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Abstract

In this paper we determined a condition on M for which

I'F (f )z
BV A AU )<1+Mz
z

implies

f(z) esr?] (u,@), where |r: and Fﬂ(f )(2) are respectively, the familiar multiplier
transformations and the familiar Bernardi-Libera-Livingston operator.
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Introduction

Let A(m) denote the class of functions of the
form:
fz)=z+ > az" MmMeN={2..}),

k=m+1
(1.2)
which are analytic in the open unit disc

U={zeC: |Z|<1}. We note that A(1) = A

et 5,5 (a) and (a) (0<a < 1) bethe
subclasses of functions in A  which are,
respectively, univalent, starlike of order . and

convex of order a in U . We denote by
S50) =85 and A0O)=C. If f and g are

68

analyticin U , we say that f is subordinate to
g , written f(z)<g(z) if there exists a

Schwarz function w(z) , which (by definition) is
analyticin U with w(0)=0 and (2| <1
for all zeU, such that
f (2) =g(W(z2)), zeU. Furthermore, if the

function g is univalent in U , then we have the
following equivalence (cf., e.g., [2], see also [7]):
f(2)<9(2) < f(0)=9(0) andfU)=gU).
For functions f (z) e A(m)given by (1.1) and
g(z)eA(m) given by

g@z)=z + i:bnzk

k=m+1

the Hadamard product (or convolution) of
f (z)and g(z)is given by

(meN),
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(frg)2) =2+ 3 ab,z =(g* f)(2).

k=m+1

Also, for an analytic function f (z) given by
(1.1), for all integer values of , and for all
me N, we define the multiplier transformation

12f(z) b
I"f(z)=2+ i k"a,z"

k=m+1

(zeV). (1.2)

Clearly, the function | f (2) isanalyticin U .
We note that

(1L @) =17 ()

for all integers  and |. We also note that :

G 1/ f(@2)=1"f(z) (seeFlett[3]);

(meN;zeU)

() 1, (2)=z+ > k"a.z"
k=2

=D"f (z)(n e N, =NU{0})
(see Salagean [9]).
It follows from (1.2) that

z(If @) =17 (@),
1°f ()= (2),1 ' (2) =2f'(2) and
| 4 (z)=z(f '(z)+zf "(2)).

For a function f (z) A (see [1], [4] and

[6]) the generalized Bernardi-Libera-Livingston
: A—> A s defined by

(1.3)

operator F,

F.(f)@2)= “—fljt “I ()t

NG

( N k]*f (z)
=[z ,F, 1,y+1,y+2,2)]*f (z)
(ﬂ>—].;2 eU ), (14)

F

where ,/ is the Gaussian hypergeometric
function defined by

JF@bic;z)= Z(a)(k)(b)k ‘

(@b,ceCceZ,={0,-1-2,..}),
and (d)k denotes the Pochhammer symbol given

in terms of the Gamma function [, by
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rd+k) {1 (k =0)
rd) (dd+1..d+k -1 (k N).
We note that , Fl represents an analytic function

in U ( see for details [10 ,Ch.14]).
It is easily seen from (1.4) that

z(I,F,(F)@) =(u+Dlot @) - 1y

(d)k =

F,()@).

(1.5)
Using the operator 1" (z) Patel and Sahoo [8]
introduced and investigated various properties and
characteristics in U by using the techniques of

Briot-Bouquet differential subordination.
Definition. A function f (z) € A(m) issaidto be

in the class S7,(w, @) if and only if
z(1'F (f)@@2))
Re{ A »}w
InF.(F)(2)
O<a<LneZmeN;u>-1z €U). (1.6)
We note that:

(i) S°(ua)=S, (ua), Where S_(u,a) Iis the
class of functions f (z) e A(m) which satisfy:

NETT

F,(f)(@)
O<a<Lu>-1%z eU);
(i) S *(u,a)=C. (u,x), Where C (1,0) is
the class of functions f (z)eA(m) which
satisfy:
zFﬂ”(f )2) S
F.(F)(@)

Re{1+
O<a<Lu>-1zeU), (18)

(i) S"@La)=S"(a), wWhere S;(a) is the
class of functions f (z) € A(m) which satisfy:

e {zlr:ﬁ'(f (@)

(1.7)

}>a 0<a<lLzel),

InF: (£)(2)
(1.9)
where
F (F)(@2) =£jf (t) dt; (1.10)
z 0

(iv) S"(0,2)=S"(a), where S"(a) is the
class of functions f (z) € A(m) which satisfy:
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21, Fy(F)@@)
InFo (F)(@)

|

where

F, ()@) = |

}>a 0<a<Lz €V),

(1.11)

TOG - 11f 2).

t (1.12)

Main Result

Unless otherwise mentioned, we assume
throughout this paper that (-1 <B<A<1;0< a<
1;neZ;meNand u>-1).

We now state the following lemma which can be
proved analogously to similar result proved by
Patel and Sahoo [ 8, Theorem 3].

