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The present research was designed to focus on the utility of Landsat 8-OLI
multispectral data for identifying and classifying benthic habitats mapping of the Red
Sea after applying atmospheric and water-column corrections at Hurghada city.
Atmospheric and water column corrections were applied to the imagery, making it an
effective method for mapping benthic habitats. Water column correction was achieved
by deriving absorption and backscattering coefficients for each band of the image of
clear water pixels. An unsupervised classification (ISODATA) algorithm was applied to
generating 22 class habitats. The supervised classification was performed using
machine-learning algorithm a maximum likehood and reference points to produce 7
classes of benthic habitat as the following, coral reefs (dense and patch), sea weeds
(macro-algae), sea grass (dense and patch), deep water (more than 20 m), shallow water
(less than 20 m), sandy bottom (mainly consist of calcium carbonates and silicates) and
rocky bottom. Sea weeds (Macroalgae) and deep water areas showed the highest
producer’s and user’s accuracies, when compared to dense seagrass, mixed:
seagrass/sand, and mixed: coral/sand areas. Based on 1050 reference points overall
accuracy of the benthic habitat assessment is 66.7 percent, with an overall Kappa
coefficient value of 0.611.
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1. INTRODUCTION

The Red Sea is one of the most important marine biodiversity repositories in
the world. It has abundant and unique coastal and marine habitats including coral
reefs, mangroves, sea weeds and sea grass beds which perform important biological,
ecological, aesthetic, and economic functions. They provide key resources for
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coastal populations: food, shoreline protection and stabilization, and economic
benefits from tourism development [1, 2]. The Red Sea is the habitat of over 1,000
invertebrate species, more than 1200 species of fishes, and 200 soft and hard corals.
It is the world's northernmost tropical sea [3].

Hurghada was a fishing city and later, in the 1980s became the first tourist
resort on the Egyptian Red Sea [4]. Its coast extends for about 46 km along the Red
Sea, and it is mainly supported by tourism from water-based sports and activities [5].
Monitoring can provide valuable information on the benthic habitats condition
derived from different data sources such as satellite images; field surveys; and local
knowledge [6, 7]. Anthropogenic impacts on the seafloor alter benthic biodiversity
[8], habitats [9], and modify ecosystem structures and functions [10].

Remote sensing is widely used to provide accurate and timely geospatial
information describing changes in urban land use/land cover [11, 12]. The
importance of remote sensing was emphasized as a ‘unique view’ of the spatial and
temporal dynamics of the processes in urban growth and land use change [13-15].
Satellite remote-sensing techniques have been used in detecting, mapping benthic
habitat and monitoring land cover change at various scales with useful results [16-
18]. The combination of remote sensing with geographical information systems
(GIS) and field data collection have been used to assess land cover change and
mapping [19-22].

Satellite data has been suggested as a potential tool for monitoring coral-reef
ecosystems with several researchers having tested space-borne sensor systems [6].
Spatial resolution of these systems ranges from 30 m for the Landsat Thematic
Mapper (TM) to 4 m for the Ikonos multispectral data. Those evaluating the utility
of the TM have mapped subtidal coastal habitats [23], delineated sand bottoms [24],
digitally classified coral reef zones [25], evaluated the benthos [26], and performed
time series analyses [15, 27]. Similarly, researchers have used SPOT (20 m) imagery
to survey coral reef abundance [28] and apply a spatial statistical approach to multi-
date SPOT data to identify coral stress [29].

Coral reefs consist of a mosaic of fine-scale features between 1 to 5 m in
size with complex optical signatures that blend as individual fields of view become
larger [27]. The relatively coarse spatial resolutions of TM and SPOT may have a
limited effectiveness in coral reef studies. Mumby et al. [16] noted that although
TM and SPOT can detect benthic signals through clear water to a depth of
approximately 25 m, the coarse spatial and spectral resolutions of these systems
limit classification results to broad-based geomorphological information, rather than
biotic assemblages. The same authors concluded that a pixel size of 3 to 4 m is
probably optimal for surveying tropical marine environments. High resolution
satellite images such as lIkonos, QuickBird and WorldView would be deemed
appropriate for evaluating coral habitats. Recent studies concentrated on using
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sensors with high spatial resolution such as Ikonos, QuickBird, and WorldView in
shallow water mainly to classify and map coral reef communities. These previous
sensors help to increase the ability to discriminate the benthic habitat into classes
[30, 31]. The combination between satellite data and bathymetric data also assisted
in increasing the accuracy of benthic habitat mapping [32]. Early Studies analyzing
Ikonos data to assess coral reefs were applied [32, 33]. The previous authors
concluded that Ikonos great than Landsat-7 in the benthic habitat classification.
QuickBird may have significant potential for discriminating and mapping benthic
habitats in tropical-coastal environments [34].

