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Abstract 
  

Spatial modulation (SM) conveys extra data by selecting the transmit 

antenna. This makes SM prone to channel irregularities like multipath Raleigh 

fading. Hence, employing and optimizing a transmit precoder (TPC) that matches 

the channel can enhance the SM bit error rate performance by increasing the 

Euclidean distance (ED) among all possible received vectors. However, it is 

common that optimization algorithms endure high complexity. Focusing on M-

PSK constellation, and by reducing the number of Euclidean Distance constraints, 

we cut the complexity by nearly a factor of M. This is a significant reduction for 

high order constellations with a large value of M. This concept is shown to benefit 

any TPC optimization algorithm for SM and its variants. To further shrink the 

complexity, we introduce an optimization algorithm that minimizes the sum of the 

exponentials of negative EDs. The paper shows that the complexity can be reduced 

significantly without loss in performance. 

 

Keywords: Augmented Lagrangian, quasi-Newton, optimization, maximum 

minimum Euclidean distance, precoding, spatial modulation 

 

 

 

1. Introduction 



 

73 
Volume 1, Issue 1 

 

Recently, there has been an increasing interest in Spatial Modulation (SM) 

techniques for future wireless communication systems [1]. The recent literature 

shows innovations and new variants of SM that improve its potential [2]. Thanks 

to its basic working mechanism, SM provides many advantages, including higher 

energy efficiency, lower detection complexity, lower synchronization 

requirements, and no inter-channel interference [3]. The basic SM works as 

follows. Consider a system with Nt transmit antennas (TAs), where Nt is a power 

of 2, and M-ary modulation. At every transmission instant 2 2log logtN M+  bits are 

transmitted. The first 2log tN  bits select the active antenna index. The last 2log M  

bits select one symbol from M-ary constellation for transmission from this antenna. 

Other variants of SM are proposed in the literature to increase the transmission rate 

at the cost of complexity [2]. 

For successful detection of the SM signal the receiver needs to decide 

which antenna is activated. This requires the Channel State Information (CSI) from 

the Nt TAs to be unique. Although the elements of the CSI may be statistically 

independent, they can be instantaneously similar, leading to errors in detection. To 

circumvent this problem, transmit precoding is typically used [2] [4] [5]. A 

Transmit Precoder (TPC) may be selected from a predefined codebook that is 

known to both the transmitter and the receiver [6] [7]. Alternatively, the TPC can 

be optimized for the CSI, providing better performance. Most optimization 

algorithms require CSI at the transmitter (CSIT). This is facilitated through 

feedback [8]. However, they endure high complexity at large M and Nt. Therefore, 

this paper presents a technique to reduce the complexity of the TPC optimization 

algorithm. Here, we focus on M-ary PSK constellation due to its advantages in SM 

systems [4] [9] [10] and its potential for reducing the complexity. However, the 

presented technique can be used for M-ary QAM but with more complexity. 

A comprehensive survey of TPC optimization algorithms is available in 

[2] [4]. Here, we review the directly related literature. The work in [11] studies two 

objective functions for optimizing the TPC. The first is to maximize the Minimum 

Euclidean Distance (MED) while constraining the total transmit power. The second 

is to minimize the total transmit power with a guaranteed MED. The two 

approaches provide identical Bit Error Rate (BER) that is lower than the BER 

without precoding. Reference [9] compares the BER performance when 

maximizing the MED (similar to the first approach in [11]) to directly minimizing 

the BER. The latter approach provides better performance and lower computational 
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complexity than [11]. To reduce the computational complexity further, the work in 

[12] employed a low-complexity algorithm to minimize the total transmit power 

with a guaranteed MED (the second approach in [11]). The same BER of [11] is 

realized. 

Other TPC calculation methods avoid employing iterative optimization 

algorithms and the associated complexity. In [13] a Zero-Forcing based TPC is 

employed, while in [14] a Minimum Mean Square Error TPC is proposed. Both 

methods provide a closed form of the TPC. However, the BER performance is 

worse. Hence, in this paper we focus on TPC optimization algorithms and attempt 

to reduce their complexity. 