Lemmal. If f(z) e A(m) satisfies

I;f(z)<1+Az

) 2.1
z 1+ Bz @1
then
I'F (f)(2) 1+ Az
<) <, 2.2
z 9@ 1+Bz @22)
where
A+(1—5j(1+ Bz)"
B B
q(z)=1x F(ll' +m+1 Bz ) (B #0)
k! Gl "Bz +1
1+ Hp (B =0)
u+m+1
(2.3)
is the best dominant of (2.2). Furthermore,
I'F (f
Re{#}>p(A,B,y,m)
5{1—5)(“5)‘1
B B
. . B
= szl(l,l,,qum +1 5 —1) (B #0)
1o HFL (B =0).
u+m+1l
(2.4)

The result is the best possible.
Theorem 1. Let the operator F,()(z) defined

by (1.4) satisfy the following subordination
condition:
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InF.(f)@)
z

<1+Mz (f eA(m)), (25)
where
Ve Ql-a)(1+ ﬁ) |
|,u+a|+‘/(,u+ D2+ (u+1+m?
(2.6)
Then f (z) €S, ().
Proof. From (1.2) and (1.4), it follows that
n _ /u+1z =1 n
I°F,(f )(z)_z—ﬂ.[t” " 0F ()t 27)
Defining the function ¢(z)in U by
I'F (f)(z
(z):# (z €V) (2.8)

we see that ¢#(z)=1+p,z™ +p,, 2" +... IS
analytic in U and ¢(0) =1. From Lemma 1 with

A=M and B =0 , we have

¢(z)<1+—#+1 Mz
u+1+m

which is equivalent to

|¢(Z)—]J<’u—+l M =N <1 (zeU). (29)
H+1+m

Set
1 [ z(IF.(D)(@)

P@=1 a[ I"F.()(2) O‘J' (210

Using the identity (1.5) followed by (2.8), we

obtain
1" (z) :Kl_l—aj+[1—ajP(Z)}p(z)_
z u+1 u+1

(2.12)
In view of (2.11), the hypothesis (2.5) can be
written as follows:

‘(1—1_—aj(p(z)+1_—aP(z)(p(z)—l <M
u+1 u+1
+1+m
_HTTTN (2.12)
u+1
We need to show that (2.12) yields
Re{P(2)}>0 (zeU). (2.13)

If we suppose that RG{P(Z)}?‘O (z €U), then

there exists a point Z, € U such that P(z,)=ix
forsome X €R. To prove (2.13), it is sufficient
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to obtain a contradiction from the following
inequality:

)

>M.
Let ¢(z,)=u +iv. Then, by using (2.9) and the
triangle inequality, we obtain that

W?= ‘(l——J(p(ZOH—P(Zo)co(Zo) 4
u+1

W= P(Zo)¢(Zo) -1

2
=(u2+v2)(—1_aJ x? 4 20=a),
u+1 u+1
2
l-a
+(1—mj¢(zo)—l‘
2
2(u2+v2)(1_—aj x2 42879y
u+1 H+1
N l-«o _h— 1- a|
u+l ,u+1|
Setting
Y(x)=w?*-M?
2
=Uu’+v?)| —= lma) e, 09,
,u+1 u+1
N 1—a_1 1- a|N
H+1 y+1|
[ u+1l+m N2
H+1 ’

we note that (2.12) holds true if W(x)>0 forany
X eR. Since

u®+v )( ) >0,S
the mequahty‘P(x)zOholds true if the
discriminant A<0; that is
2 2
A= 4[[1 ajvz—(—l_aj U?+v?)
u+1 u+1
1 1 ’ 1+mY
{[—a—l——aNj _(Mj NZ}
u+1 H+1 u+1

<0,
which is equivalent to
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2 2
u+1 u+1 H+
1 1 i 14mY
<@ 2ZZF TN | A 2|
u+1 u+1 u+1

Putting#(z,) —1= &'’ for some real @ e R,

we get
Vi &sin’d
u?  (1+&cosh)?

Since the above expression attains its maximum
value atcos @ = —¢&, by using (2.9), we obtain

PR
P18 T 1- M

Ll -]
{1 (ﬂ+1 ‘1 u+1 )2+( )ZNz}

which yields A<0. Therefore, W > M, which
contradicts (2.12), hence Re{P(z)}>0 (z eu).

p+L+m
pu+l

p+1+m
u+l

This proves that f (z) €S, («,@), which

completes the proof of Theorem 1.

Putting N=0 in Theorem 1, we obtain the
following result.

Corollary 1. Let the operator Fﬂ( f)(2) defined

by (1.4) satisfy the following subordination
condition:

M{H Mz (f (z)eA(m)),

where Mis given by (2.6). Then f (z) eS,, (1, @)

Putting n=-1 in Theorem 1, we obtain the
following result.

Corollary 2. Let the operator F,(f)(2) defined
by (1.4) satisfy the following subordination
condition:

F.(£)2)<1+Mz (f (z) eA(m)),

where  Mis given by (2.6).
f(z)eC, ().

Putting g =1in Theorem 1, we obtain the
following result.

Then
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Corollary 3. Let the operator F;(f)(z) defined

by (1.10) satisfies the following subordination
condition:

w<l+Mz (f eA(m)),
where

(1-o)@+7)
(1+a)+/4+@+m)2.

Then f(z)eS; (a).

Putting =0 in Theorem 1, we obtain the
following result.

Corollary 4. Let the operator Fo(f)(Z) defined

by (1.12) satisfies the following subordination
condition:

M =

WA @ gimz ¢ cam))
Z
where

v __(A=a)+m)

a+«f1+(1+ m)?

Then f (z) e §r2 ().

Remark 1. Putting N =0 jn Corollary 4 we
obtain the result obtained by Liu [5, Theorem 2.2
with £ =a=1].
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QQMMMHMMMH&‘;&
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z
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