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Abstract: Software engineering comprises some processes such as designing, implementing and modifying of code. These 

processes are done to generate software fast and have a high quality, efficient and maintainable software. In order to 

perform these processes, invariants can useful and help programmers and testers. Arrays and pointers are frequent data 

types and are used in program code repeatedly. Because of this conventional use, these two data types can be the reason of 

fault in some program codes. First and last elements of arrays can confront to fault because of carelessness in using index 

in loops. Also arrays with the same type mostly have some relations which can be probably faulty. Therefore invariants 

which can report array and pointer properties are functional. This paper presented some constructive extension to Daikon 

like tools so that can produce more relevant invariants in the case of array. 

 

Keywords: Dynamic invariant detection; software testing; array property; array’s first & last elements; mutual element 

between arrays. 

1. Introduction 

Invariant are program valuable properties and 

relations which are true in all executions. For 

example in a sort function such as bobble sort, 

while leaving the function, all the elements of the 

array are sorted so invariant (array a sorted >=) 

is reported. Such properties might be used in 

formal specification or assert statement. 

Invariant is introduced in [1]. Since invariants 

repeat the properties and relations of program 

variables, invariants can express the behavior of 

a program [4], therefore after an updating to the 

code, invariants can determine which properties 

of the code remain unchanged and which 

properties are changed. Invariants are kind of 

documentation and specification. Since 

specification and documentation are essentials in 

software engineering, Invariants can be used in 

all processes of software engineering from 

design to maintenance [2]. There are two 

different approaches to detent invariants, static 

and dynamic. This paper focuses on dynamic 

invariant detection.  

Dynamic invariant detection is first time 

introduced by Daikon [3] - a full-featured and 

robust implementation of dynamic invariant 

detection. Daikon is the most prospering tool for 

detecting dynamic invariant and until now, 

comparing with other dynamic invariant 

detection methods [3]. Most of other tools and 

method are inspired by Daikon. Though Daikon 

is potent, one of the greatest problems of this tool 

is being time-consuming.  

One of the most time consuming parts of 

software engineering is testing because regarding 

to different inputs, different paths in execution 

happen. However tester tries to test all different 

paths by different inputs, unchecked paths can be 

faulty. In this situation, because of their 

structure, arrays and pointers are more probable 

to be faulty. By means of invariants, programmer 
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or tester can recognize the behavior of program. 

Invariants detection tools report the properties 

and relations among variables. These properties 

and relations can be use in code testing after each 

up-date. Therefore if any improvement is 

achieved for the reporting some relevant 

invariant about arrays can help tester to find out 

program fault. 

The first and the last elements of an array 

possess very crucial properties because these 

elements are impacted by the carelessness in 

using the indexes. By involving some array 

elements in invariant detection, a dramatic 

improvement in fault detection might happen. 

The number of these elements can be the least 

size of an array or they can be optional. This 

contribution exposes inattention in using index 

which mostly happens with the first and the last 

indexes and corresponding to the first and last 

elements of an array. 

Besides employing array elements, enlisting 

the number of mutual elements of same type 

arrays for each program point is useful in 

detecting faults. In other words, for each 

program point, the number of elements' values 

which are shared in two different same type 

arrays is employed in invariants detection. It 

helps the programmer to evaluate his program in 

the cases that an array is gained from changes in 

another array. The mutual elements show the 

correct elements which should be unchanged 

through the process. We discuss more about this 

contribution in the next sections and clarify the 

number of mutual elements of same type arrays 

for each program point. 

2   Related Work 

In this section, we discuss some 

implementations of dynamic invariant detection. 

We mention some implementations which are 

more relevant to our job but it is worth to 

mention there are many valuable efforts in this 

topic. 