Finally, a benthic habitat can be defined as an area of anything associated
with or occurring on the bottom of the deep water seabed [35]. Brown et al. [36]
provided a comprehensive review of benthic habitat map types, data collection
techniques, and habitat maps methodologies. Habitat-based approaches have been
used for decades in landscape ecology [37, 38]. Due to the species environmental
range preferences and requirements, many of these approaches focused on the
structure and quantity of potential habitats, in addition to, the distribution of
biological populations at the sampling time [39]. Habitat maps must be placed in
context with the appropriate spatial, temporal, and thematic scales [40]. Scale is
considered to be one of the most critical aspects in habitat mapping [41]. Scale is
only briefly acknowledged in the extensive literature on benthic habitat mapping,
often with little or no treatment of the role of spatial scale in the production of
benthic maps and the interpretation of research results [42].

The main objective of the present research was to use Landsat 8-OLI
multispectral data for identify and classify tropical-marine benthic habitats, after
applying atmospheric and water-column corrections.

2. MATERIALS AND METHODS
2.1. Study area
Hurghada lies between 27° 25 to 27° 9 N and 33° 40 to 34° 8 E. It is the
main touristic city of the Egyptian Red Sea which extends from El Gouna Resort to
Magawish Resort (Figure 1). It covers approximately 46 km in length and 35 km in
width .
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Figure 1: Landsat image indicating the studied location and benthic habitat transects.

2.2. Satellite Data

One Landsat 8-OLI multispectral image was collected for the studied site on
10 July 2015, which downloaded from the United States Geological Survey
(http://earthexplorer.usgs.gov/). The Landsat 8-OLI sensor system has 11 bands;
each band had slightly different spectral ranges (Table 1). The first four bands can
be used for shallow marine applications.

2.3. Image processing

Satellite image was georeferenced and geometrically corrected to match a
WGS 84 datum (world geographic system), UTM (Universe Transverse Mercator)
Projection with Zone 36 North using ground control points verification using Guno
Trimble GPS. This process was completed by using ERDAS software package with
Root Mean Square Error (RMSE) of geometric corrected 0. 0035. The image data
were radiometrically, atmospherically and water column corrected is based on linear
relationship of the spectral radiance and the reflectance of objects on the bottom of
the shallow waters using the FLAASH atmospheric correction module of the
ENVI® software package (Figure 2). Air-water interface correction was applied
using coefficients extracted from Andrefouet et al. [33]. A manually digitized land



24 Mostafa Khaled, Ahmad Obuid-Allah, Frank Muller-Karger,
Mahmoud Ahmed, Sameh El-Kafrawy

and deep-water mask, was applied to enable processing to focus on just the inter-
and sub-tidal shallow waters.

Unsupervised classification (ISODATA) was performed on the image to

yield 22 classes for water. The classes validation was conducted by selecting random
points for each habitat in the area of the study around Hurghada. Ground truthing
data collection was conducted over a period of 10 days in 2015. About 150
reference points (Figure 1) were selected for each water classes in the study area
using GPS points for the image data validation, data validation was gathered using
georeferenced photo transects collected using snorkeling over the benthic habitat
while taking photos with a digital housing camera at a set distance from the bottom,
each photo was logged by Guno Trimble GPS and interpreted using Coral Point
Count (CPCe 4.0) software. Locations of the logged photo were labeled based on
common benthic habitat cover classes scheme (Table 2) similar to those defined by
[43, 44].
A supervised classification and its accuracy assessment were then conducted by
selecting specific training data for each benthic cover type. The supervised
classification was performed using the model of machine-learning algorithm a
maximum likehood and confusion matrix analyses (ENVI 5.2 software) for each
image pixels, to calculate the overall accuracy of the classification result and kappa
coefficient.

