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Abstract

This paper is devoted to study the distribution of zeros of all solutions of the first-order neutral

differential equation

[x() —px(t—T)]' + Q(O)x(t— ) = 0, t > 1y,

where p > 1, 7,0 > 0, and Q € C([to, =), (0, »)).

We obtain new estimates for the distance between adjacent zeros of all solutions of the above equation
under suitable criteria. Our results are supported with illustrative examples.
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Introduction

In this article, we estimate the distance between adja-
cent zeros of all solutions of the neutral equation

[x(t) —px(t —7)] +Qt)x(t — o) =0, (1)

where 7,0 > 0, p > 1 and @ € C([tg,00), (0, o0)). We
shall assume that
1
Q.(8)ds = (o, fort =ty + 27, (2)
Ji—r

for some ¢p > 0 where Q.(t) = min,_,<.,<{Q(s)} for
t = tg + 7. By a solution of Eq.(1) we mean a function
xz € C'([tg — A, o), ), where A = max{o, 7}, such that
z(t) — px(t — 7) is continuously differentiable and (1) is
satisfied on [tp, oc). We associate with (1) the initial
condition x(t) = @(t) on [tg — A, to] where ¢ € C'([to —
A, to], R). The method of steps can be used to show that
the resulting initial value problem has a unique solution.
A solution z is said to be oscillatory if it has arbitrary
large zeros. Equation (1) is called oscillatory if all its
solutions are oscillatory.

Neutral differential equations appear in many appli-
cations from engineering, physics, economy and mathe-
matical biology see (Gopalsamy, 1992; Hale and Lunel,
1993; Kolmanovskii and Myshkis, 1999; Kolmanovskii
and Nosov, 1986). The oscillation theory of neutral dif-
ferential equations has received a great deal of attention
in recent years; see (Agarwal et al., 2012; Bainov and Mi-
shev, 1991; Erbe et al., 1995; Gyoéri and Ladas, 1991) for
an account of this theory. However, little is known about
estimating the distance between consecutive zeros of the
solutions of these equations; see (Wenrui et al., 2007; Wu
et al., 2007; Wu and Xu, 2004; Yong and Zhicheng, 1997;
Zhou,1999) for some results of this type. To the best
of our knowledge, (Wernui et al., 2007) is the only pub-
lished work on this topic for equation (1). Therefore, our
main goal of this work is to obtain new estimates of the
distance between adjacent zeros of all solutions of Eq.(1)
under suitable criteria. We extended new techniques de-
veloped by (El-Morshedy, 2011) for the delay equation

/() + P(t)z(t —7) =0,

to the neutral equation (1) using new ideas from (Wernui
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etal., 2007). Our work is concluded with some illustra-
tive examples. Throughout this work; ds(x) denotes the
least, upper bound of the distances between adjacent ze-
ros of any solution x(t) of Eq.(1) on [s, o).

Il. PRELIMINARIES

Let d = Cu(ﬁ)qtf and the sequences {a,} and {b,,}

be defined by
P SV
pt

ay (p+1)24 Ap41 lftln(1+d)"n P

and
1
by =1+4d, d m=1,2,...

bm+1 =T 5 1
1- Ghbrre

These sequences are due to (Wernui et al., 2007). They
showed that the number A =1 — %}’ governs some
basic properties of {a,} and {b,,} as in the following
result which is derived from ([Lemma 1] Wernui etal.,
2007) and [Rrmark 1].

Lemma 1 The sequences {an} and {by} converge if and
only if A > 0. Moreover; if A > 0 then limy o0 an, =

%a—ff), limy,—y a0 b = 1%pﬂ(l +p)? and there exists a
positive integer N1 such that
1 P
— < — orp>1,m> Nj. 3
b ptl forp ; M2 1Ny (3)

Next, for any solution x(t) of Eq.(1), we define another
related functions y(t) and z(t) as follows

x(t) = y(t)eﬁt where 3 = ;ln(er 1)( or AT =p+ 1),
(1)
and
t
A= [ voas (5)

Lemma 2 (flemma 2/ Wernui etal., 2007) Let A > 0
and z(t) be a solution of Eq.(1) on [ty, 00). For some
Ty > to + 27, if there exist a positive integer N > 2 and
Ty > Ti+ N7+ 04 A such that z(t) > 0 on [T}, T3], then
2(t)
zZ(t—1)
for somen < N —1.

