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The present research was designed to focus on the utility of Landsat 8-OLI 

multispectral data for identifying and classifying benthic habitats mapping of the Red 

Sea after applying atmospheric and water-column corrections at Hurghada city. 

Atmospheric and water column corrections were applied to the imagery, making it an 

effective method for mapping benthic habitats. Water column correction was achieved 

by deriving absorption and backscattering coefficients for each band of the image of 

clear water pixels. An unsupervised classification (ISODATA) algorithm was applied to 

generating 22 class habitats. The supervised classification was performed using 

machine-learning algorithm a maximum likehood and reference points to produce 7 

classes of benthic habitat as the following, coral reefs (dense and patch), sea weeds 

(macro-algae), sea grass (dense and patch), deep water (more than 20 m), shallow water 

(less than 20 m), sandy bottom (mainly consist of calcium carbonates and silicates) and 

rocky bottom. Sea weeds (Macroalgae) and deep water areas showed the highest 

producer’s and user’s accuracies, when compared to dense seagrass, mixed: 

seagrass/sand, and mixed: coral/sand areas. Based on 1050 reference points overall 

accuracy of the benthic habitat assessment is 66.7 percent, with an overall Kappa 

coefficient value of 0.611. 
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1. INTRODUCTION 

 

The Red Sea is one of the most important marine biodiversity repositories in 

the world. It has abundant and unique coastal and marine habitats including coral 

reefs, mangroves, sea weeds and sea grass beds which perform important biological, 

ecological, aesthetic, and economic functions. They provide key resources for 
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coastal populations: food, shoreline protection and stabilization, and economic 

benefits from tourism development [1, 2]. The Red Sea is the habitat of over 1,000 

invertebrate species, more than 1200 species of fishes, and 200 soft and hard corals. 

It is the world's northernmost tropical sea [3]. 

 Hurghada was a fishing city and later, in the 1980s became the first tourist 

resort on the Egyptian Red Sea [4]. Its coast extends for about 46 km along the Red 

Sea, and it is mainly supported by tourism from water-based sports and activities [5]. 

Monitoring can provide valuable information on the benthic habitats condition 

derived from different data sources such as satellite images; field surveys; and local 

knowledge [6, 7]. Anthropogenic impacts on the seafloor alter benthic biodiversity 

[8], habitats [9], and modify ecosystem structures and functions [10]. 

Remote sensing is widely used to provide accurate and timely geospatial 

information describing changes in urban land use/land cover [11, 12]. The 

importance of remote sensing was emphasized as a ‘unique view’ of the spatial and 

temporal dynamics of the processes in urban growth and land use change [13-15]. 

Satellite remote-sensing techniques have been used in detecting, mapping benthic 

habitat and monitoring land cover change at various scales with useful results [16-

18]. The combination of remote sensing with geographical information systems 

(GIS) and field data collection have been used to assess land cover change and 

mapping [19-22]. 

Satellite data has been suggested as a potential tool for monitoring coral-reef 

ecosystems with several researchers having tested space-borne sensor systems [6]. 

Spatial resolution of these systems ranges from 30 m for the Landsat Thematic 

Mapper (TM) to 4 m for the Ikonos multispectral data. Those evaluating the utility 

of the TM have mapped subtidal coastal habitats [23], delineated sand bottoms [24], 

digitally classified coral reef zones [25], evaluated the benthos [26], and performed 

time series analyses [15, 27]. Similarly, researchers have used SPOT (20 m) imagery 

to survey coral reef abundance [28] and apply a spatial statistical approach to multi-

date SPOT data to identify coral stress [29]. 

Coral reefs consist of a mosaic of fine-scale features between 1 to 5 m in 

size with complex optical signatures that blend as individual fields of view become 

larger [27]. The relatively coarse spatial resolutions of TM and SPOT may have a 

limited effectiveness in coral reef studies. Mumby et al. [16] noted that although 

TM and SPOT can detect benthic signals through clear water to a depth of 

approximately 25 m, the coarse spatial and spectral resolutions of these systems 

limit classification results to broad-based geomorphological information, rather than 

biotic assemblages. The same authors concluded that a pixel size of 3 to 4 m is 

probably optimal for surveying tropical marine environments. High resolution 

satellite images such as Ikonos, QuickBird and WorldView would be deemed 

appropriate for evaluating coral habitats. Recent studies concentrated on using 
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sensors with high spatial resolution such as Ikonos, QuickBird, and WorldView in 

shallow water mainly to classify and map coral reef communities. These previous 

sensors help to increase the ability to discriminate the benthic habitat into classes 

[30, 31]. The combination between satellite data and bathymetric data also assisted 

in increasing the accuracy of benthic habitat mapping [32]. Early Studies analyzing 

Ikonos data to assess coral reefs were applied [32, 33]. The previous authors 

concluded that Ikonos great than Landsat-7 in the benthic habitat classification. 

