesis [57]. In this line, Hong et al [58, 59] studied 

the effects of TiO2NPs on the light reaction of spinach chloroplasts and verified that 

TiO2NPs applications induced the increase of chloroplasts activity and Hill reaction, 

which enhanced Fe-Cy reduction and oxygen evolution. Spinach thylakoid membranes 

were affected by TiO2NPs and the light- harvesting complexes (LHCII) content were 

increased [58-60], this stimulates energy transfer and oxygen evolution in PSII [60-62]. 

Another explanation for increased photosynthetic quantum yield centres after treatment 

of spinach with titanium oxide nanoparticles, is an increase in Rubisco activity [63]. 
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The present study showed that soluble protein contents were increased in Chlorella sp.in 

the cultures treated with 20, 40 and 60 ppm CaO NPs than the control. Similarly, the 

soluble protein content of Chlamydomonas reinhardtiiat imposed to low dosage TiO2 NPs 

was increased than the control and decreased in higher concentration [64]; they suggest 

that extra soluble protein was existing in algal cells treated with lower concentration   

TiO2 NPs, may relate to synthesis of a new protein, which may play a significant role in 

algal cell adaptability to NMs treatment [64]. Increased soluble protein concentration is 

thought to be an active defence mechanism to keep algal cells from destructive by abiotic 

stress [65]. 

Several nanoparticles have been shown to interact with plant cells, resulting in increased 

antioxidant enzyme activity [66,67]. According to several research [68,69], nanoparticle 

exposure alters the expression of the superoxide dismutase (SOD) gene in plants, as well 

as the expression of other enzymes. Plants can protect their cells from the toxic effects of 

reactive oxygen species by regulation of antioxidant enzymes (SOD, CAT, GPO and 

ASP, etc.) and non-enzymatic components as carotenoids, ascorbate and tocopherol, etc. 

[70,71]. In the current study, catalase (CAT) and guaiacol peroxidase (GPO) activity 

decreased than the control by application of CaO NPs however, enhanced by increasing 

CaO NPs concentration up to 80 ppm it reached the highest value. Also, calcium oxide 

nanoparticle treatments increased the total antioxidant activity to 4 times folders than the 

control culture. In this respect, the CAT content in rice shoots was increased by 32%, 

38%, and 60% at 10, 20 and 50 mg/L calcium phosphate NP respectively, comparatively 

to control while GPOx activity increased in rice roots by 4.4%, 0.39% at 10 and 20 mg/L 

and declined by 5.3% at 50 mg/L calcium phosphate NP respectively, in comparison to 

the control [31].  

Nanoparticles also have uneven and randomized impacts on enzyme activity, according 

to certain researches. After treatment with titanium oxide nanoparticles, higher SOD, 

CAT, APOX, and GPOX activities were observed in spinach and Lemna minor [72,73]. 

However, some authors reported contradictory findings, such as reduced GR and APOX 

activity in Vici faba. treated with TiO2 NPs [74]. Antioxidant enzymes are activated by 
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plants as part of their detoxifying systems [74]. Catalase (CAT) activity rose in lettuce 

roots exposed to Cu/CuO NPs, but ascorbate peroxidase (APX) activity decreased. [75].  

APX enhanced in lettuce roots and alfalfa roots exposed to Cu/CuO NPs, but CAT 

decreased in both shoots and roots [76]. As a result, the impact of nanoparticles on the 

diversity of antioxidant defence mechanisms in plants and algae is currently 

understudied. 

Therefore, calcium oxide nanoparticles have been proven to stimulate photosynthesis and 

growth and modulating antioxidant enzymes. 

 

CONCLUSION 

 

          The current study noticeably demonstrated the stimulatory effect of CaO NPs on 

Chlorella sp. as shown by the increase in algal growth, chlorophyll contents, 

photosynthesis. In addition, enhanced the total antioxidants and induced the activity of 

antioxidant enzymes (especially at 80 ppm CaO NPs). More research is needed to 

determine the effect of calcium oxide nanoparticles on algae and plants under a variety of 

environmental stresses, as well as to increase the production of high-value microalgae 

products. 
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