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Classification is one of the most popular techniques of data mining. This paper presents 

an evolutionary approach for designing classifiers for two-class classification problems 

using an enhanced version of the genetic programming (GP) algorithm, called the 

Memetic  Programming  (MP)  algorithm. MP can discover relationships between 

observed data and express them logically. MP aims to obtain a classifier with the 

largest area under the ROC curve, which has been proved a better performance than 

traditionally metrics. The proposed approach is being demonstrated by experimenting 

on some UCI Machine Learning data sets. Results obtained in these experiments reflect 

the efficiency of the proposed algorithm. 
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Memetic Programming, ROC Curves. 

1. INTRODUCTION 

The massive growth of data in the real-life applications has driven to 

development of data mining techniques.   Data mining can be defined as   the 

process of discovering knowledge and information from large amounts of 

data stored in databases [1]. Therefore, researchers considered the data 

mining as a core step in the process of knowledge discovery from databases 

[2]. Data mining used many techniques to extract patterns from information, 

these techniques can be classified into two majors; prediction techniques and 

description techniques [3]: 

Prediction techniques: Use some variables to predict unknown or future 

values of other variables, such as classification, regression and deviation 

detection. 
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Description techniques: Find human-interpretable patterns that de- scribe 

the data, such as association rules, clustering and outlier analysis. 

Classification is a data mining technique used to predict group member- 

ships for data instances. Specifically, data classification can be defined as 

allocating class labels to given data instances through two steps [4]: 

Building the classifier: In this step, the proposed algorithm finds the re- 

lationship between values of predictors and values of the target through the 

training data in which the class assignments are known. We can call this step 

as the learning step or the learning phase. 

Using the classifier: In this step, the algorithm uses a set of testing data to 

estimate the accuracy of the resulting classification rules. Con- sequently, the 

classification rules can be applied for the new data if the accuracy is 

considered acceptable.The genetic classifier is looking for the rule relies on 

Darwin’s principle of natural selection and operations that mimic naturally 

occurring genetic operations, such as sexual recombination (crossover) and 

mutation, see [5, 6, 7]. In this paper, the memetic programming (MP) 

algorithm will be used to generate rules for a set of classification problems 

[8, 9]. 

The rest of the paper is organized as follows: In the next section, we 

introduce more details about the MP algorithm. The main model for the 

classification problems are presented in Section 3. In Section 4, we report 

numerical results for a set of benchmark classification problems. Finally, 

conclusions make up Section 5. 

2. MEMETIC PROGRAMMING 

The memetic programming algorithm hybridizes the genetic programming 

method [10] with a set of local search procedures over a tree space to 

improve good programs with the highest fitness values.  MP inherits the basic 

idea  of memetic algorithms [11, 12, 13, 14], however, MP deals with 

computer programs. These computer programs are expressed as sparse trees, 

where internal nodes are called functions and leaf nodes are called terminals, 

see Figure 1. The user specifies the sets of terminals and functions based on 

the problem at hand. 
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Figure 1: Examples of MP representation. 

The main loop of the MP algorithm can be divided into two phases, the 

diversification phase and the intensification phase. The diversification phase 

follows the GP algorithm using a suitable selection strategy along with the 

mutation and crossover operations to guarantee the diversity in the current 

population. Figure 2 explains an example of applying crossover and mutation 

operators for some trees. On the other hand, the intensification phase uses a 

set of local search procedures to intensify promising programs resulting from 

the diversification phase. 

 

Figure 2: Generating a new offspring using mutation and crossover operators 

 

2.1 Local searches over the tree space 

The main objective of the local search operators is to generate new trees in a 

neighborhood of the selected tree. This subsection discusses two types of 

local searches; static structure search and dynamic structure search, see 

Mabrouk et al [8, 9]. The static structure search  explores the neighborhood 

of a tree and modifies some nodes without changing the structure of the 

original tree, where the shaking operator is employed to perform this job 

during the static structure search. On the other side, dynamic structure search 

changes the structure of the tree by extending its terminal nodes or cutting its 
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subtrees, where grafting and pruning operators are used to fulfill the job in 

the dynamic structure search. 