Lemma 3 (flemma 3] Wernui etal., 2007) Let A > 0
and x(t) be a solution of Eq.(1) on [ty, oo). For some
Ty = to + 27, if there exist a positive integer N > 2 and
Ty > T1+ N7+0+ X\ such that z(t) > 0 on [T, Ty], then

2(t)
z(t—7)

>an, forte[li+74+a+ A Th—nTl

1
o fort e [Ti4+(m+1)1+0+A, To], (6)

Jor some m < N — 1.

Consider a sequence {by,} defined as follows

1+d

T

by =1, :
(p+1)2 7

m=1,2... (7)

This sequence differs with {b,,} in the initial term and

both have the same properties explained in Lemma 1
when A > 0. That is limy 00 by = 172‘1{3(1 + p)? and
there exists a positive integer Na such that

1
— < P for p>1, m> Ns.
b, p+1

The use of {b,,} enables us to prove the following version
of Lemma 3.

Lemma 4 Let A > 0 and z(t) be a solution of Eq.(1)
on [tg, 00). If there exist a positive integer N > 2, Ty >
to+ 27 and Ty > Th + (N — 1)7 + 2\ such that z(t) > 0
on [Th, Tz, then

fort € [Ty + m7 + 2A, Ty], (8)

for somem < N — 1.

Proof. Tfz(t) > 0on [T}, Ty] for Ty > tg+27, it follows
from (4) that y(¢) > 0, for t € [T}, T»] and hence (5
yields z(t) > 0 on [T1 + 7, Tz]. Integrating (1) from ¢ — 7
to t, we get

z(t) = (p+ Va(t — 7) + pz(t — 27)

+ t Q(s)x(s — o)ds = 0.

Ji—T
Using (4), we have

p
——y(t —27)

y(t) T

—ylt—-7)4

t
+e Pt f Q(s)y(s — o) ds = 0,
t—1

Since 2'(t) = y(t) — y(t — 7), then (9) yields

J(t) = ——L gt —2r
(1) = ~ it = 27)
i
—e Pt (s)y(s — 0)eP =) ds,
t—1

which implies

(1) <0, for t €T+ 7+ Ta).
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Integrating (9) from t — 7 to t,

2(t) —2(t—1)+ 52(t —27)

p
(p+1)

t 5
—+-/ e_ﬁsds/ Q(u)y(u — 0)e? = du = 0.
t—1 8—T
That is,

2(t) —z(t—T1)+ t—27)

Lz(
(L)

t
+ [ Qu(s)e™PTt9) (s —5)ds <0, (10)

t—7
for t € [T1 + 27 + o, T3]. Hence
z(t)

z2(t—1) <l=

for t € [Ty + 27 + A, Tp).

t
g

This inequality implies that
2(t — 27) > byz(t — 1), (11)
for t € [Ty + 37+ A\, Tz]. Also (10) yields

p

(14 d)s(t) =2t = 1) +

2(t —27) <0,

for t € [Ty + 27 + 0 + A, Tz]. Now, combining this in-
equality with (11), it follows that

(1+d)z(t) — (1 - Bl> z(t—71) <0,

_pr
(p41)°

or

(1+d)z(t) < (1 - ﬁf") 2(t—1),

for t € [Th + 27 + 2\, T]. Rearranging,

() l-ghpEh 1
e BETE B T,
e =) 1+d 0 € [T + 2742\, Ty)

Similarly, for ¢ € [T1 + 37 + 2\, T3], one can see that

at) _l-gipbr 1
2(t—7) (1+d) by

Repeating this argument till m < L — 1, we obtain

1
=—, fort e [Ty +mr+ 2\ Tyl
Z(t_T) bm’ [1 / 2]

The proof is complete.

In the sequel, we consider the first order delay differ-
ential inequality

2'(t) — P(t)x(t +7) >0, (12)

where P € ([tg, ), [0, 00)), r > 0 and

t+r
/ P(s)ds > p, t>t. (13)
t

for some constant p > 0. We find some interesting re-
sults about the positivity of certain solution z of (12)
on some bounded intervals. For an easy reference, a se-
quence {A,(t)} is defined as follows

Ao(t) = P(t), t=to
t+r
An(t) = An-1(t) / Ay (s)el Anmr(idugg
t
for t>ty andn=1,2,...