QuickBird may have significant potential for discriminating and mapping benthic 

habitats in tropical-coastal environments [34].  

Finally, a benthic habitat can be defined as an area of anything associated 

with or occurring on the bottom of the deep water seabed [35]. Brown et al. [36] 

provided a comprehensive review of benthic habitat map types, data collection 

techniques, and habitat maps methodologies. Habitat-based approaches have been 

used for decades in landscape ecology [37, 38]. Due to the species environmental 

range preferences and requirements, many of these approaches focused on the 

structure and quantity of potential habitats, in addition to, the distribution of 

biological populations at the sampling time [39]. Habitat maps must be placed in 

context with the appropriate spatial, temporal, and thematic scales [40]. Scale is 

considered to be one of the most critical aspects in habitat mapping [41]. Scale is 

only briefly acknowledged in the extensive literature on benthic habitat mapping, 

often with little or no treatment of the role of spatial scale in the production of 

benthic maps and the interpretation of research results [42]. 

The main objective of the present research was to use Landsat 8-OLI 

multispectral data for identify and classify tropical-marine benthic habitats, after 

applying atmospheric and water-column corrections. 

2. MATERIALS AND METHODS 

2.1. Study area 

Hurghada lies between 27° 25 to 27° 9 N and 33° 40 to 34° 8 E. It is the 

main touristic city of the Egyptian Red Sea which extends from El Gouna Resort to 

Magawish Resort (Figure 1). It covers approximately 46 km in length and 35 km in 

width . 
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Figure 1: Landsat image indicating the studied location and benthic habitat transects. 

2.2. Satellite Data 

One Landsat 8-OLI multispectral image was collected for the studied site on 

10 July 2015, which downloaded from the United States Geological Survey 

(http://earthexplorer.usgs.gov/). The Landsat 8-OLI sensor system has 11 bands; 

each band had slightly different spectral ranges (Table 1). The first four bands can 

be used for shallow marine applications. 

2.3. Image processing 

Satellite image was georeferenced and geometrically corrected to match a 

WGS 84 datum (world geographic system), UTM (Universe Transverse Mercator) 

Projection with Zone 36 North using ground control points verification using Guno 

Trimble GPS. This process was completed by using ERDAS software package with 

Root Mean Square Error (RMSE) of geometric corrected 0. 0035. The image data 

were radiometrically, atmospherically and water column corrected is based on linear 

relationship of the spectral radiance and the reflectance of objects on the bottom of 

the shallow waters using the FLAASH atmospheric correction module of the 

ENVI® software package (Figure 2). Air-water interface correction was applied 

using coefficients extracted from Andrefouet et al. [33]. A manually digitized land 
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and deep-water mask, was applied to enable processing to focus on just the inter- 

and sub-tidal shallow waters. 

Unsupervised classification (ISODATA) was performed on the image to 

yield 22 classes for water. The classes validation was conducted by selecting random 

points for each habitat in the area of the study around Hurghada. Ground truthing 

data collection was conducted over a period of 10 days in 2015. About 150 

reference points (Figure 1) were selected for each water classes in the study area 

using GPS points for the image data validation, data validation was gathered using 

georeferenced photo transects collected using snorkeling over the benthic habitat 

while taking photos with a digital housing camera at a set distance from the bottom, 

each photo was logged by Guno Trimble GPS and interpreted using Coral Point 

Count (CPCe 4.0) software. Locations of the logged photo were labeled based on 

common benthic habitat cover classes scheme (Table 2) similar to those defined by 

[43, 44]. 

A supervised classification and its accuracy assessment were then conducted by 

selecting specific training data for each benthic cover type. The supervised 

classification was performed using the model of machine-learning algorithm a 

maximum likehood and confusion matrix analyses (ENVI 5.2 software) for each 

image pixels, to calculate the overall accuracy of the classification result and kappa 

coefficient.  
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Figure 2: Landsat image before and after the atmospheric correction; (A) and (B) 

are the zoomed areas near Al Ahiaa district coral reef after and before the 

atmospheric correction. 

