
Extension in The Case of Arrays in Daikon like Tools

M. H. Fouladgar*
a
, B. Minaei-Bidgoli

a
, H. Parvin

b
, H. Alinejad-Rokny

c, d

a
School of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

b
Department of Computer Engineering, Nourabad Branch, Islamic Azad University, Nourabad, Iran

c
 Complex Systems in Biology Group, Centre for Vascular Research, Faculty of Medicine, The University

of New South Wales, Sydney, NSW, Australia
d
 School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW,

Australia

Email: Parvin@iust.ac.ir and H.Alinejad@ieee.org

Received: Sep. 10, 2012; Revised Dec. 14, 2012; Accepted Feb. 16, 2013

 Published online: Mar. 1, 2013

Abstract: Software engineering comprises some processes such as designing, implementing and modifying of code. These

processes are done to generate software fast and have a high quality, efficient and maintainable software. In order to

perform these processes, invariants can useful and help programmers and testers. Arrays and pointers are frequent data

types and are used in program code repeatedly. Because of this conventional use, these two data types can be the reason of

fault in some program codes. First and last elements of arrays can confront to fault because of carelessness in using index

in loops. Also arrays with the same type mostly have some relations which can be probably faulty. Therefore invariants

which can report array and pointer properties are functional. This paper presented some constructive extension to Daikon

like tools so that can produce more relevant invariants in the case of array.

Keywords: Dynamic invariant detection; software testing; array property; array’s first & last elements; mutual element

between arrays.

1. Introduction

Invariant are program valuable properties and

relations which are true in all executions. For

example in a sort function such as bobble sort,

while leaving the function, all the elements of the

array are sorted so invariant (array a sorted >=)

is reported. Such properties might be used in

formal specification or assert statement.

Invariant is introduced in [1]. Since invariants

repeat the properties and relations of program

variables, invariants can express the behavior of

a program [4], therefore after an updating to the

code, invariants can determine which properties

of the code remain unchanged and which

properties are changed. Invariants are kind of

documentation and specification. Since

specification and documentation are essentials in

software engineering, Invariants can be used in

all processes of software engineering from

design to maintenance [2]. There are two

different approaches to detent invariants, static

and dynamic. This paper focuses on dynamic

invariant detection.

Dynamic invariant detection is first time

introduced by Daikon [3] - a full-featured and

robust implementation of dynamic invariant

detection. Daikon is the most prospering tool for

detecting dynamic invariant and until now,

comparing with other dynamic invariant

detection methods [3]. Most of other tools and

method are inspired by Daikon. Though Daikon

is potent, one of the greatest problems of this tool

is being time-consuming.

One of the most time consuming parts of

software engineering is testing because regarding

to different inputs, different paths in execution

happen. However tester tries to test all different

paths by different inputs, unchecked paths can be

faulty. In this situation, because of their

structure, arrays and pointers are more probable

to be faulty. By means of invariants, programmer

9

or tester can recognize the behavior of program.

Invariants detection tools report the properties

and relations among variables. These properties

and relations can be use in code testing after each

up-date. Therefore if any improvement is

achieved for the reporting some relevant

invariant about arrays can help tester to find out

program fault.

The first and the last elements of an array

possess very crucial properties because these

elements are impacted by the carelessness in

using the indexes. By involving some array

elements in invariant detection, a dramatic

improvement in fault detection might happen.

The number of these elements can be the least

size of an array or they can be optional. This

contribution exposes inattention in using index

which mostly happens with the first and the last

indexes and corresponding to the first and last

elements of an array.

Besides employing array elements, enlisting

the number of mutual elements of same type

arrays for each program point is useful in

detecting faults. In other words, for each

program point, the number of elements' values

which are shared in two different same type

arrays is employed in invariants detection. It

helps the programmer to evaluate his program in

the cases that an array is gained from changes in

another array. The mutual elements show the

correct elements which should be unchanged

through the process. We discuss more about this

contribution in the next sections and clarify the

number of mutual elements of same type arrays

for each program point.

2 Related Work

In this section, we discuss some

implementations of dynamic invariant detection.