Most of the existing work reduces complexity through adapting an efficient 

optimization algorithm and manipulating the objective function and/or its 

constraints. The complexity of the algorithms depends mainly on the number of 

SM Euclidean Distances (EDs). In [9], [11], [12] and many other papers the number 

of EDs is 
( )1 2t tMN MN −

. This number is true for any arbitrary M-ary 

constellation without benefitting from its symmetry. The work in [15] shows that 

for M-ary PSK the number of active EDs is only 
( )1 2t t tN MN N+ −

. This paper 

reduces this number to 
( )1 2t t tN N N+ −

, which significantly reduces complexity 

without loss in BER performance. 

 

2. System and Channel Models 

 

The system model is shown in Error! Reference source not found.. The 

transmitter and receiver are equipped with Nt and Nr antennas, respectively. At the 

transmitter, the first log2 M bits select an M-PSK symbol 
( )exp 2ms m M=

, m=0, 

1, …, M-1, from the constellation. The next log2 Nt bits activate one TA. The 

transmitter and receiver employ CSI to optimally calculate the Nt×1 complex TPC 

vector p (p may also be fed-back from the receiver). 
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Figure 1: SM system model with precoding. The TPC vector p is calculated using an 

optimization algorithm 

Each TA is multiplied by an element pk from the vector p. The signal is 

transmitted through a frequency non-selective Rayleigh fading channel H (the 

Nr×Nt CSI matrix). Entries hi,j of H are independent complex Gaussian random 

variables with zero-mean and unit variance. Let hk be the k’th column of H, 

0, 1, 1tk N= −
. If symbol sm is transmitted from the k’th TA, the transmit vector 

is ,m k k m kp s=v h
 and the received signal is: 

 ,m k= +r v w
   . (1) 

The (Nr×1) vector w is the complex additive white Gaussian noise whose 

elements are independent with zero-mean and variance 1/ , where  is the average 

signal to noise ratio (SNR) per receive antenna. The receiver employs Maximum 

Likelihood (ML) detection [16] as follows: 

 

  ( )2

,
0,1, , 1
0,1, , 1

ˆˆ , min
t

m k
k N
m M

m k
= −
= −

= −r v

   . (2) 

Other reduced complexity detection detectors are available in the 

literature[17]. However, we employ an optimum detector so that the BER 

comparison with the literature is attributed only to the proposed optimization 

algorithm. Let the tMN
 transmit vectors vm,k be indexed as ,i k mv v

, with 

 ti m N k= +
 and denote the number of bit differences between transmit vectors vi 
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and vj as Bi,j. Conditioned on H, and using the Q-function, a union bound for the 

BER is calculated using the EDs among all possible transmit vectors as [16]:  

( )2

2

log
e

t t

P
MN MN

H

 

 

1 1
2

,

0 2

t tMN MN

i j i j

i j i

B Q v v
− −

= 

 
−  

 
 

   , (3) 

3. Reducing the Number of Euclidean Distances 

 

To reduce the BER bound of (3), TPC optimization algorithms iteratively 

increase the EDs 

2

i jv v−
 by updating the TPC vector p. Depending on the problem 

formulation, the EDs are present in the objective function or constraints. Since the 

number of possible transmit vectors is tMN
, the optimization algorithms in [9], 

[11], [12] and many others took the number of EDs as 
( )1 2t tMN MN −

. If we limit 

the scope to M-PSK this number can be significantly reduced. For M-PSK, the EDs 

(denoted below as di) are given by: 

2 2 2 2 2

, ,i m k n l k k l ld p p= − = +v v h h
    

 

*

,

2
2 cosH

k l k l k l

f
p p

M




 
− + 

 
h h

   , (4) 

Where 
f n m= −

, 
*

,

H

k l k l k lp p = h h
, and x  is the angle (0 to 2) of the 

complex number x. The EDs can be between transmit vectors from the same 

antenna (i.e., l k=  and n m ), or from different antennas (i.e., l k ). From (4), the 

MED between transmit vectors from the same antenna is given by: 

 

2 2 2 2

, ,
,

min 4 sinm k n k k k
m n

p
M


− =v v h

   . (5) 

Hence, for l k=  the algorithm needs only to increase the Nt MEDs given 

by (5). 
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Switching attention to EDs between transmit vectors from different 

antennas, the work in [15] noted that (4) provides a total of 
( )1 2t t tN MN N+ −

 

unique EDs. They can be calculated by setting l k  and 
0, 1, , 1f M= −

. Hence, 

according to [15], the optimization algorithms needs to increase these EDs and, 

consequently, the are included in the objective function and/or the constraints. In 

the remainder of this paper, we refer to this number as the full EDs. 