Table 1: Landsat 8-OLI sensor spectral bands. 

Band 

Number 

µm Resolution Band 

Number 

µm Resolution 

1 0.433–

0.453 

30 m 7 2.100–

2.300 

30 m 

2 0.450–

0.515 

30 m 8 0.500–

0.680 

15 m 

3 0.525–

0.600 

30 m 9 1.360–

1.390 

30 m 

4 0.630–

0.680 

30 m 10 10.6-11.2 100 m 

5 0.845–

0.885 

30 m 11 11.5-12.5 100 m 

6 1.560–

1.660 

30 m    

 

 

 

 

 

 

 

 



26          Mostafa Khaled, Ahmad Obuid-Allah, Frank Muller-Karger,   

Mahmoud Ahmed, Sameh El-Kafrawy 

 
Table 2: Benthic habitats classification scheme used in the study. 

No Class Type Description 

1 

 

Coral 

reef 

Healthy, dead and infected coral reef included. 

Dominated by any life-form (digitate, branching, 

tabular, foliose, massive, submissive and encrusting) 

(>70%). 

2 

 

Seagras

s 

Seagrass bed mostly dense and patch dominated by 

Halophila sp. (>70%) and other species may be present 

in small quantity. 

3 

 

Sand 

bottom 

Mainly calcium carbonate sand, white bright colour 

(>70%) and some small rubbles. 

4 

 

Sea 

weeds 

(Macro

algae) 

Area dominated by brown, green and mixed algae such 

as Padina sp., Sargassum sp., Ulva sp., Caulerpa sp., 

Laurencia sp., Halimeda sp., also turf brown algae 

(>70%). 

5 

 

Deep 

water 

That’s more than 20 m depth  

6 

 

Shallo

w water 

That’s less than 20 m depth 

7 

 

Rock 

bottom 

Area of mainly rubble (>70%), with small portion of 

macroalgae, seagrass, or dead coral present. 
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3. RESULTS 

Visually images before and after atmospheric correction revealed a sharp 

difference. The haziness depicted in the original Landsat image, attributed to 

Rayleigh and aerosol scattering, was eliminated resulting in a visually clear image as 

shown in the zoomed images (Figure 2). Radiance values of water over different 

bottom types were analyzed before and after the atmospheric correction. 

A comparative evaluation of the classified image was performed against 1050 

independents in situ points revealing an overall accuracy of 66.7 percent (Table 3). 

The overall Kappa statistic, a discrete multivariate accuracy assessment technique 

described by Congalton and Mead [45], was 0.611 (Table 3). This statistic 

estimates the percent of successful classifications compared to a random, chance 

classification assignment [46]. Sea weeds (Macroalgae) and deep water areas 

showed the highest producer’s and user’s accuracies, when compared to Dense 

seagrass, mixed: seagrass/sand, and Mixed: coral/sand areas. Sand (very bright), and 

deep water (very dark) are the two most spectrally distinct classes and yielded the 

lowest classification errors, whereas the mixed benthos areas had higher error 

because of the spectral similarities between various features. 

The benthic habitat could be classified due to Maximum Likehood 

Algorithm and in situ data into seven classes as the following: coral reefs (dense and 

patch), sea weeds (macro-algae), sea grass (dense and patch), deep water ( more than 

20 m), shallow water ( less than 20 m), sandy bottom (mainly consist of calcium 

carbonates and silicates) and rocky bottom according to scheme (Table 2 Figure 3).  

Based on the accuracy assessment, difference in accuracy can be seen in 

each benthic habitat class according to producers and user’s accuracy. Producer 

accuracy using Landsat 8-OLI in mapping 7 benthic habitat classes of Sea Weed 

(S.W.), Deep Water (D.W.)  and Shallow Water (Sh.W.) are above 80% which are 

92%, 86.67%, 85.33%; respectively. While the other classes are above 60% of 

Rocky Bottom (R.B.), Sea Grass (S. G.) and Coral reef (C.R.) which are 69.33%, 

63.33%, 61.33%; respectively. Sandy Bottom (S.B.), show 8.67% (Table 3 and 

Figure 4). The results demonstrated that atmospheric and water column correction 

can increase the quality of the benthic reef habitat map.  
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Table 3: Confusion matrix of 7 benthic habitat classes in the shallow waters of 

Hurghada city based on ground truthing points and Landsat 8-OLI imagery. Overall 

Accuracy = 66.7%, % and Overall kappa = 0.611. 