After Atmospheric Correction Before Atmospheric Correction

8 *
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Figure 2: Landsat image before and after the atmospheric correction; (A) and (B)
are the zoomed areas near Al Ahiaa district coral reef after and before the

atmospheric correction.

Table 1: Landsat 8-OL1I sensor spectral bands.

Band pum Resolution Band um Resolution
Number Number

1 0.433- 30m 7 2.100- 30m
0.453 2.300

2 0.450- 30m 8 0.500- 15m
0.515 0.680

3 0.525- 30m 9 1.360— 30m
0.600 1.390

4 0.630- 30m 10 10.6-11.2 | 100 m
0.680

5 0.845- 30m 11 11.5-125 | 100 m
0.885

6 1.560— 30m
1.660
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Table 2: Benthic habitats classification scheme used in the study.

No

Type Description
g Coral Healthy, dead and infected coral reef included.
g reef Dominated by any life-form (digitate, branching,
tabular, foliose, massive, submissive and encrusting)
(>70%).
Seagras | Seagrass bed mostly dense and patch dominated by
S Halophila sp. (>70%) and other species may be present
in small quantity.
{| Sand Mainly calcium carbonate sand, white bright colour
bottom | (>70%) and some small rubbles.
Sea Area dominated by brown, green and mixed algae such
weeds | as Padina sp., Sargassum sp., Ulva sp., Caulerpa sp.,
(Macro | Laurencia sp., Halimeda sp., also turf brown algae
algae) | (>70%).
Deep That’s more than 20 m depth
water
Shallo | That’s less than 20 m depth
w water
Rock Area of mainly rubble (>70%), with small portion of
bottom | macroalgae, seagrass, or dead coral present.
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3. RESULTS

Visually images before and after atmospheric correction revealed a sharp

difference. The haziness depicted in the original Landsat image, attributed to
Rayleigh and aerosol scattering, was eliminated resulting in a visually clear image as
shown in the zoomed images (Figure 2). Radiance values of water over different
bottom types were analyzed before and after the atmospheric correction.
A comparative evaluation of the classified image was performed against 1050
independents in situ points revealing an overall accuracy of 66.7 percent (Table 3).
The overall Kappa statistic, a discrete multivariate accuracy assessment technigque
described by Congalton and Mead [45], was 0.611 (Table 3). This statistic
estimates the percent of successful classifications compared to a random, chance
classification assignment [46]. Sea weeds (Macroalgae) and deep water areas
showed the highest producer’s and user’s accuracies, when compared to Dense
seagrass, mixed: seagrass/sand, and Mixed: coral/sand areas. Sand (very bright), and
deep water (very dark) are the two most spectrally distinct classes and yielded the
lowest classification errors, whereas the mixed benthos areas had higher error
because of the spectral similarities between various features.

The benthic habitat could be classified due to Maximum Likehood
Algorithm and in situ data into seven classes as the following: coral reefs (dense and
patch), sea weeds (macro-algae), sea grass (dense and patch), deep water ( more than
20 m), shallow water ( less than 20 m), sandy bottom (mainly consist of calcium
carbonates and silicates) and rocky bottom according to scheme (Table 2 Figure 3).

Based on the accuracy assessment, difference in accuracy can be seen in
each benthic habitat class according to producers and user’s accuracy. Producer
accuracy using Landsat 8-OLI in mapping 7 benthic habitat classes of Sea Weed
(S.W.), Deep Water (D.W.) and Shallow Water (Sh.W.) are above 80% which are
92%, 86.67%, 85.33%; respectively. While the other classes are above 60% of
Rocky Bottom (R.B.), Sea Grass (S. G.) and Coral reef (C.R.) which are 69.33%,
63.33%, 61.33%; respectively. Sandy Bottom (S.B.), show 8.67% (Table 3 and
Figure 4). The results demonstrated that atmospheric and water column correction
can increase the quality of the benthic reef habitat map.
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Table 3: Confusion matrix of 7 benthic habitat classes in the shallow waters of
Hurghada city based on ground truthing points and Landsat 8-OLI imagery. Overall
Accuracy = 66.7%, % and Overall kappa = 0.611.

C.D. R. D.