Dynamic invariant detection is first time 

introduced by Daikon [3] - a full-featured and 

robust implementation of dynamic invariant 

detection. Daikon is the most prospering tool for 

detecting dynamic invariant and until now, 

comparing with other dynamic invariant 

detection methods [3]. Most of other tools and 

method are inspired by Daikon. Though Daikon 

is potent, one of the greatest problems of this tool 

is being time-consuming.  

DySy [8] is a dynamic inference tool which 

uses dynamic symbolic execution to expand the 

quality of inferred invariants. In the other words, 

besides executing test cases, DySy 

contemporarily perform a symbolic execution. 

These symbolic executions cause to produce 

program path condition. Then DySy combines 

the path conditions and build the final result. The 

result includes invariants which are expressed 

according to the program path condition. 

Agitator [9] is a commercial testing tool and 

is inspired by Daikon. Software agitation was 

introduced by Agitar. Software agitation joins 

the results of research in test-input generation 

and dynamic invariant detection. The results are 

called observations. Code developer checks these 

observations to find out if there is any fault in the 

code. If there is any fault programmer or tester 

remove it and so on. Agitar won the Wall street 

Journal's 2005 Software Technology Innovation 

Award. 

 The DIDUCE is a dynamic invariant 

inference tool which extracts not only program 

invariants but also helps programmer to detecting 

errors and to determine the root causes [10]. 

Besides detecting dynamic invariant, DIDUCE 

checks program behavior against extracted 

invariants up to each program points and reports 

all detected violations. DIDUCE checks simple 

invariants and does not need up-front instrument. 

3   Paper Contributions 

One of the most time consuming parts of 

software engineering is testing because regarding 

to different inputs, different paths in execution 

happen. However tester tries to test all different 

paths by different inputs, unchecked paths can be 

faulty. In this situation, because of their 

structure, arrays and pointers are more probable 

to be faulty. By means of invariants, programmer 

or tester can recognize the behavior of program. 

Invariants detection tools report the properties 

and relations among variables. These properties 

and relations can be use in code testing after each 

up-date. Therefore if any improvement is 

achieved for the reporting some relevant 

invariant about arrays can help tester to find out 

program fault. 

The first and the last elements of an array 

possess very crucial properties because these 

elements are impacted by the carelessness in 

using the indexes. By involving some array 

elements in invariant detection, a dramatic 
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improvement in fault detection might happen. 

The number of these elements can be the least 

size of an array or they can be optional. This 

contribution exposes inattention in using index 

which mostly happens with the first and the last 

indexes and corresponding to the first and last 

elements of an array. 

Besides employing array elements, enlisting 

the number of mutual elements of same type 

arrays for each program point is useful in 

detecting faults. In other words, for each 

program point, the number of elements' values 

which are shared in two different same type 

arrays is employed in invariants detection. It 

helps the programmer to evaluate his program in 

the cases that an array is gained from changes in 

another array. The mutual elements show the 

correct elements which should be unchanged 

through the process. We discuss more about this 

contribution in the next sections and clarify the 

number of mutual elements of same type arrays 

for each program point. 

Overall our contributions comprise the 

following: 

 Using the some of first and last elements of 

an array as new variables for invariant 

detection. 

 Using the number of mutual elements of same 

type arrays for each program point 

4   Clarifying of Contributions 

To simplify and clearing up the contributions 

we talk over before, in this section, we illustrate 

our idea by some pieces of program code and 

their post-condition invariant. We state the Exit 

program point invariants which represent post-

condition properties for a program point because 

post-condition properties can determine both the 

pre-condition and post-condition values of 

variables. 

Now we introduce first paper contribution. In 

order to determine probable faults in arrays we 

employ some of first and last elements of array 

to invariant detection. The number of these 

elements can be the least size of the array or can 

be optional. This contribution exposes 

carelessness in using index which mostly 

happens to first and last indexes. 

To clarify our contribution considers Figure. 