C.D. R. D. 

C.R. D.W. R.B. S.B. S.G. S.W. Sh.W. 

C. R. 61.33 0.00 0.67 22 18.67 4.00 1.33 

D. W. 0.00 86.67 0.00 1.33 0.00 0.00 13.33 

R.B. 0.67 0.67 69.33 1.33 1.33 0.00 0.00 

S.B. 5.33 0.00 2.67 8.67 0.67 1.33 0.00 

S.G. 8 0.00 26 20.67 63.33 2 0.00 

S.W. 12 0.00 1.33 20.67 16.00 92 0.00 

Sh. W. 12. 67 12.67 0.00 25.33 0.00 0.67 85.33 

C.D.: classification data, R. D.: reference data, C.R; Coral Reef, D.W.; Deep 

Water, R.B.; Rock bottom, S.B.; Sand bottom, S.G.; Seagrass S.W.; Sea weed, 

Sh.W.; Shallow Water.  

 

Figure 3: Shows different categories used for classification: dense sea weeds; patch 

coral; live coral; dense seagrass; deep and shallow water; rocky bottom and sandy 

bottom. Color coding represents habitat classes as described on Table (2). 
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Figure 4: Benthic habitat classification scheme of Hurghada City. C.R; Coral Reef, 

D.W.; Deep Water, R.; Rock, S.; Sand, S.G.; Seagrass S.W.; Sea weed, Sh.W.; 

Shallow Water.  

4. DISCUSSION 

Remote sensing provides an important, complementary approach to in situ 

fieldwork for monitoring benthic habitats in shallow water environments. The study 

revealed that the near shore features as sand, macroalgae, seagrass and coral reef 

were mostly abundant. Each feature has different spectral characteristics and be 

separable as homogenous pixels. In reality, there is a significant amount of 

intermixing between these features. The complex benthic combinations of a mixed 

sandy/algal cover, mixed rocky/algal and dead coral/turf algae cover areas and error 

in depth estimation can also have a considerable impact on the classification results. 

The details deriving ecological and biological information for each field data point 

would increase the number of elements separable by a classification scheme. 

The primary goals of this research were to assess the utility of the Landsat 

8-OLI data and to determine the effects of water column and atmospheric correction 

on image processing techniques, to improve the benthic habitat classification 

accuracy. The present study showed the capability of increasing the number of 

benthic habitat classes due to the water column and atmospheric correction. So, the 

capabilities of the Landsat 8-OLI sensor were increased for benthic habitat mapping. 

Hyperspectral studies that may aid in discriminating between the mortality states of 

live and algae covered coral skeletons [47] can be used to develop baseline spectra 

to help minimize spectral confusion in satellite imagery. 

The unsupervised classification gives more classes after masking, water 

column and atmospheric correction processes. The present investigation indicated 

that after completed processes of satellite data especially atmospheric and water 

column correction, total accuracy of coral reef habitat increased and the overall 

accuracy of the maximum likehood classification increased from 46% to 66.7% and 

the Kappa coefficient increased from 65.6% to 66.7%. Depending on the level of 
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classification, previous studies using coarser resolution satellite data (e.g., Landsat 

TM) have normally achieved accuracies that have ranged from 37 percent [16] to 73 

percent [48], even when compensating for the confounding effects of variable water 

depths. Mumby et al. [16, 49] found the overall accuracy of 4 classes increased 

from 55% to 73% for (Landsat TM) and 8 classes increased from 38% to 52% 

(Landsat TM), 13 classes increased from 21% to 37% (SPOT XS), CASI: increased 

from 72% to 93%. Mumby et al. [16] found the accuracy ranged between 89% and 

81% for coarse and fine levels of habitat discrimination while Roelfsema et al. [43] 

mentioned the overall accuracy 62% increased from 11% to 82%. Andréfouët et al. 