We mention some implementations which are

more relevant to our job but it is worth to

mention there are many valuable efforts in this

topic.

Dynamic invariant detection is first time

introduced by Daikon [3] - a full-featured and

robust implementation of dynamic invariant

detection. Daikon is the most prospering tool for

detecting dynamic invariant and until now,

comparing with other dynamic invariant

detection methods [3]. Most of other tools and

method are inspired by Daikon. Though Daikon

is potent, one of the greatest problems of this tool

is being time-consuming.

DySy [8] is a dynamic inference tool which

uses dynamic symbolic execution to expand the

quality of inferred invariants. In the other words,

besides executing test cases, DySy

contemporarily perform a symbolic execution.

These symbolic executions cause to produce

program path condition. Then DySy combines

the path conditions and build the final result. The

result includes invariants which are expressed

according to the program path condition.

Agitator [9] is a commercial testing tool and

is inspired by Daikon. Software agitation was

introduced by Agitar. Software agitation joins

the results of research in test-input generation

and dynamic invariant detection. The results are

called observations. Code developer checks these

observations to find out if there is any fault in the

code. If there is any fault programmer or tester

remove it and so on. Agitar won the Wall street

Journal's 2005 Software Technology Innovation

Award.

 The DIDUCE is a dynamic invariant

inference tool which extracts not only program

invariants but also helps programmer to detecting

errors and to determine the root causes [10].

Besides detecting dynamic invariant, DIDUCE

checks program behavior against extracted

invariants up to each program points and reports

all detected violations. DIDUCE checks simple

invariants and does not need up-front instrument.

3 Paper Contributions

One of the most time consuming parts of

software engineering is testing because regarding

to different inputs, different paths in execution

happen. However tester tries to test all different

paths by different inputs, unchecked paths can be

faulty. In this situation, because of their

structure, arrays and pointers are more probable

to be faulty. By means of invariants, programmer

or tester can recognize the behavior of program.

Invariants detection tools report the properties

and relations among variables. These properties

and relations can be use in code testing after each

up-date. Therefore if any improvement is

achieved for the reporting some relevant

invariant about arrays can help tester to find out

program fault.

The first and the last elements of an array

possess very crucial properties because these

elements are impacted by the carelessness in

using the indexes. By involving some array

elements in invariant detection, a dramatic

10

improvement in fault detection might happen.

The number of these elements can be the least

size of an array or they can be optional. This

contribution exposes inattention in using index

which mostly happens with the first and the last

indexes and corresponding to the first and last

elements of an array.

Besides employing array elements, enlisting

the number of mutual elements of same type

arrays for each program point is useful in

detecting faults. In other words, for each

program point, the number of elements' values

which are shared in two different same type

arrays is employed in invariants detection. It

helps the programmer to evaluate his program in

the cases that an array is gained from changes in

another array. The mutual elements show the

correct elements which should be unchanged

through the process. We discuss more about this

contribution in the next sections and clarify the

number of mutual elements of same type arrays

for each program point.

Overall our contributions comprise the

following:

 Using the some of first and last elements of

an array as new variables for invariant

detection.

 Using the number of mutual elements of same

type arrays for each program point

4 Clarifying of Contributions

To simplify and clearing up the contributions

we talk over before, in this section, we illustrate

our idea by some pieces of program code and

their post-condition invariant. We state the Exit

program point invariants which represent post-

condition properties for a program point because

post-condition properties can determine both the

pre-condition and post-condition values of

variables.

Now we introduce first paper contribution. In

order to determine probable faults in arrays we

employ some of first and last elements of array

to invariant detection. The number of these

elements can be the least size of the array or can

be optional. This contribution exposes

carelessness in using index which mostly

happens to first and last indexes.

To clarify our contribution considers Figure.

1. This figure shows a faulty version of

bubbleSort(). It accepts 2 values as input. One of

which is the array and another is the length of the

array. The output is the sorted array. This version

of bubbleSort has a fault. The index j starts at 1

instead of 0 so the first element of array is not

considered in the sorting. By using of the first

and last elements of the array in invariants

detection, some useful invariants are produced

which help us to detect the fault.