1. This figure shows a faulty version of 

bubbleSort(). It accepts 2 values as input. One of 

which is the array and another is the length of the 

array. The output is the sorted array. This version 

of bubbleSort has a fault. The index j starts at 1 

instead of 0 so the first element of array is not 

considered in the sorting. By using of the first 

and last elements of the array in invariants 

detection, some useful invariants are produced 

which help us to detect the fault.  

 

Figure 1: Program A: Inattention in using index 

By employing the first and the last elements 

of array in invariant detection, related invariants 

in the Exit point of the bubbleSort() of Figure.1 

is shown in Figure.2. The presented invariants in 

Figure.2 are in the form of Daikon output. For 

array x, x[-1] is the last element of x, x[-2] the 

element before the last one and so forth. In 

Figure.2, line 14 expresses that the first element 

of the input array always equals to the first 

element of the return value. Lines 15 to 20 

express that the rest of the elements are sorted. 

Therefore obviously only the first element is 

never involved in sorting. This helps the 

programmer to detect the fault. 

 

Figure 2:  Related invariants to the code of Fig 1 
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Another contribute we discuss in this paper is 

the number of mutual elements of same type 

arrays for each program point. It helps 

programmer to test the code in situations that an 

array is generated as a result of performing some 

activities on another array. To illustrate the idea 

you may consider function in Figure.3. This 

function accepts 4 parameters as inputs. The first 

parameter is a sorted array and others are 

respectively array length, the value of element 

which must be replaced, and the new value, 

respectively. This function replaces m's value 

with n's value as a new value. 

 

Figure 3:  Program B: An example of "replace code" 

Exit point invariants of replace() is shown in 

the Figure.4. In this figure, invariants in lines 6 

and 7 express the number of mutual elements 

between d (the first parameter of the function) 

and the return value. The number of mutual 

elements between d and return value must be 

equals to the number of mutual elements 

between orig(d) and the return value (line 6). 

Also, the number of mutual elements between d 

and the return value equals to the size of d minus 

1. However, besides this invariant, other 

invariants quote that the return value is not 

sorted despite d is sorted and this might be a fault 

in the program. 

 

Figure 4: Related invariants to the replace code of 

Figure 4 

5   Actual Example and Justification 

Now, we plan to illustrate our ideas in some 

actual examples. We intend to know how our 

idea can practically help programmer to detect 

faults and their line of code. To do this, we study 

some rather small and simple subprograms which 

are caused "gold standard" invariants [9]. Our 

reasonable assumption is that every program, 

either big or small, can be divided in small parts 

and might be raised in small subprograms. In 

other words, in all programs, when working with 

arrays the programmer uses iteration expressions 

such as the "for" block and carelessness can 

result independently of whether the program is 

big or small. The presented code does not 

assume the use of any specific programming 

language. 

5.1   Try-Catch and Effectiveness of the Ideas 

Try-Catch statements, which prevent program 

from facing to a halt, can be a point of fault. 

Function AVG(), which is shown in Figure.5, 

contains a Try-Catch statement. It accepts an 

array (a[]) and the length (l) and sums all the 

elements in sum, then divides each array element 

by n/5 and finally returns the sorted array. 

Although the programmer has considered that if 

n is zero a division-by-zero happens and 

prevented it from happening by introducing an 

if-condition statement, the code has a fault. 

"temp" has been declared as an integer and for 

0<n<5, n/5 is zero subsequently the variable 

temp can become 0 as well, and therefore 

division-by-zero happens. In these situations a 

division-by-zero exception is thrown and the 

return array has all its elements equal to 0 instead 

of being the sorted input array. 

 

Figure 5: Program C: First example for the 

justification of the proposed algorithm 
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In Figure.6, the related invariants in the Exit 

program point of the function are shown. As 

before, invariants are in the form of Daikon 

output but here we add also our proposed part. 

AVG() does sort the input array and return a 

sorted array as we see in the line 9 of Figure. 6. 