Shaking search is a condensation search procedure that generates a new tree  

X˜from a tree X by altering some terminals or/and some functions chosen 

randomly,  without changing the structure  of X. Specifically, the terminal 

node is altered by another terminal and the function node is altered by 

another function node with the same number of arguments. 

Grafting search is a diverse local search procedure that generates a new tree  

X  ˜ from a tree X by extending some of its terminals to be branches , where 

the terminals are chosen randomly and the new branches are generated 

randomly  with depth ζ . Pruning search is another diverse local search 

procedure.  In converse with the grafting search, the pruning search generates 

a new tree X˜  from a tree X  by cutting some of its branches of depth ζ  ≥ 1 

and replacing them by new terminals, where the branches and terminals are 

chosen randomly. Figure 3 shows three examples of generating set of new 

trees by applying shaking, grafting and pruning procedures. 

 

Figure 3: Generating new trees using shaking, grafting and pruning procedures 

2.2 Local search programming algorithm 
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A local search algorithm over a tree space, called the local search 

program- ming (LSP) algorithm is proposed to find the best program in the 

neighbor- hood of a given tree. The LSP algorithm employs the local search 

procedures, in Subsection 2.1, to generate new solutions in the neighborhood 

of an elected solution and iterates the process as long as it improves the 

solution under consideration. The LSP process will be terminated if no better 

solutions   can be found in the neighborhood of the current one. Figure 4 

shows the flowchart of the LSP algorithm. 

 

Figure 4: The flowchart of LSP. 

 

3. THE PROPOSAL MODEL 

In this section we introduce the proposed model for solving two-class 

classification problems. Mainly, the model is consisting of three stages; data 

preprocessing, data cross-validation and generating the classifier, Figure 5. 
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Subsection 3.1 introduces some necessary preparations for data under con- 

sideration. Using the new dataset, MP will be applied to generate a classifier 

with highest fitness value. Then, the accuracy of this classifier will be mea- 

sured using the testing dataset as discussed in Subsection 3.2. 

 

3.1 Data preprocessing 

All classification algorithms make some special preparations on the given 

datasets before using it in the search process. In this subsection we introduce 

some of these data preprocessing techniques that will be used through the 

experimental results in this paper. 

Data cleaning: In the real-life applications we sometimes must deal with 

incomplete, noisy, and inconsistent data. Therefore, additional treatments 

must be apply before using the dataset by the data mining techniques. Data 

cleaning aims to clean up the dataset under con- sideration by filling in 

missing values, smoothing out noisy data and correcting inconsistency in the 

given data, if any. 

Data transformation: Many machine learning models require trans- 

forming nominal variables in the given dataset to numeric variables. Indeed, 

values of a nominal attribute are given as strings and represent different 

names, i.e., zip codes and eye color. To solve this problem, we transform the 

set of nominal values to a new set of binary attributes. Therefore, N different 

nominal values can be represented as N different binary numbers. 

Data normalization: Normalization refers to scale all values of numeri- cal 

attributes under consideration to fall within a predefined min-max range. In 

this paper, the following equation used to transform the at- tribute x to the 

new attribute z, where all values of z lie in the interval [0, 1]: 
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Figure 5: The flowchart of proposed model 
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Data cross-validation: Cross-validation is a statistical technique used to 

assess the ability and stability of machine learning models. Cross- validation 

technique divides the given dataset into two complementary subsets, the 

training set and the testing set. The training set will be em- ployed to train the 

model to generate the required classifier. Then, the testing set can be used to 

validate the stability of the model. K fold cross-validation is one of the most 

famous cross-validation techniques. In K fold cross-validation,  the entire 

dataset is randomly split into K folds, with K 1 folds are used as the training 

dataset, and the remaining fold is retained as the validation or testing dataset. 

Then the model can generate a classifier using the training dataset and the 

error will be estimated using the testing dataset. This process is then repeated 

K times until each of the K folds is used exactly once as the testing dataset. 

The average of the resulting K recorded errors, called the cross-validation 

error, will be considered as the performance metric for the model. During the 

experimental results of this paper, the K−fold cross-validation technique will 

be used with K = 5. 