Figure 1: Program A: Inattention in using index

By employing the first and the last elements

of array in invariant detection, related invariants

in the Exit point of the bubbleSort() of Figure.1

is shown in Figure.2. The presented invariants in

Figure.2 are in the form of Daikon output. For

array x, x[-1] is the last element of x, x[-2] the

element before the last one and so forth. In

Figure.2, line 14 expresses that the first element

of the input array always equals to the first

element of the return value. Lines 15 to 20

express that the rest of the elements are sorted.

Therefore obviously only the first element is

never involved in sorting. This helps the

programmer to detect the fault.

Figure 2: Related invariants to the code of Fig 1

11

Another contribute we discuss in this paper is

the number of mutual elements of same type

arrays for each program point. It helps

programmer to test the code in situations that an

array is generated as a result of performing some

activities on another array. To illustrate the idea

you may consider function in Figure.3. This

function accepts 4 parameters as inputs. The first

parameter is a sorted array and others are

respectively array length, the value of element

which must be replaced, and the new value,

respectively. This function replaces m's value

with n's value as a new value.

Figure 3: Program B: An example of "replace code"

Exit point invariants of replace() is shown in

the Figure.4. In this figure, invariants in lines 6

and 7 express the number of mutual elements

between d (the first parameter of the function)

and the return value. The number of mutual

elements between d and return value must be

equals to the number of mutual elements

between orig(d) and the return value (line 6).

Also, the number of mutual elements between d

and the return value equals to the size of d minus

1. However, besides this invariant, other

invariants quote that the return value is not

sorted despite d is sorted and this might be a fault

in the program.

Figure 4: Related invariants to the replace code of

Figure 4

5 Actual Example and Justification

Now, we plan to illustrate our ideas in some

actual examples. We intend to know how our

idea can practically help programmer to detect

faults and their line of code. To do this, we study

some rather small and simple subprograms which

are caused "gold standard" invariants [9]. Our

reasonable assumption is that every program,

either big or small, can be divided in small parts

and might be raised in small subprograms. In

other words, in all programs, when working with

arrays the programmer uses iteration expressions

such as the "for" block and carelessness can

result independently of whether the program is

big or small. The presented code does not

assume the use of any specific programming

language.

5.1 Try-Catch and Effectiveness of the Ideas

Try-Catch statements, which prevent program

from facing to a halt, can be a point of fault.

Function AVG(), which is shown in Figure.5,

contains a Try-Catch statement. It accepts an

array (a[]) and the length (l) and sums all the

elements in sum, then divides each array element

by n/5 and finally returns the sorted array.

Although the programmer has considered that if

n is zero a division-by-zero happens and

prevented it from happening by introducing an

if-condition statement, the code has a fault.

"temp" has been declared as an integer and for

0<n<5, n/5 is zero subsequently the variable

temp can become 0 as well, and therefore

division-by-zero happens. In these situations a

division-by-zero exception is thrown and the

return array has all its elements equal to 0 instead

of being the sorted input array.

Figure 5: Program C: First example for the

justification of the proposed algorithm

12

In Figure.6, the related invariants in the Exit

program point of the function are shown. As

before, invariants are in the form of Daikon

output but here we add also our proposed part.

AVG() does sort the input array and return a

sorted array as we see in the line 9 of Figure. 6.

This invariant merely express that the program

seems to work properly. However, by

considering lines 10 to 16 and specially lines 17

and 34, it is obvious that in some situations the

sorting of the array is not reached. Lines 10 to 16

show that in some cases all the return values are

equal to 0. Line 17 express that mutual elements

between a[] and the return values can be zero. In

line 34 we observe that the mutual elements

between a[] and the return values can be less

than l whereas it is expected to be equal to l.

consequently, we find out that the program does

not work properly and in some cases we do not

have sorted elements of a[] in the return array.