In this paper we lower the complexity by reducing of the number of EDs 

further. By careful examination of (4) when l k , we notice that for any antenna 

pair (k, l) there are M unique EDs corresponding to f=0, 1, …, M-1. Their minimum 

is easily found by maximizing the cos(.) in (4) by selecting the value of f for this 

pair as: 

 

,

, ,
2

k l

k lf M round l k
M





 
= −  

     . (6) 

Hence, for l k  the optimization algorithm needs only to increase the EDs 

corresponding to the 
( )1 2t tN N −

 antennas pairs (k, l) given by (6). After updating 

the TPC vector p, each iteration of the optimization algorithm uses (6) to select a 

single ED from (4) for each antenna pair. Together with the Nt EDs calculated from 

(5), the total number of EDs becomes 
( )1 2t t tN N N+ −

. In the remainder of this 

paper, we refer to this number as the reduced EDs. Compared to the case of full 

EDs, a considerable reduction in complexity is achieved. Moreover, with reduced 

EDs the same BER performance is achieved and the optimization algorithm 

converges faster. 

4. Transmit Precoder Optimization Algorithm 
 

It is shown in [9] that minimizing the BER provides better performance 

than maximizing the MED. To reduce complexity, we adopt a simplified version 

of (3) as the objective function. We keep only the 
( )1 2t t tN N N+ −

 reduced EDs 

terms and drop the factor Bi,j. Next, we invoke the Chernoff bound of the Q 

function as 
( ) ( )2exp 2Q x x −

. Lastly, to avoid re-optimization for each SNR we 

set the exponent 
4o =

, with o being a target SNR. The optimization problem 

becomes: 
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( )( )
 

min

2

min exp

. .

i

i S

t

A d d

s t N


=

= − −

=


p

p
   , (7) 

where S is the set of reduced EDs. The first Nt EDs in the set {S} (i.e., d0, 

to 1tNd − ) are calculated from (5). The remaining 
( )1 2t tN N −

 EDs are calculated 

from (4) and (6).  The factor 
( )min min id d=

 is included to avoid a diminishing 

summation in (7). To solve (7) we use the augmented Lagrangian algorithm [18] 

due to its low complexity and fast conversion [12]. Hence, (7) is converted into the 

unconstrained optimization: 

 

( ) ( )( )
 

( ) ( )

min

2
2 2

min exp

2

i

i S

t t

L d d

N N






=

= − −

− − + −


p

p

p p
   , (8) 

where  is the Lagrange multiplier and µ is the penalty parameter [18]. The 

optimization algorithm is shown in Algorithm 1. We use initialization parameters 

from [12]. 

Algorithm 1: Augmented Lagrangian Optimization 

Initialization: p0=all ones, =0.5 , µ=10, =2, n=0 

Pre-calculate: 

2

kh
 , 

H

k lh h , k, l=0, 1, .., Nt-1, l > k 

Repeat 1 to 4 till termination: 

1) Update: 
( )1 arg minn nL+ =

p
p p

 and get all di 

2) Find 
( )1 min minn iMED d d+ = =

 

3) Update: 
( )2

1n tN   += − −p
 

4) Update:   =  

Termination: if MEDn+1 < MEDn and n > 1 then output pn 
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An unconstrained optimization method is needed in step 1. Similar to [12] 

we employ the quasi-Newton method since it is efficient and robust [18] [19]. This 

method requires the gradient of the objective function (8), which can be written as: 

 

( )

( )

 
( )( )min

2
e 2id d

i t

i S

L

d N


  
− −

=

= 

= −  − − −

p

p

g p

p p

   . (9) 

The set {S} in (9) includes an equal number of EDs for all antennas. Hence, 

the gradient g is confidently used in the optimization algorithm to update the TPC 

vector p for all antennas. To calculate (9) we need the vectors idp . The first Nt 

distances in {S} come from (5). Define the Nt×1 complex vectors i id= px
, 

 0,  1,  , 1ti N=  − . Using (5) we get 
 00 00

T

i ix=x
. Hence, xi has a single 

non-zero element at the i’th entry, which is given by: 