Lemma 5 Let n be a positive integer such that

t4r
An(s)ds > 1,  for allt > to.
t

If z(t) is a nondecreasing function on [T1, Ty + 0] which
satisfies (12) on [Th, T»], then x(t) cannot be positive on
(Th, T»), where To > Ty + 3n+ 1)r — 0, Ty > to and
0] <.

Proof. For the sake of contradiction, suppose that x(t)
is positive on [T7, T5]. Integrating (12) from ¢ to t + r,
we obtain

t+r
x(t+r)—z(t) — / P(s)z(s+r)ds >0,

for t € [T}, Ty — r]. Using this inequality and (12), we
obtain

2(t) - P(t)(t) - P(t) / P(s)z(s +r)ds > 0,

for t € [Th, To —r]. Let y1(t) := e Jeo P(S)dsw(t). Then
y1(t) > 0 for t € [T1, T»] and the above inequality yields

t+r X
i(t) - P(t) / P(s)ef*" POy, (s 4 r)ds > 0, (14)
t

for t € [Ty, To — r]. Since z(t) is nondecreasing on
[T1, T> + 6], it follows that

yi(t) = (2'(t) — P(t)z(t))e” I}, P(s)ds
> (2/(t) — P(t)a(t +r))e” Jio PO
>0, forte[h, To+d—r].

Thus (14) leads to
() — Ayt +7) >0, forte [Ty, To+ 6 — 3],
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which has the same form of (12) but with different coef-
ficient. So using similar arguments as those applied for
(12), we obtain

t+r
mmfAnmmwaaq[ Ay(s)yr(s + r)ds > 0,

for t € [Th, To + & — 4r]. Set ya(t) := e~ oo Arledsy (4,
Then

t+r R
%m—&m] Ay(s)el T MOy (4 s > 0,
t

for t € [T1, To + & — 4r], and thus y4(t) > 0 for t €
[T1, Ty + & — 4r]. Hence

ya(t) — Aa(t)ya(t +7) 2 0,

So, an induction yields

for t € [Ty, To + 6 — 67].

() — An(Oyn(t +1) >0, fort e [T, Ta + d — 3nr],
(15)
where y), (t) > 0 for t € [Ty, To+d — (3n — 2)r]. Integrate

(15) from ¢ to t + r, we obtain

t+r
Yn(t+7) —yn(t) — f Ap(8)yn(s+r)ds > 0,
t

for t € [T, Tb + & — (3n + 1)r]. Therefore

t+r

0 <yn(t) < [1 - An(s)ds} Yn(t+7) <0,

t
for t € [Th, To + 8§ — (3n+ 1)r], which is impossible. The
proof is complete.

In the next lemma, we give an interesting result that

determine lower bound for the ratio IE:(K)

of the sequence { f,,(p)} defined by (Xianhua and Jianshe,
1999), for 0 < p < 1, as follows

by making use

hilo) = 7=

Jolp) =1,

falp)
- Falp) +1 — erfalpe)’ n=01,... (16)

fotz2(p)

where p is defined by (13). According to (Xianhua and
Jianshe, 1999), the sequence fy,42(p) could be positive,
negative as some n > 0 or its denominator (f.(p) + 1 —
ePfn(P)) is zero. Tn the last case we say that f,, 2(p) = co.

Lemma 6 Assume that (13) holds for 0 < p < 1 and
there exist Ty > to, 10| <, T =Ty + (n+ 1)r — & and
a function z(t) satisfying inequality (12) on [Ty, T| with
Z'(t) > 0 fort € [T, T+05]. If x(t) is positive on [17, T,
then
z(t+7r)

20 > fulp) >0 forte [T, T—(n+Dr+4], (17)

for some integer n = 0, where f,(p) is defined by (16).

Proof. Since x(t) is nondecreasing on [Ty, T' + 4]. It
follows that

z(t+7)

x(t)

Integrating inequality (12) from ¢ to t + 7, we have

IV

1= folp) forte[h, T—r+4d].

t+r
w(t47r)—x(t) > f P(s)z(s +r)ds > pz(t + 1),

for t € [T1. T — 2r + §].That is,

z(t+7) I
0 2lip—fl(p)>0fort6[Tl,T—2r+c5].