3.2 Creating a classifier 

The MP algorithm will be used to generate the required classifier accord- 

ing to procedures in Section 2. In this subsection, we explains the representa- 

tion of a solution in MP, and the fitness function used in this implementation. 

3.2.1 Solution representation 

For each classification problems the set of functions and the set of ter- 

minals must be determined before calling the algorithm. The MP algorithm 

proposed in this paper use the atomic representation, where each terminal 

node of a tree is an atom contains three arguments, attribute name, rela- 

tional operator (<,>,=),  and an attribute value.  It means that, the atom  is 

syntactically a predicate of the form operator(variable, operator, value). 

Figure 6 show the atomic representation, where the atom returns true if the 

condition is satisfied and false otherwise. 
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Figure 6: Atomic representation. 

3.2.2 Fitness function 

The fitness function plays an important role and guides the search process in 

evolutionary algorithms (EAs). The main objective of defining a fitness 

function is to evaluate the quality of generated solutions of the proposed 

algorithm. Many fitness function formulas can be defined for the 

classification problem, however the most famous one [6, 15][9,10] is as the 

following: 

 

Fitness   = SE ∗ SP,                           (2) 

                         SE  =TP/(TP + FN )             (3) 

SP   =TN/(TN + FP ),              (4) 

where: 

True positive (TP): The number of examples for which the rule returns true 

and the class label is positive. 

False positive(FP): The number of examples for which the rule returns true 

and the class label is negative. 

True negative(TN): The number of examples for which the rule returns false 

and the class label is negative. 
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False negative(FN): The number of examples for which the rule returns false 

and the class label is positive. 

4. NUMERICAL EXPERIMENTS 

In this section, a set of benchmark problems are considered and tested to 

estimate the efficiency of the proposed version of MP algorithm. 

4.1 Dataset evaluations 

To validate our algorithm, 10 datasets of the two-class classification prob- 

lem are used from the UCI datasets [16], see Table 1. Three datasets, the  

Monk’s problems, are consisting of nominal attributes, and the remaining 

datasets are consisting of nominal and continuous attributes. Some data 

preprocessing are applied for these datasets before running  the  MP  algo-  

rithm. All missing values are replaced with statistical  values,  the  average 

values for continuous attributes and the mode values for binary and nominal 

attributes. We filled 16  and  25  continuous  attributes  in  the  breast  cancer 

and credit datasets, respectively. Additionally, We filled 30, 2480 nominal 

attributes in credit and mushroom  datasets,  respectively.  The  parameter  

values  of the MP algorithm are chosen based on several experiments as in   

Table  2.  These set of parameters of the MP algorithm can be summarized       

as the following: 

• nPop: The population size. 

• nGnrs: The maximum number of generations. 

• nLs: The number of programs selected to apply local search. 

nTrs: The number of trial programs generated in the neighborhood of the 

selected program. 

nFails: The maximum number of non-improvements for each call of the LSP 

algorithm. 

• MaxDepth: The maximum depth of a tree. 

The 4-way  tournament selection is used as the main selection strategy  of 

the MP algorithm, where the algorithm selects four classifiers randomly and 

run a tournament among them. The fittest classifier of those selected 

classifiers is chosen to generate some offspring for the next generation. 
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Table 1:  UCI Data Sets. 

 

Data Set No. 
Attributes 

No. 
Instances 

Credit Approval 15 690 

Breast Cancer Wisconsin 10 699 

Statlog (Heart) 13 270 

MONK’s Problems 7 432 

Mushroom 22 8124 

Voting Records 16 435 

Pima Indians Diabetes 8 768 

Tic-Tac-Toe Endgame 9 958 

 

 

Table 2: The parameter values for MP algorithm 

 

Parameter Value 

nPop 500 

nGnrs 500 

nLs 2 

nTrs 3 

nFails 4 

MaxDepth 5 

 