 
( )

2 28 sini i ix p M= h
   . (10) 

The remaining distances in {S} come from (4). Define the Nt×1 vectors 

i id= py
, 

( ), 1, , 1 2 1t t t ti N N N N= + − −
. Using (4) and (6) we find that 

 00 0 0 00i k ly y=y
, i.e., yi has only two non-zero elements at the k’th and 

l’th entries. The k’th and l’th entries in yi are given from (4) and (6) as: 

 

( )

( )

2

,

2

,

2 2 exp 2

2 2 exp 2

H

k k k k l l k l

H

l l l l k k k l

y p p j f M

y p p j f M





= −

= − −

h h h

h h h
   . (11) 

With all parts of (9) ready, we now describe the quasi-Newton method. 

This method requires the calculation of the inverse of the Hessian matrix of the 

objective function (8). The BFGS algorithm is employed to avoid matrix inversion. 

However, the BFGS algorithm is defined for a real matrix only. Hence, similar to 

[12], in the quasi-Newton method we convert the TPC vector p and the gradient 

vector g into their equivalent 2Nt×1 real vectors. For any N×1 complex vector x, 

its equivalent 2N×1 real vector is 
( ) ( )( ),

T
T Treal imag=x x x

. 
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Algorithm 2: Quasi-Newton method for step 1 in Algorithm 1 

Initialization: 2 tN=B I
, n=0, get p0 and dmin from Algorithm 1, and find 

( )0 0L= 
p

g p
 using (9) 

Repeat: 

Search direction: n= −d B g  

Update TPC: 1n n n+ = +p p d  

Update g: 
( )1 1n nL+ += 

p
g p

 using (9) 

BFGS update of inverse Hessian: 

1,n n n += = −a d b g g  

1
T T T T

T T T

  +
= + + − 

 

b Bb aa ab B Bba
B B

b a b a b a
 

Termination: 
( )( )1max 1 n + + a p

  

In step 2 of Algorithm 2, the step size n is found using the line search 

algorithm described in section 2.6 of [20]. dmin is input from algorithm 1 and fixed 

during the iterations of Algorithm 2. The symbol () in the Termination step 

indicates point by point division. The termination threshold is =1.0E-5. Using 

Algorithms 1 and 2, the optimum TPC vector p is calculated and employed in the 

transmission (1) and reception (2).  

 

 

5. Numerical results and Discussion 
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This section provides the complexity and BER performance of the 

proposed method. Simulation results are averaged over 5×105 independent channel 

realizations. In  

Figure 3 we use =55. In the other figures with Nt=8 the value of  is as 

follows: 

Nr M=4 M=8 M=16 

2 11 22 44 

4 5.5 11 22 

 

5.1. Complexity Analysis 

 

Complexity depends on the long-term order of the number of complex 

multiplications and the speed of convergence. We ignore the complexity of the 

trigonometric since it is efficiently calculated using the CORDIC algorithm. Also, 

similar to [12] we ignore the complexity of the line search algorithm since, by 

definition, it is much smaller than the optimization algorithm. The complexity of 

the one-time calculation of 
2

kh
 and 

H

k lh h  is 
( ) ( )2

r t r tN N N N + 
. Let 1K  and 2K  

be the number of iterations in Algorithm 1 and Algorithm 2, respectively. The 

complexity of Algorithm 1, excluding the quasi-Newton method in step 1, is 

( )1 tK N
 to calculate 

2

1n+p
 in step 3. Note that the EDs used in minimum 

selection in step 2 are calculated in the quasi-Newton method. The complexity of 

Algorithm 2 is 
( )2

1 2 tK K N
 since (5) and (10) are calculated Nt times per iteration, 

while (4), (6) and (11) are calculated 
( )1 2t t tN N N+ −

 times per iteration. Also, 

the complexity of calculating the one-time inverse Hessian matrix is 
( )2

tN
. 

 Hence, the total complexity order is given by: 

 
( ) ( ) ( ) ( )2 2

1 1 2r t r t t tN N N N K N K K N +  +  + 
   . (12) 

If full EDs are used, the last term of (12) would be 
( )2

1 2 tK K MN
. 