Now, when t € [Ty, T — 3r + 4], integrate inequality (12)
from t to t +r,

t+r
z(t+ 1) > x(t) +/ P(s)x(s +r)ds. (18)

Dividing both sides of (12) by x(f) and integrating from
t+r to s+ r, we obtain

x(s+r) st w(u+r)
T > e.r,p(/tw P(u) 2(0) du)

> exp (fo(ﬂ) j

t+r

s+T
P(u)du).
Using this inequality and (18), we get

z(s+r) .
z(t+7r)

t+r
z(t+7r) > (1) +x(t-|—1")ft P(s)

>a(t)+x(t+r) ]H_T P(s)
t

exp(fo(p) ' /

t+r

t+r
=z(t)+z(t+ r)/t P(s)exp

([ Pt [ i) as

t+r
>alt)+z(t+ r)e”f“(p)] P(s)exp
t

(~ ) [ Plodu)as

s+r

P(u)du) ds

B x(t + fr)e.ﬂfu(ﬁ)
= s+ Jo(p)
alt+r)erPeap( — folp) [T Plu)du
- folp)

a(t +7)(ePfolr) — 1)

=2+ folp)
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So

z(t+7) fo(p)
z(t)  — folp)+1-— epfolp

) = f2(ﬂ) >0,

for t € [T1, T — 3r + J]. Repeating the above steps yields

% > fn(P) >0 forte [Tl_- T — (Tl+1)r+5]

The proof of Lemma 6 is complete.
Next, we need a sequence {g,(s)}n>1 defined for s €
(t, t + 7) as follows

q1(s) : = P(s)

t+r
gnt1(s) : = P(s+ nr)/ Py (u)du, t > tq,

and we consider that ZL& Ly, = 1 for any sequence {L,}
as long as b < a.

Lemma 7 Let n* and n** be two positive integers such
that n** = min{l : fit1(p) <0 or fir1(p) = oo} and

n’ k t+r
Z (H f?l“+2i(p)) / qr(s)ds > 1,
= =2 t

k=1

forp € (0, 1). Further; assume that z(t) is nondecreasing
on [Th, To+6], where Ty >ty and |6| < r. Ifx(l) satisfies
(12) on [T1, Ts], then x(t) cannot be positive on [Th, Ts],
where To > T + (n+ 2)r — 6 and n = min{n*, n**}.

Proof. Suppose, for the sake of contradiction, that z(t)
is positive on [T1, T5]. If n = n**, then Lemma 6 implies
a contradiction. Thus, assume that n = n* and integrate
(12) from t to t + r, we have

t+r
st 1) — alt) - / P(s)a(s +r)ds >0,  (19)
¢
for t € [Ty, T> —r]. Using integration by parts, we obtain
t+r
/ P(s)x(s +r)ds
! t+r t+r
= / xz(s+r)d(— [ P(u)du) > x(t+7)
t-:r t+r °
/ q1(s)ds + f q2(s)z(s + 2r)ds
' t+r ! t+r
> ( [ gl(s)ds):c(t +7)+ ( [ qa(s)ds)a:(t +2r)
Jt Jt

t+1r
/ q3(s)z(s + 3r)ds, forte [Ty, To — 3r].
¢

Continuing the above arguments n times, we find

t4r n
ft P(s)a(s +r)ds > ; (/t

t+r
qk(s)ds):ﬁ(t + kr)

+ /'t+r gn+1(s)x(s+ (n+1)r)ds, t € [T1, To — (n+ 1)r].

Since z(s+ (n+1)r) >0 for s € [T, To + 6 — (n+ 1)r],
then

t+r n
]t P(s)x(s+r)ds > ; (]t
(20)

for t € [T1, T>» + 0 — (n 4 2)r]. On the other hand, for
te [T, To+ 6 — (n+ 2)r], we have z(t) > 0 and

t+r
qr (s)ds) x(t + kr),

t+(i—Dre[Ty, To+6—(n+3—d)r], i=2,3,..., 1

So, when t € [T}, To + & — (n + 2)r], Lemma 6 implies
that

% > fn.+2—1(.o)a = 2, 3, R
Therefore,
o) = k x(t +ir) _
x(t+kr) = (gﬂf—(t+ = l)r))x(t+7)

k
> (H.fn+24(ﬂ))x(t+?“), k=1,2,...,n.
i—2

Using the above inequality and (20), we get

t+4r

/ o P(s)  x(s+r)ds > i ( f Qk(S)ds)rt(t + kr)
‘ k=1 "t
n k t4r
z Z ( H frt2-i(p) / qk(s)ds) xz(t+r),
k=1 =2 St

for t € [Ty, To + & — (n + 2)r]. Thus (19) leads to

n k ftr
1- Z an+z-i(p)ft qk(s)ds] z(t+r) 0.