CR. |DW. |RB. |SB. S.G. S.W. | Sh.w.
C.R. 61.33 | 0.00 0.67 22 18.67 | 4.00 | 1.33
D.W. 0.00 86.67 | 0.00 1.33 0.00 0.00 [13.33
R.B. 0.67 0.67 69.33 | 1.33 1.33 0.00 |0.00
S.B. 5.33 0.00 2.67 8.67 0.67 1.33 | 0.00
S.G. 8 0.00 26 20.67 |63.33 |2 0.00
S.W. 12 0.00 1.33 20.67 | 16.00 |92 0.00
Sh.w. [12.67 | 12.67 | 0.00 25.33 |0.00 0.67 [85.33

C.D.: classification data, R. D.: reference data, C.R; Coral Reef, D.W.; Deep
Water, R.B.; Rock bottom, S.B.; Sand bottom, S.G.; Seagrass S.W.; Sea weed,
Sh.W.; Shallow Water.
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Figure 3: Shows different categories used for classification: dense sea weeds; patch
coral; live coral; dense seagrass; deep and shallow water; rocky bottom and sandy
bottom. Color coding represents habitat classes as described on Table (2).
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Figure 4: Benthic habitat classification scheme of Hurghada City. C.R; Coral Reef,
D.W.; Deep Water, R.; Rock, S.; Sand, S.G.; Seagrass S.W.; Sea weed, Sh.\W_;
Shallow Water.

4. DISCUSSION

Remote sensing provides an important, complementary approach to in situ
fieldwork for monitoring benthic habitats in shallow water environments. The study
revealed that the near shore features as sand, macroalgae, seagrass and coral reef
were mostly abundant. Each feature has different spectral characteristics and be
separable as homogenous pixels. In reality, there is a significant amount of
intermixing between these features. The complex benthic combinations of a mixed
sandy/algal cover, mixed rocky/algal and dead coral/turf algae cover areas and error
in depth estimation can also have a considerable impact on the classification results.
The details deriving ecological and biological information for each field data point
would increase the number of elements separable by a classification scheme.

The primary goals of this research were to assess the utility of the Landsat
8-OL1I data and to determine the effects of water column and atmospheric correction
on image processing techniques, to improve the benthic habitat classification
accuracy. The present study showed the capability of increasing the number of
benthic habitat classes due to the water column and atmospheric correction. So, the
capabilities of the Landsat 8-OLI sensor were increased for benthic habitat mapping.
Hyperspectral studies that may aid in discriminating between the mortality states of
live and algae covered coral skeletons [47] can be used to develop baseline spectra
to help minimize spectral confusion in satellite imagery.

The unsupervised classification gives more classes after masking, water
column and atmospheric correction processes. The present investigation indicated
that after completed processes of satellite data especially atmospheric and water
column correction, total accuracy of coral reef habitat increased and the overall
accuracy of the maximum likehood classification increased from 46% to 66.7% and
the Kappa coefficient increased from 65.6% to 66.7%. Depending on the level of
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classification, previous studies using coarser resolution satellite data (e.g., Landsat
TM) have normally achieved accuracies that have ranged from 37 percent [16] to 73
percent [48], even when compensating for the confounding effects of variable water
depths. Mumby et al. [16, 49] found the overall accuracy of 4 classes increased
from 55% to 73% for (Landsat TM) and 8 classes increased from 38% to 52%
(Landsat TM), 13 classes increased from 21% to 37% (SPOT XS), CASI: increased
from 72% to 93%. Mumby et al. [16] found the accuracy ranged between 89% and
81% for coarse and fine levels of habitat discrimination while Roelfsema et al. [43]
mentioned the overall accuracy 62% increased from 11% to 82%. Andréfouét et al.
[33] found the overall accuracy of the classification of IKONOS 77% for 4-5
classes, 71% for 7-8 classes, 65% in 9—11 classes, and 53% for more than13 classes,
for Landsat: 56% for 5-10 classes. Capolsini et al. [50] found that the accuracy of
Landsat ETM: increased from 48 to 81%. Purkis et al. [51, 52] mentioned that the
overall accuracy was 53% without water column correction and it became 76% after
water column correction for Landsat TM while Nurlidiasari [53] found the total
accuracy of the images increased from 67% to 89% when the water column
correction was considered. Finally, by implementing appropriate atmospheric and
water-column corrections, and image classification techniques, coarser-resolution
Landsat 8-OLI data become a great tool for mapping benthic habitats.
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