This invariant merely express that the program 

seems to work properly. However, by 

considering lines 10 to 16 and specially lines 17 

and 34, it is obvious that in some situations the 

sorting of the array is not reached. Lines 10 to 16 

show that in some cases all the return values are 

equal to 0. Line 17 express that mutual elements 

between a[] and the return values can be zero. In 

line 34 we observe that the mutual elements 

between a[] and the return values can be less 

than l whereas it is expected to be equal to l. 

consequently, we find out that the program does 

not work properly and in some cases we do not 

have sorted elements of a[] in the return array. 

5.2   A Comparison with Original Daikon 

Now in this subsection, we compare our 

result with result of original Daikon. We plan to 

do comparison in the function Figure. 1. In 

Figure.1 we presented a faulty version of “bubble 

sort”. In Figure. 2 we showed our the related 

invariants generated by a modified version of 

Daikon (a version of daikon which we add our 

idea to it). Now in Figure.7, the original Daikon 

invariants of this subprogram are presented. 

 

Figure 6:  Related invariants for the code of Figure 5 

As we see in Figure.7, original Daikon 

invariant do not help us to determine the fault. 

Despite the reality, line 6 and 9 express that the 

program works properly and returns the sorted 

array. 

 

Figure 7:  Related invariants to the bubblesort code 

of Figure 1 using original Daikon 

6   Evaluation  

In this section, we plan to evaluate our 

proposed idea. In order to reach this goal, we 

intend to come up with two kind of comparison 

between modified Daikon and Original one. At 

first we evaluate the running time and time order 

of both version of Daikon. Then we measure the 

quality of produced invariants by using of 

relevance [5]-[6]. 

The running times of the proposed modified 

Daikon and the original one in terms of 

millisecond is shown in the Figure.8. As seen, 

the time-order of both modified and original 

versions of Daikon are linear. In other words, by 

adding our idea to the original Daikon the time  

 

Figure 8: Time order of code of Figure 1 using 

different numbers of Data-trace files 
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order remains linear. However as there are more 

variable to check, modified Daikon has the 

higher slope of time order. 

From another perspective, the relevance of 

the modified Daikon over some typical programs 

is summarized in Table.1. We study some rather 

simple and small pieces of program. Our reason 

is that every program, either big or small, has 

small parts and might be raised in small 

subprograms. These subprograms include arrays 

as their variables and effectively present the 

effect of the ideas.  

Now, consider Table.1. Rows are some 

different rather simple programs which we 

discussed some them in previous sections. 

Columns are representative of quality of 

invariants. As expected, all the inferred 

invariants are not proper.  In Table.1 we 

proposed the number of implied and irrelevant 

invariant. For example if two invariants “x != 0” 

and “x in [7..13]” are determined to be true, there 

is no sense to report both because the latter 

implies the former. 

Table 1:  Relevance of modified Daikon in some case 

studies 

 

7 Conclusions 

In this paper, we discussed invariant as a 

significant entity in software engineering in 

recent years. Invariant detection tools report 

properties of program variables and relations 

between them. Since useful properties lead to 

more relevant invariants, we try to introduce two 

new properties of arrays which can cause new 

kinds of invariants. We focused on arrays 

because arrays are very conventional data 

structures which are used in all programs. As 

most of faults happen in the first and last 

elements of arrays we enhance the effect of fault 

detecting by employing these elements as some 

properties of the array. Another property which 

prepares a good condition to gain more useful 

invariants is the mutual element for same type 

arrays. As mentioned earlier, this property is 

helpful when in a program point an array is 

returned after changing elements in another 

array. After introducing these two ideas, we 

added them to Daikon. Daikon is a robust 

dynamic invariant detection tool. Then we 

evaluate our idea by comparing modified Daikon 

with original one. As mentioned, the time order 

does not change and it remains linear but with 

higher slope. Then we showed that more than 

76% of inferred invariants are proper and 

relevant. 

Although some ideas about arrays are valid in 

the case of pointers, some others inherently 

differ. For future work, the pointers can be dealt 

with in more details. 
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