k=1i=2

z(t) <

This contradiction completes the proof.

Ill. MAIN RESULTS

In the following results, we restrict ourselves to the
cases when A > 0 and 7 > o. It will be assumed that

t+7—0a
f Qus)ds > G, >4 (21)
t

for some positive constant ¢; and ¢, > &y + 27.
1—VA
SETIR So

n > 0, con-

In view of Lemma 1 we have lim,,_, a, =

the sequence {n,} where n, = pfa.Ci(lgH»l)’

ik We define a sequence

- = G
verges to a number 1 = P=al (o1
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{A, ;(t)} for any positive integer j by

Q. (t)
p—aj(p+1)’

t+1—a
Anj(t) = Anfl‘j (t)]t‘ An,l,j(s)emp(

Ap i(t) = t=t

s+7—0
f An,l,j(u)du)ds, t>t,,n=1,2,...
t

Theorem 1 Assume that (21) holds. Let n be a positive
integer such that

t+17—00
f An,j*(s)ds > ]., t> t1. (22)
i

Then Eq.(1) is oscillatory and dg, (x) < (m' +j* +3)7+
3n(r — o), where

it = min{ jlni >0 } , (23)
and
. 1 P
r__ . v
m’ = min {m\bm < ) } (24)

Proof. Let x(t) be a solution of Eq.(1) with =(t) > 0
on [Ty, To] where Ty > Ty + (m/ +2)7+ j* 7+ 0+ (3n +
1)(r—0), 71 > t1. In view of (4), Eq.(1) implies that

[y{t) - - r)] i [y(t) - e - f)]

+Q(t)e Pry(t — o) = 0.

Integrating from ¢ — 7 to t, we get

{dﬂ—pildt—ﬂy+ﬁ[dﬂ—p zu—Tﬂ

¢
+ef7 [ Q(s)y(s —o)ds =0,

t—7

which yields

kn_ iﬁ&—ﬂy+ﬁPM—piﬁa—ﬂ

+eP7Q.(t)2(t —0) <0 fort € [Ty +7+0, Ty (25)

Since A > 0 and p > 1, it follows from (3) and Lemma 3
that
2(t) 1 p

<—< < —, 26
Z(t - T) bm bm’ P+ 1 ( )

for any m > m' where m' is defined by (24) and t €
[T7 + (m' + 2)7 + o, T5]. Set

u(t) = z(t) — P z(t—7), te[Ti+(m' +2)7+a, To].
(27)
Then (26) gives
w(t) <0, forte[lh+ (m' +2)7+0 T3

Moreover; Lemma 2 yields

u@%zdﬂ—pildt—ﬂ

_{ z(t) P
S lzt-7) p+1

>{%—piJz@—ﬂ,

for t € [T1 + 27 + 0, Ty — j7] and any positive integer j.
Thus

ult+7—0)> [ - #] At-o) (@)

fort € [Ty +27 40, To — (j +1)7 + o]. Substituting (27)

and (28) into (25),

Q*(t)e_’sa

_p_—_mu(t-l-T—cr) <0, (29)
p+1 J

forte [Th+2r+0, 72— (j+ 1)7 +0]. Put w(t) =
—ePlu(t), for t € [Ty + (m' +2)7 + 0, Tp] and take j = j*,

T=T + (m +2)7 + 0, then

w(t) >0, forte [T, T+ 3n(r—a), (30)

/(1) + Bult) -

and inequality (25) leads to
w'(t) = —(u/(t) + Bu(t))e®
> PQ, (N)z(t —0) > 0, t € [T —m'7, Ta).