[33] found the overall accuracy of the classification of IKONOS 77% for 4–5 

classes, 71% for 7–8 classes, 65% in 9–11 classes, and 53% for more than13 classes, 

for Landsat: 56% for 5–10 classes. Capolsini et al. [50] found that the accuracy of 

Landsat ETM: increased from 48 to 81%. Purkis et al. [51, 52] mentioned that the 

overall accuracy was 53% without water column correction and it became 76% after 

water column correction for Landsat TM while Nurlidiasari [53] found the total 

accuracy of the images increased from 67% to 89% when the water column 

correction was considered. Finally, by implementing appropriate atmospheric and 

water-column corrections, and image classification techniques, coarser-resolution 

Landsat 8-OLI data become a great tool for mapping benthic habitats. 
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البيئبث القبعيت ببستخذام بيبًبث الاستشعبر عي بعذ بوٌطقت الغردقت، سبحل تخريظ 

 البحر الأحور، هصر

هصطفي خبلذ
1-2-3  

أحوذ عبيذالله  
3     

كبرجير-فرًك هيلير
1

هحوىد أحوذ    
2    

سبهح الكفراوي
2

 

 الىلايبث الوتحذة الأهريكيت –جبهعت جٌىة فلىريذا -كليت علىم البحبر -1

 هصر –الهيئيت القىهيت للاستشعبر عي البعذ وعلىم الفضبء القبهرة  –قسن علىم البحبر  -2

 هصر -أسيىط  –كليت العلىم جبهعت أسيىط  –قسن علن الحيىاى  -3

 نهزشكُض عهً فبئذح ثُبَبد الاسزشعبس نهمًشانصُبعً لاَذسبد انجحث انحبنٍ رى رصًُى

(8OLI -) خشَظ انجُئبد انمبعُخ نهجحش الأحًش انًزعذدح الأطُبف نزحذَذ ورصُُف ور

ثعذ رطجُك انزصحُحبد انجىَخ وانعًمُخ نًذَُخ انغشدلخ. رى رطجُك رصحُحبد انغلاف 

انجىٌ وعًك انًبء عهً انصىس ، يًب َجعههب طشَمخ فعبنخ نضَبدح انمذسح عهً رخشَظ 

عبيلاد عًبق عٍ طشَك اشزمبق يلأنانجُئبد انمبعُخ. رى رحمُك رصحُح انعًىد انًبئٍ 

الايزصبص وانزشزذ انخهفٍ نكم َطبق يٍ وحذاد انجكسم انًبئُخ انشفبفخ نهصىسح.  

ثعذ رنك رى رطجُك خىاسصيُخ انزصُُف انغُش يشالت خىاسصيُخ انزحهُم انزكشاسٌ 

. رى إجشاء انزصُُف انًشالت ثبسزخذاو  )فئخ يٍ انجُئبد 22َزبج لإ) انزارٍ نهجُبَبد

خىاسصيُخ انزعهى اِنُخ كخىاسصيُخ انزشبثّ انمصىي وانُمبط انًشجعُخ )انجُبَبد 

فئبد يٍ انجُئبد انمبعُخ عهً انُحى انزبنٍ ، انشعبة انًشجبَُخ  7انحمهُخ( رنك لإَزبج 

نجحشَخ )كثُفخ )كثُفخ وثمع( ، والأعشبة انجحشَخ )انطحبنت انكجُشح( ، وانحشبئش ا

و( وانمبع انشيهٍ  22و ( وانًُبِ انضحهخ )ألم يٍ  22وثمع( وانًُبِ انعًُمخ )أكثش يٍ 

)َزكىٌ ثشكم أسبسٍ يٍ كشثىَبد انكبنسُىو وانسُهُكب( وانمبع انصخشٌ. أظهشد 

نُخ ويُبطك انًُبِ انعًُمخ أعهً دلخ نهجُبَبد اِ (انطحبنت انكجُشح ) الأعشبة انجحشَخ

خ ، عُذ يمبسَزهب ثبنحشبئش انجحشَخ انكثُفخ او انًخزهطخ: انحشبئش انجحشَخ / وانًشجعُ

َمطخ  0202انشيم ، وانًخزهطخ: انشعبة انًشجبَُخ / انشيبل. اسزُبدًا إنً 

فٍ انًبئخ  7...ٌ انذلخ الإجًبنُخ نزمُُى انجُئبد انمبعُخ رجهغ إيشجعُخ)ثُبَبد حمهُخ( ، ف

 .00..2ُخ ، يع لًُخ يعبيم كبثب الإجًبن