4.2 Logical classifier for the Monk’s problems 

The Monk’s problems appear in the artificial robot domain, where robots are 

described by six different nominal attributes; a1, a2, a3, a4, a5, a6 and the 7th 

attribute is the class label of each sample [17]. The exact solutions for each 

Monk’s problem is known, therefore these problems can be used to estimate 

the performance of a classifier precisely. For Monk 1 problem the exact 

solution is (a1  = a2) or (a5  = 1)  , and the exact solution of Monk 2 problem 

is exactly two of its six attributes have their first value, i.e.  two 

 

the exact solutiΣon of Monk 3 problem is { (a5 = 3) and (a4 = 1)   or   (a5 ƒ= 

In this experiment, 10 independent runs of the proposed classifier are per- 

formed for each one of Monk’s problems and best solutions found are shown 
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in Figures 7,  8 and 9.  These solutions can be reduced and simplified to get    

the exact solutions for Monk 1, Monk 2 and Monk 3 problems, respectively. 

Moreover, training datasets of Monk 2 and Monk 3 contain 5% noise. The 

accuracy of these solutions are shown in Table  3 along with some results in 

the literature. 

 

Figure 7: Best solution of Monk 1 problem. 

To the best of our knowledge, results of our classifier is the highest clas- 

sifier extracting logical classification rules for Monk #2. Wong and Leunga 

applied Grammar-GP and found 65% accuracy [19]. El-Semman and Hassan 

reported 65%, 65.2% and 71.52% accuracy using C4.5, C4.5 Rules and GEP 

methods [17]. Marghny reported 100%, 99.40%, 95.90% accuracy using 

Neu- ral network with genetic algorthim. MPC was applied by Farhat et 

al.[20] found 91.66%, 81.01%, 88.88% accuracy. However, Pan and Jiao 

extracted mathematical classification rules found with the GAEC method 

with 79.28% accuracy [21]. 
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Figure 8: Best solution of Monk 2 problem. 

 

 

Figure 9: Best  solution  of  Monk  3  problem Table 3: Results and comparisons for Monk’s 

problems. 

3.4 Logical classifier for problems with continues attributes 

In the previous Subsection, we applied the proposed classifier for Monk’s 

problems with nominal attributes. To validate our classifier on problems with 

continues attributes, 7 datasets are selected from the UCI website. Table 1 

shows the features of these datasets. However, Table  4 shows the accuracy  

of the best solution found by the proposed classifier for each dataset. 
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Results and comparisons for Monk’s problems 

Methods Monk 1 Monk 2 Monk 3 
C4.5 75.70% 65% 97.90% 
C4.5Rules 100% 65.20% 96.3% 
Grammar-GP 100% 65% 95.4% 
GEP 100% 71.52% 97.22% 
GAEC 100% 79.28% 100% 
MPC 91.66% 81.01% 88.88% 
Neural network with genetic algorthim [18] 100% 99.40% 95.90% 
Proposed MP 100% 99.07% 100% 

 

Table 4: Results of the MP algorithm for the UCI datasets. 

 

Datasets Accurac
y 

S. Deviation 

credit 98.55 0.63 

breast cancer 100 1.47 

heart 100 0.79 

monk1 100 5.72 

monk2 99.07 4.45 

monk3 100 1.86 

mushroom 100 0.52 

vote 100 0.35 

pima 83.12 1.20 

tic-tac-toe 96.88 2.80 

 

Figure 10 illustrates the ROC curves for datasets under consideration. These 

curves reflect the ability of the generated model to distinguish between 

classes [22]. The ROC curve is plotted based on the true positive rate (TPR) 

on the Y-axis against the false positive rate (FPR) on the X-axis, where TPR 

= SE and FPR = 1 SP . From these ROC curves, we can argue that the 

proposed algorithm can produce excellent and efficient classifiers since the 

area under the ROC curves near to 1. 

5. CONCLUSIONS 

In this paper, the Memetic Programming (MP) algorithm has been used for 

producing mathematical rules for the two-class classification problems. 
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Figure 10: ROC curves for UCI datasets. 

The proposed algorithm has been tested to generate new classifiers for a 

set of benchmark problems from UCI datasets. These datasets have been 

classified to two types of classification problems, datasets with nominal 

attributes and dataset with continues attributes. The results of these 

experiments reflects the efficiency of the MP algorithm compared with other 

algorithms in the literature at least for the considered benchmark problems. 
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