Hence w't) > 0on [T, T+ (3n+ 1)(7 — o)] and (29) is
transformed to the form

«(f
p—a;(p+1)
for t € [T, T+3n(r—a)]. Using Lemma 5, with é = 7—0
and A, is replaced by A, ;, we conclude that w(t) cannot

be positive on [T, T + 3n(r — o)]. This contradiction
completes the proof.

w(t+7—0) >0,

Corollary 1 Assume that (21) holds. Let {cv, j+ }n>1 be
a sequence defined by

20n_1g% e""-l‘j*), Qp = = T)j*.

(31)
If there exists a posilive integer ng satisfying g, ;= > 1,
then Eq.(1) is oscillatory and dy, (z) < (m' + 3+ 7%)7 +
3ng(T —a), where j* is defined by (23) and m' is defined
by (24).

Qnj» = 01,4 (€
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Proof. From (21), it follows that

t+1—0
/ Ag,j=(s)ds > ag j« = nj=.
t

t+1—0
/ A]yja (s)ds
t
t+r—0o S+T—0
= / A 5+ (9) / Ao, (u)
t s

utr—o "
el Aoi* (V) gy s

t+7—0 $+T—0 ”
=/ Ao 5+ () / Ag j+ (w)els" Ao v
t s

utr—0 »
el Ao,i* (V)4v gy s

t+1—0
> 04" / Ag j(s)
Ji
S$+T—0 i
( / Ag g (w)els A0 1o gy )
t+17—0
et [T g (e 1)
t

t4+17—0
> g (g% - 1)/ Ao j=(s)ds > aq j+.
t

Thus

By induction, it follows that
t+7—0
/ A, - (8)ds > ap -, forn=0,1,...
t

Thus, when ay,, ;- > 1, then (22) holds for n = ny.
Therefore, the proof can be completed by applying The-
orem 1.

In the following result, we consider the sequence

{an,j(s)} defined by

Q. (s)
p—aj(p+1)

t+7—0
Int1,5(8) = qu (s +n(r — U))/ qn,j(u)du,

q,5(s) =

fort > tiand n > 1.

Theorem 2 Assume that (21) holds. If n*, n** are two
positive integers such that n** = min{l : fi;1(n;-) < Oor
fiya(nj-) = o0} and

n” k t4+T—0
> (H fn*+2—i(?7j*)> / kg (s)ds > 1, (32)
k=1 \i=2 t

for t > t; and n;- € (0, 1), then Eq.(1) is oscillatory
and d, (z) < (m' +3+ 7)1+ (n+ 1)(r — o) for any
solution x(t) of (1), where j*, m/ are defined by (23),
(24) respectively and n = min{n*, n

Proof. Assume, for the sake of contradiction, that
z(t) >0fort e [T, i + (M +2)1+ 0+ j*7+ (n+
2)(7 — 0)]. We take n = n* since otherwise a contradic-
tion appears. Proceeding as in Theorem 1, we obtain the
inequality

Q. (t)

el S

wt+71-0)>0,

forte [T, T+ (n+1)(r—o0)], and

w't) >0, forte[l, T+ (n+2)(r—o).

Moreover, (30) yields
w(t) >0 forte[T, T+ (n+1)(r—o0).

According to Lemma 7, with § = o — 7 and ¢, is replaced
by ¢n,;, we obtain that w(t) cannot be positive on [T, T+
(n+1)(r — 0)]. This contradiction completes the proof.

Since fa(n;+) = 5—m= for n;« € (0, 1), then Theorem
2 and definition of n** lead to the particular result.

Corollary 2 Assume that (21) holds.
nj= <1 or0<mn; <In2 and

If either In2 <

t+7—0o t+7—0
/ q1,5+(s)ds + fa(n;+) / Qi (s+7—0)
t t
t+17—0
/ qu,j+(u)duds > 1, t >ty (33)

then Eq.(1) is oscillatory and dy, (x) < (m/ +3 + j*)7 +
3(t — o), where j*, m’ are defined by (23), (24) respec-
tively.

Corollary 3 Assume that (21) holds and

G1

> form- €

If n*, n*™* are two positive integers such that n** =

min{l : fit1(n;+) <0 orfry1(nj+) = oo} and
n* k nl_g‘ )
ZH n*—(i—2) 77] k >1, (3")
i !

then Eq.(1) is oscillatory and dy, (x) < (m' + 3+ j*)7 +
(n+ 1)(r — o), where j*, m’ are defined by (23), (24)
respectively and n = min{n*, n**}.