5.2 A Comparison with Original Daikon

Now in this subsection, we compare our

result with result of original Daikon. We plan to

do comparison in the function Figure. 1. In

Figure.1 we presented a faulty version of “bubble

sort”. In Figure. 2 we showed our the related

invariants generated by a modified version of

Daikon (a version of daikon which we add our

idea to it). Now in Figure.7, the original Daikon

invariants of this subprogram are presented.

Figure 6: Related invariants for the code of Figure 5

As we see in Figure.7, original Daikon

invariant do not help us to determine the fault.

Despite the reality, line 6 and 9 express that the

program works properly and returns the sorted

array.

Figure 7: Related invariants to the bubblesort code

of Figure 1 using original Daikon

6 Evaluation

In this section, we plan to evaluate our

proposed idea. In order to reach this goal, we

intend to come up with two kind of comparison

between modified Daikon and Original one. At

first we evaluate the running time and time order

of both version of Daikon. Then we measure the

quality of produced invariants by using of

relevance [5]-[6].

The running times of the proposed modified

Daikon and the original one in terms of

millisecond is shown in the Figure.8. As seen,

the time-order of both modified and original

versions of Daikon are linear. In other words, by

adding our idea to the original Daikon the time

Figure 8: Time order of code of Figure 1 using

different numbers of Data-trace files

13

order remains linear. However as there are more

variable to check, modified Daikon has the

higher slope of time order.

From another perspective, the relevance of

the modified Daikon over some typical programs

is summarized in Table.1. We study some rather

simple and small pieces of program. Our reason

is that every program, either big or small, has

small parts and might be raised in small

subprograms. These subprograms include arrays

as their variables and effectively present the

effect of the ideas.

Now, consider Table.1. Rows are some

different rather simple programs which we

discussed some them in previous sections.

Columns are representative of quality of

invariants. As expected, all the inferred

invariants are not proper. In Table.1 we

proposed the number of implied and irrelevant

invariant. For example if two invariants “x != 0”

and “x in [7..13]” are determined to be true, there

is no sense to report both because the latter

implies the former.

Table 1: Relevance of modified Daikon in some case

studies

7 Conclusions

In this paper, we discussed invariant as a

significant entity in software engineering in

recent years. Invariant detection tools report

properties of program variables and relations

between them. Since useful properties lead to

more relevant invariants, we try to introduce two

new properties of arrays which can cause new

kinds of invariants. We focused on arrays

because arrays are very conventional data

structures which are used in all programs. As

most of faults happen in the first and last

elements of arrays we enhance the effect of fault

detecting by employing these elements as some

properties of the array. Another property which

prepares a good condition to gain more useful

invariants is the mutual element for same type

arrays. As mentioned earlier, this property is

helpful when in a program point an array is

returned after changing elements in another

array. After introducing these two ideas, we

added them to Daikon. Daikon is a robust

dynamic invariant detection tool. Then we

evaluate our idea by comparing modified Daikon

with original one. As mentioned, the time order

does not change and it remains linear but with

higher slope. Then we showed that more than

76% of inferred invariants are proper and

relevant.

Although some ideas about arrays are valid in

the case of pointers, some others inherently

differ. For future work, the pointers can be dealt

with in more details.

References

[1] Robert W. Floyd. Assigning meanings to programs. In

Symposium on Applied Mathematics; 1967; 19-32.

[2] Ernst M. D, Cockrell J, Griswold W. G, Notkin D.

Dynamically discovering likely program invariants to

support program evolution, IEEE TSE; 2007; 27(2): 99-123.

[3] Weiß B. Inferring invariants by static analysis in KeY.

Diplomarbeit, University of Karlsruhe, March; 2007.

[4] Csallner C. DySy: Dynamic symbolic execution for

invariant inference. In Proc. of ICSE; 2008.

[5] Ernst Michael D, Czeisler Adam, Griswold William G,

Notkin David. Quickly detecting relevant program

invariants. In ICSE, Limerick, Ireland; 2000; 7-9.

[6] Ernst M. D, Griswold W. G, Kataoka Y, Notkin D.

Dynamically Discovering Program Invariants Involving

Collections. Technical Report, University of Washington;

2000.

14