Table 1.   Complexity Order with Nt=8 AND Nr=2  

 

 QPSK 8-PSK 16-PSK 

Average K1: full EDs 3.3579 3.3082 2.8693 
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Average K1: reduced EDs 3.6391 3.4681 2.8441 

Average K2: full EDs 53.5160 44.2325 38.1295 

Average K2: reduced EDs 38.4152 36.4811 28.9986 

Complexity: full EDs 46174 75091 112198 

Complexity: reduced EDs 9120 8269 5445 

[9], Table II, min-BER 61440 245760 983040 

[12], Table I, AL method 276096 1065600 4223616 

 

Table 1 shows the complexity reduction from full EDs to reduced EDs. 

Also, it shows that the complexity is much lower than that of [9] and [12], where 

the complexity formulas in their respective references used. The average number 

of iterations in Algorithm 1 (K1) is almost the same in full EDs and reduced EDs. 

However, the average number of iterations in Algorithm 2 (K2) is lower, providing 

lower complexity.  

Figure 1 shows an example of the probability mass function of K2 for both 

the full EDs and Reduced EDs methods. 

 

 

 
 

Figure 1. Probability mass function of the number of iterations in algorithm 2 (K2) for 16-

PSK, Nt=8, Nr=2 (line style is used instead of histogram) 

 

5.2. BER Performance 
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We found by simulation that the BER of full EDs and reduced EDs is 

identical. Hence, we show BER with reduced EDs.  

Figure 2 compares the BER of the proposed reduced EDs algorithm with 

[9] (minimum BER) and [12] (maximum MED) for QPSK with Nt=8 and Nr=2. At 

low SNR, the proposed algorithm is close to [12]. As the SNR increases, it gets 

closer to [9] and even slightly better at high SNR.  

Figure 2 also shows the effect of channel estimation error. The erroneous 

CSI is given by e = + H H H
, where the elements of the matrix H  are 

independent complex Gaussian with zero mean and variance 
1 

 [9].  

We show the BER when He affects the optimization algorithm only, and 

when it also affects the ML receiver. The performance of SM without precoding is 

used for reference. The proposed optimization algorithm is still advantageous 

compared to SM. 

 

  
 

Figure 2. BER comparison of the proposed algorithm with [9] and [12] for QPSK, Nt=8, 

Nr=2. Dashed lines are with channel estimation error. 

 

Next, we explore high order modulation schemes with a small number of 

TAs.  
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Figure 3 presents the performance of the proposed algorithm for 16-PSK 

with Nt=4 and Nr=2. Similar to  

Figure 2, at low SNR the performance is close to [12]. As the SNR 

increases it gets closer to [9]. The figure also shows the BER of 16-QAM using the 

same algorithm (yet higher complexity). For the used set of parameters there is no 

gain in using 16-QAM compared to 16-PSK. 

  
 

Figure 3. BER comparison of the proposed algorithm for 16-PSK and 16-QAM with [9] 

and [12]. Nt=4, Nr=2 

 

To explore larger Nr,  

Figure 4 presents the performance of the proposed algorithm for 16-PSK 

with Nt=8 and Nr=2 and 4. The proposed system consistently provides a 

performance better than [12] for both Nr=2 and Nr=4. We also show the BER for 

16-QAM. Only when Nr=4, there is a small advantage of 16-QAM over 16-PSK. 

However, it does not seem to justify the added complexity. 
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Figure 4. BER comparison of the proposed algorithm for 16-PSK and 16-QAM with [12]. 

Nt=8, Nr=2 and 4 

From the above BER results we conclude that the proposed reduction in the 

EDs does not cause any loss in BER. To the contrary, the BER is always better than 

[12]. 

 

6. Conclusion 

This paper introduces a method of lowering the complexity of transmit 
precoder optimization in SM systems, employing M-PSK constellation. This is 
achieved by selecting one Euclidean distance per antenna pair, instead of all 
M Euclidean distances. We implement the proposed concept using an 
optimization problem that minimizes the sum of the exponentials of negative 
Euclidean distances. The optimization problem is solved with augmented 
Lagrangian algorithm. Our simulation shows equivalent or better BER than 
other published results, but with much lower complexity. Hence, the 
complexity reduction method of this paper is a candidate for all SM systems 
and its variants employing M-PSK constellation. 
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