Example 1 Consider the neutral differential equation
[=(t) -

5.6x(t—3)) + (26+e ™) a(t—2)=0, t>0,
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which has the form (1) with p = 5.6, Q(t) = 2.6
+e ™ 7=3 and 0 = 2. For t > t; = 6, we have

Example 2 Consider the neutral differential equation

¢ [z(t) = 32(t — 2)]" + (1.2+g) z(t—-1)=0, t=>0,
| ewiszrs=a, t

t—7
Then p = 3, Q(t) =
t >t = 4, we have

1.2+%,T =2, ¢ =1 and for

t+7—0
/ Q.(s)ds > 2.6 = (3,
! Qu(s)ds > 2.4 = (o,

t—1

d =0.33588..., and A > 0.

So, it follows

t+1—0
| Q12—
a; = 0.12855 t

. by =1.33588..., m =0.5471...,

f2(m) = 3.6818...

d=03..., and A > 0.

Clearly, % pf_l m' =1, j7* =1 and +j2(n1)
1.09. Applying Corollary 3, it follows that (35) hOldE: for
n=n*=2and dg(x) < (m'+7*+3)7+(n+1)(1—0) =
18. Theorem 3 in (Wenrui et al., 2007) can not give an
estimation smaller than 18.

_All previous results of this section can be proved using
{by, } instead of {by, }. The obtained results lead to better
estimates in some situations. Next, we list those new
results without proofs.

In addition, we note that

by =13, by =1.719... by =1,
film) = 2.1427...,

ap = 0.1875...,
by = 1.6, n; = 0.5333...,
fg(m) = 3.3846...
Therefore, m' = m"” = 2, j* = 1. Applying Corol-
2
lary 6, we find that m + fz(m) L > 1. Then n =
n* 2 and dy(z) < (m" 4+ 7* + 2)7 + (n + 2)(7 —
o) = 14. One can see that Corollary 3 gives that
dy(z) < (m'+7*+3)7+ (n+ 1)(r — o) = 15.

Theorem 3 Assume that (21) holds. Let n be a positive
integer such that (22) holds. Then Eq.(1) is oscillatory
and dy, (z) < (m"” +7* + 2)7+ (3n+ 1)(7 — o), where j*
is defined by (23) and

1
m" = min { m|— < L
m>2 b, pr+1

Corollary 4 Assume that (21) holds. Let {ay -} be
defined by (31). If there exists a positive integer ng
satisfying ony g+ > 1, then Eq.(1) is oscillatory and
de () < (m" + 2+ §*)7 + (3ng + 1)(7 — o), where j*

Remark 1 Two sets of results are obtained. One using
{bm } and the other using the modified sequence {by,}.
In example 2, it was shown that Corollary 6 gives better
estimates than Corollary 3. But if we apply Corollary
6 to example 1, it is easy to see that dg(z) < 19. So
Corollary 3 leads to better estimates in this case. This
emphasizes the importance of our new sequence {b,, } and
shows that these sets are independent of each other.

(36)

is defined by (23) and m" is defined by (36).

Theorem 4 Assume that (21) holds. If n*, are two
positive intcgers such that n** = min{l : f;+1(7}3 ) <0or
fryr(my=) = oo} and (32) holds for n;= € (0, 1), then
Eq.(1) is oscillatory and dtl( )< (m” 4245 )T + (n +
2)(r — o) for any solution z(t) of (1), where j*, m" are
defined by (23), (36) respectiveiy and n = min{n*, n**}.

Corollary 5 Assume that (21) holds. If either
In2 <ne <lor0<m;- <In2 and (33) holds, then
Eq.(1) is oseillatory and dy, (z) < (m"+2+45*)7+4(1—0),
where j*, m" are defined by (23), (36) respectively.

Corollary 6 Assume that (21) and (34) hold. If n*,
n** are two positive integers such that n** = min{l :
figr(mj+) < 0orfipi(n-) = oo} and (35) holds, then
Eq.(1) is osczllatory and dy, (x) < (m" +24 )7+ (n+
2)(1 — o), where j*, m" are defined by (23), (56) respec-

tively and n m]n{ n*, n**}.
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